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Outline Motivations

Outline

@ Formal resolution © Existence results
@ Decoupling @ A boundary value problem
@ Variational formulations o Find u first and then v
@ Non divergence equations @ Approximating process and
convergence

© Analysis of solutions
@ Examples
@ Critical points of the real part
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Outline Motivations

Eikonal equation

Eikonal equation

w; 4wy +n(x,y)* =0
or

W3+W}%_n(xa}/)2 =0
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Outline Motivations

Eikonal equation

Eikonal equation Index of refraction

n(x,y) is the index of refraction and is

w2 + wf +n(x,y)>=0 supposed to be positive and bounded away
from zero:
or
w? 4w, —n(x,y)? =0 n(x,y) > ng > 0.
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Outline Motivations

Eikonal equation

Eikonal equation Index of refraction

n(x,y) is the index of refraction and is

w2 + wf +n(x,y)>=0 supposed to be positive and bounded away
from zero:
or
w? 4w, —n(x,y)? =0 n(x,y) > ng > 0.

We will study the first version to stress the fact that we are interested in
complex-valued solutions
w=u-+iv.
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Outline Motivations

Geometrical optics: classical asymptotics

Maxwell equations

% <EE) = curl (Fl) , % (pFl) = —curl (E) )

div (CE) =0, div (,ul_-?) =0,
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Geometrical optics: classical asymptotics

Maxwell equations

% <EE) = curl (Fl) , % (,uFI) = —curl (E) )

div (CE) =0, div (,ul_-?) =0,

Eliminate Fl, gnd obtain an
equation for E only.
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Geometrical optics: classical asymptotics

Maxwell equations

% (EE) = curl (Fl) , % (,uFI) = —curl (E) )

div (CE) =0, div (,ul_-?) =0,

Eliminate Fl, gnd obtain an
equation for E only.

Look for solutions harmonic in
time, E = E(x, y,z) e“!. The
z-component E; of E(x,y,z) is
a solution of the Helmholtz
equation.
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Outline Motivations

Geometrical optics: classical asymptotics

Maxwell equations

% (EE) = curl (Fl) , % (pFl) = —curl (E) ,

div (CE) =0, div (,ul_-?) =0,

Eliminate H, and obtain an J crrliellE ceueRen

equation for E only. Au+ K n(x,y,2z)? u=0

where n and k are the refraction coefficient
and wave number:

Look for solutions harmonic in k* = eo po W, € p = n(x,y,z)? € po.
time, E = E(x,y,z) e*. The
z-component E; of E(x,y,z) is
a solution of the Helmholtz
equation.
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Here,
€9 = backgrnd dielectric constant,

po = backgrnd magnetic permeability.



Outline Motivations

Further approximation

If k is large

- +oo
Look for u(x,y,z) = e* ?c¥2) S~ A (x,y, z)(ik)~" and obtain:
n=0

¢’2‘ + ¢f’ + d)z = I'I(X, Y, 2)27 eikonal eq.

2V VA, + [udiv (22)] A+

transport eqs.
2(Vloegn:-A,)Véd =0, n=0,1,---.
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Further approximation

If k is large

- +oo
Look for u(x,y,z) = e* ?c¥2) S~ A (x,y, z)(ik)~" and obtain:
n=0

¢’2‘ + ¢f’ + d)z = I'I(X, Y, 2)27 eikonal eq.

2V VA, + [udiv (22)] A+

transport eqs.
2(Vloegn:-A,)Véd =0, n=0,1,---.

The eikonal ¢ describes the propagation
of light in terms of rays. J
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Further approximation

If k is large

- +oo
Look for u(x,y,z) = e* ?c¥2) S~ A (x,y, z)(ik)~" and obtain:
n=0

¢’2‘ + ¢f’ + d)z = I'I(X, Y, 2)27 eikonal eq.

2V VA, + [udiv (22)] A+

transport eqs.
2(Vloegn:-A,)Véd =0, n=0,1,---.

The eikonal ¢ describes the propagation
of light in terms of rays. J

w2 + Wf = n(x,y)2
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Outline Motivations

Further approximation

If k is large

- +oo
Look for u(x,y,z) = e* ?c¥2) S~ A (x,y, z)(ik)~" and obtain:
n=0

¢’2‘ + ¢f’ + d)z = I'I(X, Y, 2)2, eikonal eq.

2V VA, + [udiv (22)] A+
2(Vloegn:-A,)Véd =0, n=0,1,---.

transport eqs.

Evanescent Wave Tracking (EWT)

If ¢ is allowed to take complex values,
we have EWT (Felsen), a theory which
extends geometrical optics beyond
caustics.

The eikonal ¢ describes the propagation
of light in terms of rays. J

w2 + Wf = n(x,y)2
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Outline Motivations

A more exhaustive theory

Ludwig, Kravtsov

E=e™. {Ai(=K*"*v)U + ik P Ai' (=k**v)V + remainder},
where Ai is an Airy function satisfying Ai"(t) — tAi(t) = 0.
We obtain:
|Vul> + v|Vv|* = n?, Vu-Vv =0,
+transport eqns. for U&vVv
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Outline Motivations

A more exhaustive theory

Ludwig, Kravtsov
E=e™. {Ai(=K*"*v)U + ik P Ai' (=k**v)V + remainder},
where Ai is an Airy function satisfying Ai"(t) — tAi(t) = 0.
We obtain:
|Vul> + v|Vv|* = n?, Vu-Vv =0,
+transport eqns. for U&vVv

-

=u+2 ¥ A=y 14 U+ v\7,
3

Yp=u—2%v? B=vV"U- v V),
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Outline Motivations

A more exhaustive theory

Ludwig, Kravtsov
E=e™. {Ai(=K*"*v)U + ik P Ai' (=k**v)V + remainder},
where Ai is an Airy function satisfying Ai"(t) — tAi(t) = 0.
We obtain:
|Vul> + v|Vv|* = n?, Vu-Vv =0,
+transport eqns. for U&vVv

o
and obtain..
eikonal eq. for ¢ & 1[)
p=u+2 v A=v 40+ v V), transport eqs. for A & B.

