On the complex eikonal equation

Rolando Magnanini

Dipartimento di Matematica "Ulisse Dini" Università di Firenze

Outline

- Formal resolution
 - Decoupling
 - Variational formulations
 - Non divergence equations
- Analysis of solutions
 - Examples
 - Critical points of the real part

- Existence results
 - A boundary value problem
 - Find u first and then v
 - Approximating process and convergence

References

- R. Magnanini-G. Talenti, On complex-valued solutions to a 2D eikonal equation. Part one: qualitative properties, in Nonlinear Partial Differential Equations, G.-Q. Chen and E. DiBenedetto eds., Contemporary Mathematics, AMS 1999, Providence, RI. (USA).
- R. Magnanini-G. Talenti, On complex-valued solutions to a 2D eikonal equation. Part two: existence theorems, SIAM J. Math. Anal. 34 (2003), 805-835.
- R. Magnanini-G. Talenti, On complex-valued solutions to a 2D eikonal equation. Part three: analysis of a Bäcklund transformation, Applicable Analysis 85 (2006), 249-276.

Eikonal equation

Eikonal equation

$$w_x^2 + w_y^2 + n(x, y)^2 = 0$$

or
 $w_x^2 + w_y^2 - n(x, y)^2 = 0$

Index of refraction

n(x, y) is the **index of refraction** and is supposed to be positive and bounded away from zero:

$$n(x,y) \ge n_0 > 0$$

We will study the first version to stress the fact that we are interested in complex-valued solutions

$$w = u + iv$$

Eikonal equation

Eikonal equation

$$w_x^2 + w_y^2 + n(x, y)^2 = 0$$

or
 $w_x^2 + w_y^2 - n(x, y)^2 = 0$

Index of refraction

n(x, y) is the **index of refraction** and is supposed to be positive and bounded away from zero:

$$n(x,y) \geq n_0 > 0.$$

We will study the first version to stress the fact that we are interested in complex-valued solutions

$$w = u + iv$$
.

Eikonal equation

Eikonal equation

$$w_x^2 + w_y^2 + n(x, y)^2 = 0$$

or
 $w_x^2 + w_y^2 - n(x, y)^2 = 0$

Index of refraction

n(x, y) is the **index of refraction** and is supposed to be positive and bounded away from zero:

$$n(x,y) \geq n_0 > 0.$$

We will study the first version to stress the fact that we are interested in complex-valued solutions

$$w = u + iv$$
.

Maxwell equations

$$\begin{split} \frac{\partial}{\partial t} \left(\epsilon \vec{E} \right) &= \mathrm{curl} \left(\vec{H} \right), \quad \frac{\partial}{\partial t} \left(\mu \vec{H} \right) = - \mathrm{curl} \left(\vec{E} \right), \\ \mathrm{div} \left(\epsilon \vec{E} \right) &= 0, \qquad \mathrm{div} \left(\mu \vec{H} \right) = 0, \end{split}$$

Eliminate \vec{H} , and obtain ar equation for \vec{E} only.

If $\ln(\varepsilon/\varepsilon_0)$ is small

Look for solutions harmonic in time, $\vec{E} = \vec{E}(x,y,z) \ e^{i\omega t}$. The z-component E_z of $\vec{E}(x,y,z)$ is a solution of the Helmholtz equation.

Helmholtz equation

$$\Delta u + k^2 \ n(x, y, z)^2 \ u = 0,$$

where *n* and *k* are the refraction coefficient and wave number:

$$k^2 = \varepsilon_0 \ \mu_0 \ \omega^2, \ \varepsilon \ \mu = n(x, y, z)^2 \ \varepsilon_0 \ \mu_0$$

 $arepsilon_0 = \mathsf{backgrnd}$ dielectric constant

Maxwell equations

$$\begin{split} \frac{\partial}{\partial t} \left(\epsilon \vec{E} \right) &= \mathrm{curl} \left(\vec{H} \right), \quad \frac{\partial}{\partial t} \left(\mu \vec{H} \right) = - \mathrm{curl} \left(\vec{E} \right), \\ \mathrm{div} \left(\epsilon \vec{E} \right) &= 0, \qquad \mathrm{div} \left(\mu \vec{H} \right) = 0, \end{split}$$

Eliminate \vec{H} , and obtain an equation for \vec{E} only.

If $\ln(\varepsilon/\varepsilon_0)$ is small

Look for solutions harmonic in time, $\vec{E} = \vec{E}(x,y,z) \ e^{i\omega t}$. The z-component E_z of $\vec{E}(x,y,z)$ is a solution of the Helmholtz equation.

Helmholtz equation

$$\Delta u + k^2 \ n(x, y, z)^2 \ u = 0,$$

where *n* and *k* are the refraction coefficient and wave number:

$$k^2 = \varepsilon_0 \ \mu_0 \ \omega^2, \ \varepsilon \ \mu = n(x, y, z)^2 \ \varepsilon_0 \ \mu_0.$$

Here

 $arepsilon_0 = {\sf backgrnd}$ dielectric constant, $\mu_0 = {\sf backgrnd}$ magnetic permeability

Maxwell equations

$$\begin{split} \frac{\partial}{\partial t} \left(\epsilon \vec{E} \right) &= \mathrm{curl} \left(\vec{H} \right), \quad \frac{\partial}{\partial t} \left(\mu \vec{H} \right) = - \mathrm{curl} \left(\vec{E} \right), \\ \mathrm{div} \left(\epsilon \vec{E} \right) &= 0, \qquad \mathrm{div} \left(\mu \vec{H} \right) = 0, \end{split}$$

Eliminate \vec{H} , and obtain an equation for \vec{E} only.

If $ln(\varepsilon/\varepsilon_0)$ is small

Look for solutions harmonic in time, $\vec{E} = \vec{E}(x,y,z) \; e^{i\omega t}$. The z-component E_z of $\vec{E}(x,y,z)$ is a solution of the Helmholtz equation.

Helmholtz equation

$$\Delta u + k^2 \ n(x, y, z)^2 \ u = 0,$$

where *n* and *k* are the refraction coefficient and wave number:

$$k^2 = \varepsilon_0 \ \mu_0 \ \omega^2, \ \varepsilon \ \mu = n(x, y, z)^2 \ \varepsilon_0 \ \mu_0$$

Here,

 $\varepsilon_0 = \mathsf{backgrnd}$ dielectric constant, $\mu_0 = \mathsf{backgrnd}$ magnetic permeability

Maxwell equations

$$\begin{split} \frac{\partial}{\partial t} \left(\epsilon \vec{E} \right) &= \mathrm{curl} \left(\vec{H} \right), \quad \frac{\partial}{\partial t} \left(\mu \vec{H} \right) = - \mathrm{curl} \left(\vec{E} \right), \\ \mathrm{div} \left(\epsilon \vec{E} \right) &= 0, \qquad \mathrm{div} \left(\mu \vec{H} \right) = 0, \end{split}$$

Eliminate \vec{H} , and obtain an equation for \vec{E} only.

If $ln(\varepsilon/\varepsilon_0)$ is small

Look for solutions harmonic in time, $\vec{E} = \vec{E}(x,y,z) \; e^{i\omega t}$. The z-component E_z of $\vec{E}(x,y,z)$ is a solution of the Helmholtz equation.

Helmholtz equation

$$\Delta u + k^2 n(x, y, z)^2 u = 0,$$

where *n* and *k* are the **refraction coefficient** and **wave number**:

$$k^2 = \varepsilon_0 \ \mu_0 \ \omega^2, \ \varepsilon \ \mu = n(x, y, z)^2 \ \varepsilon_0 \ \mu_0.$$

Here,

 $arepsilon_{0}=$ backgrnd dielectric constant, $\mu_{0}=$ backgrnd magnetic permeability.

If k is large

Look for
$$u(x, y, z) = e^{ik \phi(x, y, z)} \sum_{n=0}^{+\infty} A_n(x, y, z) (ik)^{-n}$$
 and obtain:

$$\phi_x^2 + \phi_y^2 + \phi_z^2 = n(x, y, z)^2,$$
 eikonal e

$$2\nabla\phi\cdot\nabla A_n + \left[\mu\operatorname{div}\left(\frac{\nabla\phi}{\mu}\right)\right]A_n + 2(\nabla\log n\cdot A_n)\nabla\phi = 0, \quad n = 0, 1, \cdots.$$

transport eqs.

eikonal eq.

$$w_x^2 + w_y^2 = n(x, y)^2$$

If k is large

Look for
$$u(x,y,z)=e^{ik} \phi(x,y,z) \sum_{n=0}^{+\infty} A_n(x,y,z) (ik)^{-n}$$
 and obtain:

$$\phi_x^2 + \phi_y^2 + \phi_z^2 = n(x, y, z)^2$$

eikonal eq.

$$2\nabla\phi\cdot\nabla A_n + \left[\mu\operatorname{div}\left(\frac{\nabla\phi}{\mu}\right)\right]A_n + 2(\nabla\log n\cdot A_n)\nabla\phi = 0, \ n = 0, 1, \cdots.$$

transport eqs.

The **eikonal** ϕ describes the propagation of light in terms of **rays**.

In \mathbb{R}^2

$$w_x^2 + w_y^2 = n(x, y)^2$$

Evanescent Wave Tracking (EWT)

If ϕ is allowed to take complex values, we have EWT (Felsen), a theory which extends geometrical optics beyond caustics.