Yp=u—2%v? B=vV"U- v V),
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Outline Motivations

A more exhaustive theory

Ludwig, Kravtsov
E=e™. {Ai(=K*"*v)U + ik P Ai' (=k**v)V + remainder},
where Ai is an Airy function satisfying Ai"(t) — tAi(t) = 0.
We obtain:
|Vul> + v|Vv|* = n?, Vu-Vv =0,
+transport eqns. for U&vVv

o
and obtain..
eikonal eq. for ¢ & 1[)
p=u+2 v A=v 40+ v V), transport eqs. for A & B.

Yp=u—2%v? B=vV"U- v V),
¢, complex-valued if v < 0.
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Decoupling
Formal resolution Variational formulations
Non divergence equations

Decoupling: first step

A nonlinear system

Looking for complex-valued solutions
w = u+ iv of
2 2 2 _
wy +w, +n(x,y)" =0
gives two first-order equations:
[Vul® Vv +n(x,y)* =0,
Vu-Vv =0.

Notice that |Vv| > n.
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Decoupling
Formal resolution Variational formulations
Non divergence equations

Decoupling: first step

Looking for complex-valued solutions By a classical analysis this system is
w = u + iv of degenerate elliptic because
w? + Wf +n(x,y)> =0
gives two first-order equations:
[Vul? — Vv +n(x,y)* =0,
Vu- Vv =0.

— (e — uyw)* =
|Vul? (n2 + |Vu|2) <0;

the system degenerates only at critical
Notice that |[Vv| > n. points of u.
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Formal resolution

Decoupling: first step

Decoupling
Variational formulations
Non divergence equations

A nonlinear system

Looking for complex-valued solutions
w = u+ iv of
2 2 2 _
wy +w, +n(x,y)" =0
gives two first-order equations:
[Vul® Vv +n(x,y)* =0,
Vu-Vv =0.

Notice that |Vv| > n.

Orthogonality
Vu-: Vv =0 implies that

Vv |, (Vu)t
|Vv| — [Vu| -
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Ellipticity

By a classical analysis this system is
degenerate elliptic because

— (e — uyw)* =

|Vul? (n2 + |Vu|2) <0;

the system degenerates only at critical
points of u.




Formal resolution

Decoupling: first step

Decoupling
Variational formulations
Non divergence equations

A nonlinear system

Looking for complex-valued solutions
w = u+ iv of

Wf + Wf + n(x,y)2 =0

gives two first-order equations:
[Vul® Vv +n(x,y)* =0,
Vu-Vv =0.

Notice that |Vv| > n.

Orthogonality
Vu-Vv =

0 implies that

Vv _ 4 (Vu)*
|Vv| — [Vul
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Ellipticity

By a classical analysis this system is
degenerate elliptic because
— (e — uyw)* =

IVul? (n2 + |Vu|2) <0

the system degenerates only at critical
points of u.

Backlund transformations

Hence, |Vu|* —

[Vv[? + n(x,y)? = 0 gives:

+/ ¥ VP (V“)
L

Vu=F/|Vv|2—n? %

Vv =




Decoupling
Formal resolution Variational formulations
Non divergence equations

Decoupling: second step

Use of Backlund transformations

If we know u then we can
recover v and viceversa.
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Decoupling
Formal resolution Variational formulations
Non divergence equations

Decoupling: second step

Use of Backlund transformations

If we know u then we can
recover v and viceversa.

NOTE
If n =0, then the Backlund
transformations read:

vy = Fuy,
Vy = L,

the Cauchy-Riemann (or anti
Cauchy-Riemann) equations.
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Decoupling
Formal resolution Variational formulations
Non divergence equations

Decoupling: second step

Use of Backlund transformations Equations in divergence form

If we know u then we can From the Backlund transformations, since
recover v and viceversa. curl(Vv) = curl(Vu) = 0, we obtain two
second order differential equations in

NOTE divergence form:

If n =0, then the Backlund . Vu

transformations read: dlv{ V2 + [Vul? |Vu|} =0,
Vx = FUy, : 2 _ 2 Vv —
v = +un, dlv{\/|Vv| n |Vv|} 0

the Cauchy-Riemann (or anti

. . Notice that, since u and v solve the original
Cauchy-Riemann) equations.

eikonal equation, then |Vv| > n.

Rolando Magnanini On the complex eikonal equation



Decoupling
Formal resolution Variational formulations
Non divergence equations

Functionals for u and v

The two equations in divergence form,
div {,/n2 FVap |§5| } —o,
div {\/ |Vv|2 — n? |§—Z|} =0,

are (formally) Euler equations of suitable functionals.
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pling
Formal resolution onal formulations
ivergence equations

Functionals for u and v

The two equations in divergence form,
av{ v FTeaE Ta b =o
div {W |§_|} o,
are (formally) Euler equations of suitable functionals.