If k is large

Look for
$$u(x, y, z) = e^{ik \phi(x,y,z)} \sum_{n=0}^{+\infty} A_n(x, y, z) (ik)^{-n}$$
 and obtain:

$$\phi_x^2 + \phi_y^2 + \phi_z^2 = n(x, y, z)^2$$

eikonal eq.

$$2\nabla\phi\cdot\nabla A_n + \left[\mu\operatorname{div}\left(\frac{\nabla\phi}{\mu}\right)\right]A_n + 2(\nabla\log n\cdot A_n)\nabla\phi = 0, \ n = 0, 1, \cdots.$$

transport eqs.

The **eikonal** ϕ describes the propagation of light in terms of **rays**.

In \mathbb{R}^2

$$w_x^2 + w_y^2 = n(x, y)^2$$

Evanescent Wave Tracking (EWT)

If ϕ is allowed to take complex values, we have EWT (Felsen), a theory which extends geometrical optics beyond caustics.

If k is large

Look for
$$u(x, y, z) = e^{ik \phi(x,y,z)} \sum_{n=0}^{+\infty} A_n(x, y, z) (ik)^{-n}$$
 and obtain:

$$\phi_x^2 + \phi_y^2 + \phi_z^2 = n(x, y, z)^2$$

eikonal eq.

$$2\nabla\phi\cdot\nabla A_n + \left[\mu\operatorname{div}\left(\frac{\nabla\phi}{\mu}\right)\right]A_n + 2(\nabla\log n\cdot A_n)\nabla\phi = 0, \ n = 0, 1, \cdots.$$

transport eqs.

The **eikonal** ϕ describes the propagation of light in terms of **rays**.

In \mathbb{R}^2

$$w_x^2 + w_y^2 = n(x, y)^2$$

Evanescent Wave Tracking (EWT)

If ϕ is allowed to take complex values, we have EWT (Felsen), a theory which **extends** geometrical optics **beyond** caustics.

Ludwig, Kravtsov

$$\vec{E} = e^{iku} \cdot \{Ai(-k^{2/3}v)\vec{U} + ik^{-2/3}Ai'(-k^{2/3}v)\vec{V} + \text{remainder}\},$$

where Ai is an **Airy function** satisfying Ai''(t) - tAi(t) = 0. We obtain:

$$\begin{split} |\nabla u|^2 + v |\nabla v|^2 &= n^2, \qquad \nabla u \cdot \nabla v = 0, \\ + \text{transport eqns. for} \qquad \vec{U} \ \& \ \vec{V} \end{split}$$

Transform by

$$\phi = u + \frac{2}{3} v^{3/2}, \vec{A} = v^{-1/4} (\vec{U} + \sqrt{v} \vec{V}),$$

and obtain...

eikonal eq. for $\phi \ \& \ \psi$ transport egs. for $ec{A} \ \& \ ec{B}$

NOTICE

 ϕ, ψ complex-valued if $\nu < 0$.

Ludwig, Kravtsov

$$\vec{E} = e^{iku} \cdot \{ Ai(-k^{2/3}v)\vec{U} + ik^{-2/3}Ai'(-k^{2/3}v)\vec{V} + \text{remainder} \},$$

where Ai is an **Airy function** satisfying Ai''(t) - tAi(t) = 0. We obtain:

$$\begin{split} |\nabla u|^2 + v |\nabla v|^2 &= n^2, \qquad \nabla u \cdot \nabla v = 0, \\ + \text{transport eqns. for} \qquad \vec{U} \ \& \ \vec{V} \end{split}$$

Transform by

$$\phi = u + \frac{2}{3} v^{3/2}, \quad \vec{A} = v^{-1/4} (\vec{U} + \sqrt{v} \vec{V}),$$

$$\psi = u - \frac{2}{3} v^{3/2}, \ \vec{B} = v^{-1/4} (\vec{U} - \sqrt{v} \ \vec{V}),$$

and obtain...

eikonal eq. for $\phi \ \& \ \psi$ transport egs. for $ec{A} \ \& \ ec{B}.$

NOTICE

 ϕ,ψ complex-valued if v<0.

Ludwig, Kravtsov

$$\vec{E} = e^{iku} \cdot \{Ai(-k^{2/3}v)\vec{U} + ik^{-2/3}Ai'(-k^{2/3}v)\vec{V} + \text{remainder}\},$$

where Ai is an **Airy function** satisfying Ai''(t) - tAi(t) = 0. We obtain:

$$|\nabla u|^2 + v|\nabla v|^2 = n^2, \qquad \nabla u \cdot \nabla v = 0,$$

+transport egns. for $\vec{U} \& \vec{V}$

Transform by

$$\phi = u + \frac{2}{3} v^{3/2}, \quad \vec{A} = v^{-1/4} (\vec{U} + \sqrt{v} \vec{V}),$$

$$\psi = u - \frac{2}{3} v^{3/2}, \ \vec{B} = v^{-1/4} (\vec{U} - \sqrt{v} \ \vec{V}),$$

and obtain...

eikonal eq. for $\phi \& \psi$ transport eqs. for $\vec{A} \& \vec{B}$.

NOTICE

 ϕ,ψ complex-valued if v<0.

Ludwig, Kravtsov

$$\vec{E} = e^{iku} \cdot \{ Ai(-k^{2/3}v) \vec{U} + ik^{-2/3}Ai'(-k^{2/3}v) \vec{V} + \text{remainder} \},$$

where Ai is an **Airy function** satisfying Ai''(t) - tAi(t) = 0. We obtain:

$$\begin{split} |\nabla u|^2 + v |\nabla v|^2 &= n^2, \qquad \nabla u \cdot \nabla v = 0, \\ + \text{transport eqns. for} \qquad \vec{U} \ \& \ \vec{V} \end{split}$$

Transform by

$$\phi = u + \frac{2}{2} v^{3/2}, \quad \vec{A} = v^{-1/4} (\vec{U} + \sqrt{v} \vec{V}),$$

$$\psi = u - \frac{2}{3} v^{3/2}, \ \vec{B} = v^{-1/4} (\vec{U} - \sqrt{v} \ \vec{V}),$$

and obtain...

eikonal eq. for $\phi \& \psi$ transport eqs. for $\vec{A} \& \vec{B}$.

NOTICE

 ϕ, ψ complex-valued if $\nu < 0$.

A nonlinear system

Looking for complex-valued solutions w = u + iv of

$$w_x^2 + w_y^2 + n(x, y)^2 = 0$$

gives two first-order equations:

$$|\nabla u|^2 - |\nabla v|^2 + n(x, y)^2 = 0,$$

$$\nabla u \cdot \nabla v = 0.$$

Notice that $|\nabla v| \geq n$.

Ellipticity

By a classical analysis this system is degenerate elliptic because

$$-\left(u_{x}v_{y}-u_{y}v_{x}\right)^{2}=$$

$$\left|\nabla u\right|^{2}\left(n^{2}+\left|\nabla u\right|^{2}\right)\leq0$$

the system degenerates only at **critical points** of u.

Orthogonalit

 $\nabla u \cdot \nabla v = 0$ implies that

$$\frac{\nabla v}{|\nabla v|} = \pm \frac{(\nabla u)^{\perp}}{|\nabla u|}$$

Bäcklund transformations

Hence, $|\nabla u|^2 - |\nabla v|^2 + n(x, y)^2 = 0$ gives:

$$\nabla v = \pm \sqrt{n^2 + |\nabla u|^2} \frac{(\nabla u)^2}{|\nabla u|}$$

$$\nabla u = \mp \sqrt{|\nabla v|^2 - n^2} \frac{(\nabla v)}{|\nabla v|}$$

A nonlinear system

Looking for complex-valued solutions w = u + iv of

$$w_x^2 + w_y^2 + n(x, y)^2 = 0$$

gives two first-order equations:

$$|\nabla u|^2 - |\nabla v|^2 + n(x, y)^2 = 0,$$

$$\nabla u \cdot \nabla v = 0.$$

Notice that $|\nabla v| \geq n$.

Ellipticity

By a classical analysis this system is degenerate elliptic because

$$-(u_x v_y - u_y v_x)^2 =$$

$$|\nabla u|^2 \left(n^2 + |\nabla u|^2\right) \le 0;$$

the system degenerates only at **critical points** of u.

Orthogonality

 $\nabla u \cdot \nabla v = 0$ implies that

$$\frac{\nabla v}{|\nabla v|} = \pm \frac{(\nabla u)^{\perp}}{|\nabla u|}$$

Bäcklund transformations

Hence,
$$|\nabla u|^2 - |\nabla v|^2 + n(x, y)^2 = 0$$
 gives:

$$\nabla v = \pm \sqrt{n^2 + |\nabla u|^2} \frac{(\nabla u)^{\perp}}{|\nabla u|}$$

$$\nabla u = \mp \sqrt{|\nabla v|^2 - n^2} \frac{(\nabla v)^{\perp}}{|\nabla v|}$$

A nonlinear system

Looking for complex-valued solutions w = u + iv of

$$w_x^2 + w_y^2 + n(x, y)^2 = 0$$

gives two first-order equations:

$$|\nabla u|^2 - |\nabla v|^2 + n(x, y)^2 = 0,$$

$$\nabla u \cdot \nabla v = 0.$$

Notice that $|\nabla v| \geq n$.