Functional for u

J(u):/nj (@)  ddy

where

J'(p)=V1+p
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Decoupling
Formal resolution Variational formulations
Non divergence equations

Functionals for u and v

The two equations in divergence form,
div {,/n2 FVap |§5| } —o,
div {\/ |Vv|2 — n? |§—Z|} =0,

are (formally) Euler equations of suitable functionals.

o

Functional for u Functional for v

J(u):/nj (@) n® dxdy K(v):/ﬂk(@) n® dxdy

where

k(r) = max{rp —j ,
(o) = VITR. (6) = ooeeslenp = )

is the Young conjugate of j.

where

~
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Decoupling
Formal resolution Variational formulations
Non divergence equations

Energy densities

j° versus k':(j')_:L
')

K@® t
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Decoupling
Formal resolution Variational formulations
Non divergence equations

Two quasilinear equations

Performing the divergence

From the two divergence equations, we obtain:

(|Vu|4+n2u}2,) U — 207 Uy Uy Uy + (|Vu|4+n2u,2() uyy +n|Vul’Vn-Vu=0,

(|Vv|4—n2vf) Vi + 207 Vi vy iy + (|Vv|4—n2vf) vy —n|Vv[*Vn-Vv=0.
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Decoupling
Formal resolution Variational formulations
Non divergence equations

Two quasilinear equations

Performing the divergence

From the two divergence equations, we obtain:

(|Vu|4+n2u}2,) U — 207 Uy Uy Uy + (|Vu|4+n2u,2() uyy +n|Vul’Vn-Vu=0,

(|Vv|4—n2vf) Vi + 207 Vi vy iy + (|Vv|4—n2vf) vy —n|Vv[*Vn-Vv=0.

These two quasilinear equations have the
structure:

a Uxx+2b uxy+c uy+f =0;

here a, b, ¢, and f depend on x, uy, uy.
If A and A are the eigenvalues of

a b
b c )’

we have that
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Decoupling
Formal resolution Variational formulations
Non divergence equations

Two quasilinear equations

Performing the divergence

From the two divergence equations, we obtain:

<|Vu|4+n2u}2,) U — 207 Uy Uy Uy + (|Vu|4+n2u,2() uyy +n|Vul’Vn-Vu=0,

(|Vv|4—n2vf) Vi + 207 Vi vy iy + (|Vv|4—n2vf) vy —n|Vv[*Vn-Vv=0.

These two quasilinear equations have the Ao |V ul?
structure: AN P+ (VP

a Uxx+2b uxy+c uy+f =0; A Vv —n?
here a, b, ¢, and f depend on x, uy, uy. A, = Vv[z

i f
U705 ernel 20 1t D CEnallizD o hence the 1% equation is elliptic and
( a b ) , degenerates when Vu = 0, while the 2™
b c is elliptic for [Vv| > n and hyperbolic

we have that |} for |Vv| < n.

v
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Examples

Analysis of solutions Critical points of the real part

Example 1: method of characteristics

So far, all computations
were formal; by some
example, we shall see that
some computations are
not legal.
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Examples
Critical points of the real part

Analysis of solutions

Example 1: method of characteristics

We will consider examples for n = 1

So far, all computations

2 2
wy +w, +1=0,
were formal; by some twy

example, we shall see that (|Vu|“+u§> Usx — 2Ux Uy Uxy + (|Vu|“+u§) uy =0
some computations are
not legal. (|Vv|4—vf) Vi + 2VaVy vy + (|Vv|4—vf) vy =0
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Examples
Critical points of the real part

Example 1: method of characteristics

Analysis of solutions

We will consider examples for n = 1

So far, all computations

2 2

were formal; by some we +wy +1=0,

example, we shall see that (|Vu|4+u}2,> Usxe —2Ux Uy Uxy + (|Vu|4—|—u,2() uy =0
some computations are

not legal. (|Vv|4—vf) Ve + 2V Vy Vyy + (|Vv|4—vf) vy, =0

Characteristics

Let s — (xo(s), yo(s), wo(s)) be a parametrization of a given function wy on a
planar curve ' (s=arclength of T).

The eikonal equation tells us that w grows linearly along the trajectories of its
gradient. Hence, we obtain a parametrization for a w which takes the values

wp on I:
x = xo(s) + t po(s) pg(s)2 + qo(s)2 =1 and
y =yo(s) +t qo(s) where
w = wo(s) +t wo(s) = po(s)xa(s) + qo(s)ya(s)-

o
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Examples

Analysis of solutions Critical points of the real part

See Chapman, Lawry, Ockendon and Tews

One can obtain complex-valued solutions by allowing the parameters s and t
to take complex values.
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Examples

Analysis of solutions Critical points of the real part

See Chapman, Lawry, Ockendon and Tews

One can obtain complex-valued solutions by allowing the parameters s and t
to take complex values.

Complex distance

When wy = 0, then we can write:

x = x(s) — t yi(s),
y=w(s)+tx(s), (1)
w=t,

which is a parametrization of the
distance w from a given planar
curve I' (complex if t and s are
complex).

For fixed s, the three equations
parametrize a ray issuing from a
point on I.

o
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Examples

Analysis of solutions Critical points of the real part

See Chapman, Lawry, Ockendon and Tews

One can obtain complex-valued solutions by allowing the parameters s and t
to take complex values.