Orthogonality

 $\nabla u \cdot \nabla v = 0$ implies that

$$\frac{\nabla v}{|\nabla v|} = \pm \frac{(\nabla u)^{\perp}}{|\nabla u|}.$$

Ellipticity

By a classical analysis this system is **degenerate elliptic** because

$$-(u_x v_y - u_y v_x)^2 = |\nabla u|^2 (n^2 + |\nabla u|^2) \le 0;$$

the system degenerates only at **critical points** of u.

Bäcklund transformations

Hence, $|\nabla u|^2 - |\nabla v|^2 + n(x, y)^2 = 0$ gives:

$$\nabla v = \pm \sqrt{n^2 + |\nabla u|^2} \frac{(\nabla u)^{\perp}}{|\nabla u|}$$

A nonlinear system

Looking for complex-valued solutions w = u + iv of

$$w_x^2 + w_y^2 + n(x, y)^2 = 0$$

gives two first-order equations:

$$|\nabla u|^2 - |\nabla v|^2 + n(x, y)^2 = 0,$$

$$\nabla u \cdot \nabla v = 0.$$

Notice that $|\nabla v| \geq n$.

Orthogonality

 $\nabla u \cdot \nabla v = 0$ implies that

$$\frac{\nabla v}{|\nabla v|} = \pm \frac{(\nabla u)^{\perp}}{|\nabla u|}.$$

Ellipticity

By a classical analysis this system is degenerate elliptic because

$$-(u_x v_y - u_y v_x)^2 =$$

$$|\nabla u|^2 \left(n^2 + |\nabla u|^2\right) \le 0;$$

the system degenerates only at **critical points** of u.

Bäcklund transformations

Hence, $|\nabla u|^2 - |\nabla v|^2 + n(x, y)^2 = 0$ gives:

$$\nabla v = \pm \sqrt{n^2 + |\nabla u|^2} \frac{(\nabla u)^{\perp}}{|\nabla u|}$$
$$\nabla u = \mp \sqrt{|\nabla v|^2 - n^2} \frac{(\nabla v)^{\perp}}{|\nabla v|}$$

Decoupling: second step

Use of Bäcklund transformations

If we know u then we can recover v and viceversa.

NOTE

If $n \equiv 0$, then the Bäcklund transformations read:

$$v_x = \mp u_y$$
 $v_y = \pm v_y$

the **Cauchy-Riemann** (or anti Cauchy-Riemann) equations.

Equations in divergence form

From the Bäcklund transformations, since $\operatorname{curl}(\nabla v) = \operatorname{curl}(\nabla u) = 0$, we obtain two second order differential equations in divergence form:

$$\begin{split} \operatorname{div}\left\{\sqrt{n^2+|\nabla u|^2}\;\frac{\nabla u}{|\nabla u|}\right\} &= 0\\ \operatorname{div}\left\{\sqrt{|\nabla v|^2-n^2}\;\frac{\nabla v}{|\nabla v|}\right\} &= 0 \end{split}$$

Notice that, since u and v solve the original eikonal equation, then $|
abla v| \geq n$.

Decoupling: second step

Use of Bäcklund transformations

If we know u then we can recover v and viceversa.

NOTE

If $n \equiv 0$, then the Bäcklund transformations read:

$$v_x = \mp u_y,$$

 $v_y = \pm v_x,$

the **Cauchy-Riemann** (or anti Cauchy-Riemann) equations.

Equations in divergence form

From the Bäcklund transformations, since $\operatorname{curl}(\nabla v) = \operatorname{curl}(\nabla u) = 0$, we obtain two second order differential equations in **divergence form**:

$$\operatorname{div}\left\{\sqrt{n^2 + |\nabla u|^2} \, \frac{\nabla u}{|\nabla u|}\right\} = 0,$$

$$\operatorname{div}\left\{\sqrt{|\nabla v|^2 - n^2} \, \frac{\nabla v}{|\nabla v|}\right\} = 0.$$

Notice that, since u and v solve the original eikonal equation, then $|
abla v| \geq n$.

Decoupling: second step

Use of Bäcklund transformations

If we know u then we can recover v and viceversa.

NOTE

If $n \equiv 0$, then the Bäcklund transformations read:

$$v_x = \mp u_y,$$

$$v_y = \pm v_x,$$

the **Cauchy-Riemann** (or anti Cauchy-Riemann) equations.

Equations in divergence form

From the Bäcklund transformations, since $\operatorname{curl}(\nabla \nu) = \operatorname{curl}(\nabla u) = 0$, we obtain two second order differential equations in **divergence form**:

$$\operatorname{div}\left\{\sqrt{n^2 + |\nabla u|^2} \, \frac{\nabla u}{|\nabla u|}\right\} = 0,$$
$$\operatorname{div}\left\{\sqrt{|\nabla v|^2 - n^2} \, \frac{\nabla v}{|\nabla v|}\right\} = 0.$$

Notice that, since u and v solve the original eikonal equation, then $|\nabla v| \ge n$.

Functionals for u and v

The two equations in divergence form,

$$\operatorname{div}\left\{\sqrt{n^2 + |\nabla u|^2} \, \frac{\nabla u}{|\nabla u|}\right\} = 0,$$
$$\operatorname{div}\left\{\sqrt{|\nabla v|^2 - n^2} \, \frac{\nabla v}{|\nabla v|}\right\} = 0,$$

are (formally) Euler equations of suitable functionals.

Functional for /

$$J(u) = \int_{\Omega} j\left(\frac{|\nabla u|}{n}\right) n^2 dx dy$$

where

$$j'(\rho) = \sqrt{1 + \rho^2}.$$

Functional for v

$$K(v) = \int_{\Omega} k\left(\frac{|\nabla v|}{n}\right) n^2 dxdy$$

where

$$k(r) = \max_{\rho > 0} \{ r\rho - j(\rho) \},$$

is the **Young conjugate** of j.

Functionals for u and v

The two equations in divergence form,

$$\begin{split} \operatorname{div}\left\{\sqrt{n^2+|\nabla u|^2}\;\frac{\nabla u}{|\nabla u|}\right\} &= 0,\\ \operatorname{div}\left\{\sqrt{|\nabla v|^2-n^2}\;\frac{\nabla v}{|\nabla v|}\right\} &= 0, \end{split}$$

are (formally) Euler equations of suitable functionals.

Functional for u_0

$$J(u) = \int_{\Omega} j\left(\frac{|\nabla u|}{n}\right) n^2 dx dy$$

where

$$j'(\rho) = \sqrt{1 + \rho^2}.$$

Functional for v

$$K(v) = \int_{\Omega} k \left(\frac{|\nabla v|}{n} \right) n^2 dx dy$$

where

$$k(r) = \max_{\rho > 0} \{ r\rho - j(\rho) \},$$

is the **Young conjugate** of j.

Functionals for u and v

The two equations in divergence form,

$$\operatorname{div}\left\{\sqrt{n^2 + |\nabla u|^2} \, \frac{\nabla u}{|\nabla u|}\right\} = 0,$$
$$\operatorname{div}\left\{\sqrt{|\nabla v|^2 - n^2} \, \frac{\nabla v}{|\nabla v|}\right\} = 0,$$

are (formally) Euler equations of suitable functionals.

Functional for μ

$$J(u) = \int_{\Omega} j\left(\frac{|\nabla u|}{n}\right) n^2 dx dy$$

where

$$j'(\rho) = \sqrt{1 + \rho^2}.$$

Functional for v

$$K(v) = \int_{\Omega} k\left(\frac{|\nabla v|}{n}\right) n^2 dxdy$$

where

$$k(r) = \max_{\rho > 0} \{ r\rho - j(\rho) \},$$

is the **Young conjugate** of j.

Energy densities

j' versus $k' = (j')^{-1}$

Performing the divergence

From the two divergence equations, we obtain:

$$\left(|\nabla u|^4 + n^2 u_y^2 \right) u_{xx} - 2n^2 u_x u_y u_{xy} + \left(|\nabla u|^4 + n^2 u_x^2 \right) u_{yy} + n |\nabla u|^2 \nabla n \cdot \nabla u = 0,$$

$$\left(|\nabla v|^4 - n^2 v_y^2 \right) v_{xx} + 2n^2 v_x v_y v_{xy} + \left(|\nabla v|^4 - n^2 v_x^2 \right) v_{yy} - n |\nabla v|^2 \nabla n \cdot \nabla v = 0.$$

$$a u_{xx} + 2b u_{xy} + c u_{yy} + f = 0$$

$$\left(\begin{array}{cc} a & b \\ b & c \end{array}\right),$$

$$\frac{\lambda_u}{\Lambda_u} = \frac{|\nabla u|^2}{n^2 + |\nabla u|^2}$$
$$\frac{\lambda_v}{\Lambda_v} = \frac{|\nabla v|^2 - n^2}{|\nabla v|^2}$$

Two quasilinear equations

Performing the divergence

From the two divergence equations, we obtain:

$$\begin{split} \left(|\nabla u|^4 + n^2 u_y^2 \right) u_{xx} - 2 n^2 u_x u_y u_{xy} + \left(|\nabla u|^4 + n^2 u_x^2 \right) u_{yy} + n |\nabla u|^2 \nabla n \cdot \nabla u &= 0, \\ \left(|\nabla v|^4 - n^2 v_y^2 \right) v_{xx} + 2 n^2 v_x v_y v_{xy} + \left(|\nabla v|^4 - n^2 v_x^2 \right) v_{yy} - n |\nabla v|^2 \nabla n \cdot \nabla v &= 0. \end{split}$$

Structure

These two quasilinear equations have the structure:

$$a u_{xx} + 2b u_{xy} + c u_{yy} + f = 0$$
;

here a, b, c, and f depend on x, u_x, u_y .