Complex distance Complex distance from a point

When wy = 0, then we can write: If w= u+ iv is the (complex) distance
from the point (0, /),

x=x(s) = t yo(s),
y = yo(s) + t x(s), (1) w(x,y) =i /x> + (y —i)?,
w=t,
we find solutions of our non-divergence

which is a parametrization of the equations:

distance w from a given planar

curve I' (complex if t and s are 1—x2—y2 1 x2_y2\2

complex). u= f‘F\/(f) +y?
For fixed s, the three equations

parametrize a ray issuing from a v(x,y) =y/u(x,y).

point on I.
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Examples

Analysis of solutions Critical points of the real part

Example 1: properties of u

Properties of u

1. The line x = 0 is a line of critical
points for u.

2. No strict maximum principle holds.
3. J is differentiable at u.

4. u solves the non-divergence equation
but is not a solution the divergence
equation in the sense of distributions.
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Examples

Analysis of solutions Critical points of the real part

Example 1: properties of u

Properties of u

1. The line x = 0 is a line of critical
points for u.

2. No strict maximum principle holds.
3. J is differentiable at u.

4. u solves the non-divergence equation
but is not a solution the divergence
equation in the sense of distributions.

Fréchet derivative of J at u

v
[iriver R aedy =2 [0, 9) dy -2 [ 9(x,0) %dx,

1< |x|< o0

>

for every ¢ € C5°. Hence, u is not a solution of the divergence equation at the critical
points of u (where it is smooth).

>
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Examples

Analysis of solutions Critical points of the real part

Pictures: contour plots for v and v
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Examples

Analysis of solutions Critical points of the real part

Example 1: non-homogeneous media

Non-homogeneous media

This idea may also be used to
construct solutions when the
refraction coefficient n is
piecewise constant.
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Examples

Analysis of solutions Critical points of the real part

Example 1: non-homogeneous media

Non-homogeneous media

This idea may also be used to
construct solutions when the
refraction coefficient n is
piecewise constant.

Snell’s law

In order to do this, we must patch each (complex) incident ray to the
interface, to the corresponding refracted ray, by using the well-known Snell’s
law that is nothing else then Euler's equation for the minimum path problem:

n;sinf; = n,sinf,.

Here 0; and 6, are the (complex) angles formed with the normal to the
interface by the respective rays.

i
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Examples

Analysis of solutions Critical points of the real part

Example 2: solutions by Legendre transformation

Legendre transformation

A change of variables from the (x, y) plane to the (p, q) plane, where p and g
are the components of the gradient of u (hence the transformation depends on
each single u considered):

p = ux(x,y) x = Up(p, q)
q=uy(x,y) y = Uq(p; q)
U=px+tqy—u u=xp+yq-—U

If the Hessian uxxuy, — ufy # 0, then the application (x,y) — (p, q) is a local
diffeomorphism.
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Examples

Analysis of solutions Critical points of the real part

Example 2: solutions by Legendre transformation

Legendre transformation

A change of variables from the (x, y) plane to the (p, q) plane, where p and g
are the components of the gradient of u (hence the transformation depends on
each single u considered):

p = ux(x,y) x = Up(p, q)
q=uy(x,y) y = Uq(p; q)
U=px+tqy—u u=xp+yq-—U

If the Hessian uxxuy, — ufy # 0, then the application (x,y) — (p, q) is a local
diffeomorphism.

Parametrization for u

Once U is computed, the second set of
equations gives a parametrization of u.
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Examples

Analysis of solutions Critical points of the real part

Example 2: solutions by Legendre transformation

Legendre transformation

A change of variables from the (x, y) plane to the (p, q) plane, where p and g
are the components of the gradient of u (hence the transformation depends on
each single u considered):

p = ux(x,y) x = Up(p, q)
q=uy(x,y) y = Uq(p; q)
U=px+tqy—u u=xp+yq-—U

If the Hessian uxxuy, — ufy # 0, then the application (x,y) — (p, q) is a local
diffeomorphism.

Parametrization for u Quasilinear equations
Once U is computed, the second set of This transformation changes quasilinear
equations gives a parametrization of u. equations into linear ones.
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Examples

Analysis of solutions Critical points of the real part

Example 2: solutions by Legendre transformation

Transforming into a linear PDE
<|Vu|4+uf,) uxx—2uxuyuxy+(|Vu|4+u,2() uy =0

4
{(P*+0°)*+p"} Upp+2Pq Upg+{(P*+0°)+q°} Ugq =0.
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Examples

Analysis of solutions Critical points of the real part

Example 2: solutions by Legendre transformation

Transforming into a linear PDE
<|Vu|4+u§) uxx—2uxuyuxy+(|Vu|4+u,2() uy =0

4
{(P*+0°)*+p"} Upp+2Pq Upg+{(P*+0°)+q°} Ugq =0.

By the further transformation
p =sinh Acosp, g =sinhAsinpu
we see that
U (A ) = U(p, q)

is harmonic.
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Examples

Analysis of solutions Critical points of the real part

Example 2: solutions by Legendre transformation

Transforming into a linear PDE
(|Vu|4+u§) uxx—2uxuyuxy+(|Vu|4+u,2() uy =0

4
{(P*+0°)*+p"} Upp+2Pq Upg+{(P*+0°)+q°} Ugq =0.

By the further transformation Then we can easily plot u by the
parametrization:

p =sinh Acosp, g =sinhAsinpu = S sinp (g

cosh A sinh A 22
we see that )
— Sinp * cos *
€ Y = Zoshx U)\ + sinh \ U#’
U'(A\, 1) = U(p, q)
sinh \ * *
. . zZ = U)\ = U .
is harmonic. cosh X

The same procedure can be done for v.

v
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Examples
Critical points of the real part

Analysis of solutions

Pictures: real part, second harmonic

It is natural to expect that v is identically constat in the “hole”.

0y ,
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. . Examples
Analysis of solutions Critical points of the real part

Pictures: imaginary part; third harmonic.