If λ and Λ are the eigenvalues of

$$\left(\begin{array}{cc}a&b\\b&c\end{array}\right),$$

we have that

Турє

$$\frac{\lambda_u}{\Lambda_u} = \frac{|\nabla u|^2}{n^2 + |\nabla u|^2}$$

$$\frac{\lambda_v}{\Lambda_u} = \frac{|\nabla v|^2 - n^2}{|\nabla v|^2}$$

hence the 1st equation is elliptic and degenerates when $\nabla u = 0$, while the 2nd is elliptic for $|\nabla v| > n$ and hyperbolic for $|\nabla v| < n$.

Two quasilinear equations

Performing the divergence

From the two divergence equations, we obtain:

$$\begin{split} \left(\left| \nabla u \right|^4 + n^2 u_y^2 \right) \ u_{xx} - 2 n^2 u_x u_y u_{xy} + \left(\left| \nabla u \right|^4 + n^2 u_x^2 \right) u_{yy} + n \left| \nabla u \right|^2 \nabla n \cdot \nabla u &= 0, \\ \left(\left| \nabla v \right|^4 - n^2 v_y^2 \right) \ v_{xx} + 2 n^2 v_x v_y v_{xy} + \left(\left| \nabla v \right|^4 - n^2 v_x^2 \right) v_{yy} - n \left| \nabla v \right|^2 \nabla n \cdot \nabla v &= 0. \end{split}$$

Structure

These two quasilinear equations have the structure:

$$a u_{xx} + 2b u_{xy} + c u_{yy} + f = 0$$
;

here a, b, c, and f depend on x, u_x, u_y .

If λ and Λ are the eigenvalues of

$$\left(\begin{array}{cc}a&b\\b&c\end{array}\right),$$

we have that

Type

$$\frac{\lambda_u}{\Lambda_u} = \frac{|\nabla u|^2}{n^2 + |\nabla u|^2},$$
$$\frac{\lambda_v}{\Lambda_u} = \frac{|\nabla v|^2 - n^2}{|\nabla v|^2},$$

hence the 1^{st} equation is **elliptic** and degenerates when $\nabla u = 0$, while the 2^{nd} is **elliptic** for $|\nabla v| > n$ and **hyperbolic** for $|\nabla v| < n$.

Example 1: method of characteristics

Note

So far, all computations were formal; by some example, we shall see that some computations are not legal.

We will consider examples for $n \equiv 1$

$$w_x^2 + w_y^2 + 1 = 0,$$

$$\left(|\nabla u|^4 + u_y^2 \right) u_{xx} - 2u_x u_y u_{xy} + \left(|\nabla u|^4 + u_x^2 \right) u_{yy} = 0$$

$$\left(|\nabla v|^4 - v_y^2 \right) v_{xx} + 2v_x v_y v_{xy} + \left(|\nabla v|^4 - v_x^2 \right) v_{yy} = 0$$

Characteristic

Let $s \mapsto (x_0(s), y_0(s), w_0(s))$ be a parametrization of a given function w_0 on a planar curve Γ (s=arclength of Γ).

The eikonal equation tells us that w grows linearly along the trajectories of its gradient. Hence, we obtain a parametrization for a w which takes the values w_0 on Γ :

$$x = x_0(s) + t p_0(s)$$

 $y = y_0(s) + t q_0(s)$ where

$$p_0(s)^2 + q_0(s)^2 = 1$$
 and

$$w'_0(s) = p_0(s)x'_0(s) + q_0(s)y'_0(s)$$

Example 1: method of characteristics

Note

So far, all computations were formal; by some example, we shall see that some computations are not legal.

We will consider examples for $n \equiv 1$

$$\begin{aligned} w_x^2 + w_y^2 + 1 &= 0, \\ \left(|\nabla u|^4 + u_y^2 \right) u_{xx} - 2u_x u_y u_{xy} + \left(|\nabla u|^4 + u_x^2 \right) u_{yy} &= 0 \\ \left(|\nabla v|^4 - v_y^2 \right) v_{xx} + 2v_x v_y v_{xy} + \left(|\nabla v|^4 - v_x^2 \right) v_{yy} &= 0 \end{aligned}$$

Characteristics

Let $s \mapsto (x_0(s), y_0(s), w_0(s))$ be a parametrization of a given function w_0 on a planar curve Γ (s=arclength of Γ).