The pictures display v in the elliptic (|[Vv| > 1) and hyperbolic
(IVv| < 1) zone.

x=2(25%-1) cos(2 +cos(d 1), y = 2 (1-2 59 sin(2 +sin@ 1), 2 = (813) s° cos(31)

» M
L
S «

x=2(25%-1) cos(2 )+c0s(4 1), y = 2 (1-2 57) sin(2 +sin(4 1), 2 = (813) s° cos(3 )
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Examples

Analysis of solutions Critical points of the real part

Example 3: solutions by a rational parametrization

wi+w,+1=0
=4

i (wx,wy) € unit circle in C°.
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Examples

Analysis of solutions Critical points of the real part

Example 3: solutions by a rational parametrization

Rational parametrization

Wf + W}g +1=0 Hence, we parametrize:

< W_I._Qw W—il_w'
T 14w YT 14 w?

2

i (wx,wy) € unit circle in C°.

I Wy = wyx
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Examples

Analysis of solutions Critical points of the real part

Example 3: solutions by a rational parametrization

Rational parametrization

Wf + W}g +1=0 Hence, we parametrize:

< W_I._Qw W—il_w'
T 14w VT 14 w?

2

i (wx,wy) € unit circle in C°.

I Wy = wyx

A semilinear equation

2w we 4 (1 —w?) wy =0,

or, in complex notation,

l+iw)ws— (1 —iw) w,=0
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Examples

Analysis of solutions Critical points of the real part

Example 3: solutions by a rational parametrization

Rational parametrization

Wf + W}g +1=0 Hence, we parametrize:

< W_I._Qw W—il_w'
T 14w YT 14 w?

2

i (wx,wy) € unit circle in C°.

I Wy = wyx

A semilinear equation

2w wy + (1 —w?) w, =0,

or, in complex notation,

l+iw)ws— (1 —iw) w,=0

ot

Notice that
|Vu| =0« Im(w) = 0.

>
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Examples

Analysis of solutions Critical points of the real part

Example 3: solutions by a rational parametrization

Rational parametrization

Wf + Wf +1=0 Hence, we parametrize:

< W—i—2w W—il_w'
T 14w YT 14 w?

2

i (wx,wy) € unit circle in C°.

I Wy = wyx

A semilinear equation Change of variables

If [Vu| # 0, then the jacobian
2w wy + (1 —w?) wy, =0, ’
£ 88 37 (% = e o7 |wz|* = |wz|* is different from zero.

r, in complex notation, .
° cp We can locally invert w = w(z) by a

(14 iw) ws— (1 —iw) w, =0 function z = z(w).
In other words, we regard w as the

. independent variable.
Notice that -

|Vu| =0« Im(w) = 0.

Rolando Magnanini On the complex eikonal equation



Examples
Critical points of the real part

Analysis of solutions

Linearization

Linear equation

We obtain:

ag{(1 +iw) z(w) + (1 — iw)? m} =0.
That is, we can write
(1 + iw)® z(w) + (1 — iw)? z(w) = 2 f(w), or

(1-w?) x—2wy=f(w),

with f(w) holomorphic.

Rolando Magnanini On the complex eikonal equation



Examples

Analysis of solutions Critical points of the real part

Linearization

Linear equation

We obtain:

ag{(1 +iw) 2(w) + (1 — iw)? m} =o.
That is, we can write
(1 + iw)® z(w) + (1 — iw)? z(w) = 2 f(w), or

(1-w?) x—2wy=f(w),

with f(w) holomorphic.

Let w = £ + in and recall that [Vu| = 0 if and only if n = Im(w) = 0.
If n =0, then
(1— &) x—2¢ y = Relf(&)] and Im[f(¢)] = 0.
For fixed &, the first is the equation of a straight line.
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Examples
Critical points of the real part

Geometric information

Hence,

Analysis of solutions

(i) if equation Im[f(&)] = 0 has no roots, Vu does not vanish;

(ii) if equation Im[f(£€)] = 0 has roots, Vu does vanish on straight lines or
segments;

(iii) if f(w) = f(@), then Im[f(£)] vanishes identically; this means that Vu
vanishes on a pencil of segments and, hence, on the region Qy swept
out by these segments; the boundary of Qg is the envelope of the
segments.
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Examples
Critical points of the real part

Geometric information

Hence,
(i) if equation Im[f(&)] = 0 has no roots, Vu does not vanish;
(ii) if equation Im[f(£€)] = 0 has roots, Vu does vanish on straight lines or
segments;
(iii) if f(w) = f(@), then Im[f(£)] vanishes identically; this means that Vu

vanishes on a pencil of segments and, hence, on the region Qy swept
out by these segments; the boundary of Qg is the envelope of the

Analysis of solutions

segments.
.
For instance, if f(w) = 1 +w?, we obtain:
w(z) = —ivzz — 1 — log(vVzz — 1+ i) + log Z.
ot
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Examples
Critical points of the real part

Geometric information

Hence,

Analysis of solutions

(i) if equation Im[f(&)] = 0 has no roots, Vu does not vanish;

(ii) if equation Im[f(£€)] = 0 has roots, Vu does vanish on straight lines or
segments;

(iii) if f(w) = f(@), then Im[f(£)] vanishes identically; this means that Vu
vanishes on a pencil of segments and, hence, on the region Qy swept
out by these segments; the boundary of Qg is the envelope of the
segments.

A\

For instance, if f(w) = 1 +w?, we obtain:

w(z) = —ivzz — 1 — log(vVzz — 1+ i) + log Z.

|

Conjecture
The above remarks may lead the path to a proof of the following conjecture:

the gradient of real part v of the eikonal w
either does not vanish or it vanishes on a continuum.

v
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Examples
Critical points of the real part

Analysis of solutions

Pictures

Real part: radial Real part: third harmonic

Bo b v w2 oo oo oo

. \ /
= = 5 T 7 .
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Examples

Analysis of solutions Critical points of the real part

Non-isolated critical points: partial results

THEOREM 1

Assume n is strictly positive and that
w = u+ iv is a smooth (C?) solution of

W3 4L Wf + n(x, y)2 =0.

If Vu = 0 at some point, then Vu =0
on a ray through that point.
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Examples
Critical points of the real part

Analysis of solutions

Non-isolated critical points: partial results

THEOREM 1 Definition of a ray

Assume n is strictly positive and that A path t — (x(t), y(t)), between two points P
w = u+ iv is a smooth (C?) solution of and Q, that has minimal length (in the metric
induced by n):

W3 4L Wf + n(x, y)2 =0.

1
n(x(t t))4/x'(t)2 + y’(t)? dt,— min
If Vu = 0 at some point, then Vu =0 /0 (x(2), y(2)) (©) y'(&) ’

on a ray through that point.

4 where (x(0),¥(0)) = P, (x(1),¥(1)) = Q.
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Examples
Critical points of the real part

Analysis of solutions

Non-isolated critical points: partial results

THEOREM 1 Definition of a ray

Assume n is strictly positive and that A path t — (x(t), y(t)), between two points P
w = u+ iv is a smooth (C?) solution of and Q, that has minimal length (in the metric
induced by n):

W3 4L Wf + n(x, y)2 =0.

1
n(x(t t))4/x'(t)2 + y’(t)? dt,— min
If Vu = 0 at some point, then Vu =0 /0 (x(2), y(2)) (©) y'(&) ’

on a ray through that point.

< where (x(0),y(0)) = P, (x(1),¥(1)) = Q.

THEOREM 2

Assume n is strictly positive and that v is a smooth solution of

(|Vu* + n2u}2,) Uk — 20 Uxuytxy +
(IVul* + n?u?) uyy + n|Vu[>Vn-Vu=0.

@ If Vu(z) = 0, then det V2u(z) = 0.

® If Vu(z0) = 0 and |V2u(z0)| > 0, then Vu = 0 on a smooth curve through z,
and this curve is a ray.

o

Rolando Magnanini On the complex eikonal equation



A boundary value problem
Existence results Find u first and then v
Approximating process and convergence

“Cauchy-Riemann” boundary value problem

We want to find solutions of the system:

Vul = | Vv +n(x,y)? =0

Yu Vv @ D

u=¢ on 09, vdx = 0.
a0

Here, Q C R? is simply connected.
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Existence results

A boundary value problem
Find u first and then v
Approximating process and convergence

“Cauchy-Riemann” boundary value problem

We want to find solutions of the system:

Vul = | Vv +n(x,y)? =0

Yu Vv @ D

u=¢ on 09, vdx = 0.

o0

Here, Q C R? is simply connected.

When n = 0, this problem amounts to
find a function w, holomorphic (or
anti-holomorphic) in @, when its real
part is given on the boundary.

Rolando Magnanini On the complex eikonal equation



A boundary value problem
Existence results Find u first and then v
Approximating process and convergence

“Cauchy-Riemann” boundary value problem

We want to find solutions of the system:

When n = 0, this problem amounts to

in Q, find a function w, holomorphic (or
EEE =0 anti-holomorphic) in €, when its real
part is given on the boundary.

Vul = | Vv +n(x,y)? =0

u=¢ on 09, vdx = 0.
a0

Here, Q C R? is simply connected.

We find a solution u € ¢ + H} () of the
equation

(IVu* + n? uf,) Usx — 20° Uty Uy +

(IVul* + n?u) uyy + n|Vul>Vin - Vu = 0.
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A boundary value problem
Existence results Find u first and then v
Approximating process and convergence

“Cauchy-Riemann” boundary value problem

We want to find solutions of the system:

When n = 0, this problem amounts to
2 2 2 _ J
‘vyu‘ V_ [VVI* + nlx, y) — 8 in Q, find a function w, holomorphic (or
u-vv = anti-holomorphic) in ©, when its real
part is given on the boundary.
u=¢ on 09, vdx = 0.
a0

Here, Q C R? is simply connected.

We use the Backlund transformation to
recover v :

We find a solution u € ¢ + H} () of the
equation

(IVu* + n? uf,) Usx — 20° Uty Uy +

(IVul* + n?u) uyy + n|Vul>Vin - Vu = 0.

L
Vv =4y +[VaP G2 in 0

Jvdx=0.
Q
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Finding u

Problem

We minimize the functional

u |V| X
J(u) = n/( )nddy

for u € ¢ + H}(R). Here

/()= VIF 7,
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Finding u

We minimize the functional J is not differentiable: the one-sided directional
derivative of J is:
J(u) = / (|V |> n? dx dy iim J(u+en) —J(u)
Q 0t € -
for u € ¢ + H}(R). Here VP +[Vul? ‘¥Z| Vndxdy + [ n |Vn|dxdy.
{Vu-T‘O} {Vu=0}
J'(p) = V1+p?, This is due to the fact thet j/(0) =1 > 0.
ot . v
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Finding u

We minimize the functional J is not differentiable: the one-sided directional
derivative of J is:
J(u) = / (|V |> n? dx dy iim J(u+en) —J(u)
Q 0t € -
for u € ¢ + H}(R). Here VP +[Vul? ‘¥Z| Vndxdy + [ n |Vn|dxdy.
{Vu-T‘O} {Vu=0}
J'(p) = V1+p?, This is due to the fact thet j/(0) =1 > 0.
» . »

No problem

However,
J is strictly convex and coercive;

Then a unique minimizing function
exists.
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Finding u

A possible obstruction

We minimize the functional J is not differentiable: the one-sided directional
derivative of J is:
[Vul|
Q e—0t €
for u € ¢ + HY(RQ). Here J VP VuP - Vndxdy + [ n |Vn|dxdy.
{Vu#0} {Vu=0}
J'(p) = V1+p?, This is due to the fact thet j/(0) =1 > 0.
o . v
No problem A more serious obstruction
However, We would like to solve the Backlund
transformation but, as we have seen, u may
J is strictly convex and coercive; be constant on open sets and hence the
right-hand side of the system may not be
Then a unique minimizing function defined.
exists.
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Approximating J

We approximate j

We choose Je such that j. is convex, j/(0) = 0, and
Je converges to j uniformly on [0, +00).

There exists a unique function u¢ € ¢ + H}(R)
minimizing the functional:

Je(u) = /je (@) n? dx dy
Q
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Approximating J

We choose je such that je is convex, j/(0) = 0, and Since Je is differentiable, then
Je converges to j uniformly on [0, +00).
. . . 1 . . [ 1Vue| Vu¢
There exists a unique function u€ € ¢ + Hy(2) div { n j; =0
it . n Ve
minimizing the functional:
|V ul in the sense of distributions.
Je(u) = /je (—) n? dx dy |
n
Q
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A boundary value problem
Existence results Find v first and then v

Approximating process and convergence

Approximating J

We choose je such that je is convex, j/(0) = 0, and Since Je is differentiable, then
Je converges to j uniformly on [0, +00).
. . . 1 . . [ 1Vue| Vu¢
There exists a unique function u€ € ¢ + Hy(2) div { n j; =
it C n Ve
minimizing the functional:
|V ul in the sense of distributions.
Je(u) = /j6 (—) n? dx dy
n
Q
i
Quasilinear equation for u€
u® satisfies the quasi-linear equation:
a ue 2+ Ut +a 2
JOICTRiCo PPN C o 10 IC 7
1—ae(p) 1—ac(p)

where p = |Vu€|/n and the ellipticity ratio satisfies:
0<a? <aulp) = 20 <1, o) -
E
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Compactness for the sequence u¢

Bernstein inequality

Let

— € — 4€ — €
r=uly, S= Uy t=up,

For solutions u€ of the perturbed
quasi-linear equation a Bernstein
inequality holds:

[Vuef?
n? + |Vue|?
2(s? — rt) + |Vn|2.

(rPP+2s2+1%) <
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Compactness for the sequence u¢

A priori estimate

— . By integrating over the domain
Bernstein inequality )
o QL) = {(x,y) € Q- dist ((x,),09) > L},
and by using level set analysis, we obtain the
r= uf(x7 s = U;y t= u;y estimate:
Vo P 92ueP? dx d
: R y <
For solutions u€ of the perturbed Q(IL) RV | |
quasi-linear equation a Bernstein ) 1 )
inequality holds: J1Vn|? dx dy + p{f n? dx dy + 2J(u)}
Q Q )
[Vue[? 2 2 2
——— (rr+2s°+t°) <
n? + |Vue|? ( )<
2(s? — rt) + |Vn|2.
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Compactness for the sequence u¢

A priori estimate

B tein i lit By integrating over the domain
ernstein inequality
Q(L) = {(x,y) € Q:dist ((x,y),002) > L},

Let
and by using level set analysis, we obtain the
r= U)S(x7 s = U;y t= u;y estimate:
|V”€|2 VZUe 2 dx d
: el y <
For solutions u€ of the perturbed Q(IL) RV | |
quasi-linear equation a Bernstein ) 1 )
inequality holds: J1Vn|? dx dy + p{f n? dx dy + 2J(u)}
[Vue[? 2 2 2
n? + |Vue|? ( )< ° : - " "
ur estimate gives enough compactness to show:
2(s? — rt) + |Vn|2. = = =

v € uc converges uniformly on compact subsets
of  to a function u,

@ u satisfies the quasi-linear equation with
€ = 0 in the viscosity sense.

© Vuc — Vu almost everywhere.
ot
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

The sequence v*

i)
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

The sequence v*

We apply Backlund safely
Approximating j and k By the Backlund transform:

L (Ve (Vue)t
v —nge () ,
v=nie () S0

since d?v¢ = 0, we can find v¢ normalized by
J veédxdy = 0.
Q

i)
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

The sequence v*

We apply Backlund safely
Approximating j and k By the Backlund transform:

€ e\L
vue = (221 (T2
n [V ue|

since d?v¢ = 0, we can find v¢ normalized by
J veédxdy = 0.
Q

Remark

|\

v€ is a critical point of the functional

Ke(v) = /kE <|V_nv\> n? dx dy,
Q

/  where k. is the Young conjugate of j..

i)

ot
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Taking the v¢ to the limit

Quasilinear equation for v¢
v€ is a solution of the quasi-linear equation:

2 2
(v§)°+B: (N () .

2
V;x+2V;V;V;y + W vyy:\va\ Vve-Vinn,

Be (r) (vg)*+(vyp)?
Be (r)—1

where r = |Vv¢|/n and Be(r) = ac(gl(r))~? .
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Taking the v¢ to the limit

Quasilinear equation for v¢

v€ is a solution of the quasi-linear equation:

vE 2+ (r) (ve 2
Ve F2vivpve, + % V;},:\VVE\ZVVE -Vinn,

Be (r) (vg)*+(vyp)?
Be (r)—1

where r = |Vv¢|/n and Be(r) = ac(gl(r))~? .

Compactness

The compactness properties of u¢ imply that

© there exists a subsequence v¢ that uniformly
converges on compact subsets of Q to a v;

Q Vv© = Vv weakly in L} (D).
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Taking the v¢ to the limit

Quasilinear equation for v¢
v€ is a solution of the quasi-linear equation:

2 2
(28 (D (5,

V;x+2V;V;V;y + W V",},:‘VVEFVVE -Vinn,

Be (r) (vg)*+(vyp)?
Be (r)—1

where r = |Vv¢|/n and Be(r) = ac(gl(r))~? .

Compactness
The compactness properties of u¢ imply that v is a critical point of the functional
© there exists a subsequence v¢ that uniformly
converges on compact subsets of Q to a v; K(v) = /k (@) P i dy
Q Vv© = Vv weakly in L} (D). g

and k is the Young conjugate of j.
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Equation(s) for v

Quasilinear equation for v

v is a viscosity solution of the equation:
<V2v Vv, Vv >+n?B(|Vv|/n) Av=|Vv|*V(Inn)- Vv,

where B is the uniform limit in compact subsets of (0, +o0) of the sequence:
2
Be(r) = gn-1°
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Equation(s) for v

Quasilinear equation for v

v is a viscosity solution of the equation:
<V2v Vv, Vv >+n?B(|Vv|/n) Av=|Vv|*V(Inn)- Vv,

where B is the uniform limit in compact subsets of (0, +o0) of the sequence:

’2
Be(r) = gn-1°

Non unique B

B depends on the way we approximate
the function j(p) : different jc's may
lead to different B’s and hence to
different equations for v.
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Equation(s) for v

Quasilinear equation for v

v is a viscosity solution of the equation:
<V2v Vv, Vv >+n?B(|Vv|/n) Av=|Vv|*V(Inn)- Vv,

where B is the uniform limit in compact subsets of (0, +o0) of the sequence:

’2
Be(r) = gn-1°

Non unique B

B depends on the way we approximate
the function j(p) : different jc's may
lead to different B’s and hence to
different equations for v.

|\

K is flat for |Vv| < 1

This depends also on the fact that the
limiting functional K is convex, but not
strictly convex.

-
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Equation(s) for v

Quasilinear equation for v

v is a viscosity solution of the equation:
<V2v Vv, Vv >+n?B(|Vv|/n) Av=|Vv|*V(Inn)- Vv,

where B is the uniform limit in compact subsets of (0, +o0) of the sequence:

’2
Be(r) = gn-1°

B depends on the way we approximate For a particular choice of je :
the funct.lon J(p) :,dlfferent Je's may 1_p2 fo<r<i,
lead to different B’s and hence to B(r) = 2 2 A~
. . re(rf =1) if r>1.
different equations for v. ) )
.

K is flat for [Vv| < 1 Another possible B

This depends also on the fact that the .
limiting functional K is convex, but not B(r) = { 0 if 0<r<1,

strictly convex. r2(r2 —1) if r>1.
. ot - o

Rolando Magnanini On the complex eikonal equation




A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Back to the first order system

As far as our first order system
is concerned, we have:

v =ai ()
n
Vu® - Vv =0.
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Back to the first order system

Favourable occurrence

As far as our first order system Since j/ does not converge uniformly to j/, we
is concerned, we have: obtain: if {(x,y) € Q: Vu(x,y) = (0,0)} has
zero measure, then v¢ — v uniformly and v
. |Vue satisfies the system:
v =ai () Y
Vit - VvE = 0. [Vul> = |Vvi> + n(x,y)? =0
Vu:Vv =0.
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Back to the first order system

Favourable occurrence

As far as our first order system Since j/ does not converge uniformly to j/, we
is concerned, we have: obtain: if {(x,y) € Q: Vu(x,y) = (0,0)} has
zero measure, then v¢ — v uniformly and v
. |Vue satisfies the system:
v =ai () Y
Vit - VvE = 0. [Vul> = |Vvi> + n(x,y)? =0
Vu:Vv =0.

Unfavourable occurrence

If {(x,y) € Q: Vu(x,y) = (0,0)}
has positive measure, then

|Vul2 = |Vv[> +n(x,y)* <0
Vu-Vv =0
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A boundary value problem
Existence results Find v first and then v
Approximating process and convergence

Back to the first order system

Favourable occurrence

As far as our first order system Since j/ does not converge uniformly to j/, we
is concerned, we have: obtain: if {(x,y) € Q: Vu(x,y) = (0,0)} has
zero measure, then v¢ — v uniformly and v
. |Vue satisfies the system:
v =ai () Y
n
Vit - VvE = 0. [Vul> = |Vvi> + n(x,y)? =0
Vu:Vv =0.

. v
Unfavourable occurrence Changing our point of view

If {(x,y) € Q: Vu(x,y) = (0,0)} 3 , (Vv
has positive measure, then |[Vu|=n k. —

€ . € _
{ [Vul2 = [Vv2 + n(x,y)? <0 V-V =0,
=0

Vu-Vv . , -
also holds and, since k. converges to k' uniformly,

we obtain that u and v satisfy the system:

|Vul? — max [|[Vv|2,n?] + n? =0,
Vu-Vv=0

v
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