The eikonal equation tells us that w grows linearly along the trajectories of its gradient. Hence, we obtain a parametrization for a w which takes the values w_0 on Γ :

$$x = x_0(s) + t p_0(s)$$

 $y = y_0(s) + t q_0(s)$ where

$$p_0(s)^2 + q_0(s)^2 = 1$$
 and

$$w_0'(s) = p_0(s)x_0'(s) + q_0(s)y_0'(s)$$

Example 1: method of characteristics

Note

So far, all computations were formal; by some example, we shall see that some computations are not legal.

We will consider examples for $n \equiv 1$

$$w_x^2 + w_y^2 + 1 = 0,$$

$$(|\nabla u|^4 + u_y^2) u_{xx} - 2u_x u_y u_{xy} + (|\nabla u|^4 + u_x^2) u_{yy} = 0$$

$$(|\nabla v|^4 - v_y^2) v_{xx} + 2v_x v_y v_{xy} + (|\nabla v|^4 - v_x^2) v_{yy} = 0$$

Characteristics

Let $s \mapsto (x_0(s), y_0(s), w_0(s))$ be a parametrization of a given function w_0 on a planar curve Γ (s=arclength of Γ).

The eikonal equation tells us that w grows linearly along the trajectories of its gradient. Hence, we obtain a parametrization for a w which takes the values w_0 on Γ :

$$x = x_0(s) + t \ p_0(s)$$
 $p_0(s)^2 + q_0(s)^2 = 1$ and $y = y_0(s) + t \ q_0(s)$ where $w = w_0(s) + t$ $w_0'(s) = p_0(s)x_0'(s) + q_0(s)y_0'(s)$.

See Chapman, Lawry, Ockendon and Tews

Complexify

One can obtain **complex-valued** solutions by allowing the parameters s and t to take complex values.

Complex distance

When $w_0 \equiv 0$, then we can write

$$x = x_0(s) - t y_0'(s), y = y_0(s) + t x_0'(s),$$
(1)
$$w = t$$

which is a parametrization of the distance w from a given planar curve Γ (complex if t and s are complex).

For fixed s, the three equations parametrize a ray issuing from a point on Γ .

Complex distance from a point

If w = u + iv is the (complex) distance from the point (0, i),

$$w(x, y) = i \sqrt{x^2 + (y - i)^2}$$

we find solutions of our non-divergence equations:

$$u = \sqrt{\frac{1 - x^2 - y^2}{2}} + \sqrt{\left(\frac{1 - x^2 - y^2}{2}\right)^2 + y^2},$$
$$v(x, y) = y/u(x, y).$$

See Chapman, Lawry, Ockendon and Tews

Complexify

One can obtain **complex-valued** solutions by allowing the parameters s and t to take complex values.

Complex distance

When $w_0 \equiv 0$, then we can write:

$$x = x_0(s) - t y_0'(s),$$

$$y = y_0(s) + t x_0'(s),$$

$$w = t.$$
(1)

which is a parametrization of the distance w from a given planar curve Γ (complex if t and s are complex).

For fixed s, the three equations parametrize a **ray** issuing from a point on Γ .

Complex distance from a point

If w = u + iv is the (complex) distance from the point (0, i),

$$w(x, y) = i \sqrt{x^2 + (y - i)^2},$$

we find solutions of our non-divergence equations:

$$u = \sqrt{\frac{1 - x^2 - y^2}{2} + \sqrt{\left(\frac{1 - x^2 - y^2}{2}\right)^2 + y^2}}$$

$$v(x,y) = y/u(x,y)$$

See Chapman, Lawry, Ockendon and Tews

Complexify

One can obtain **complex-valued** solutions by allowing the parameters s and t to take complex values.

Complex distance

When $w_0 \equiv 0$, then we can write:

$$x = x_0(s) - t y'_0(s),$$

$$y = y_0(s) + t x'_0(s),$$
 (1)

$$w = t.$$

which is a parametrization of the distance w from a given planar curve Γ (complex if t and s are complex).

For fixed s, the three equations parametrize a **ray** issuing from a point on Γ .

Complex distance from a point

If w = u + iv is the (complex) distance from the point (0, i),

$$w(x, y) = i \sqrt{x^2 + (y - i)^2}$$

we find solutions of our non-divergence equations:

$$u = \sqrt{\frac{1 - x^2 - y^2}{2} + \sqrt{\left(\frac{1 - x^2 - y^2}{2}\right)^2 + y^2}},$$
$$v(x, y) = y/u(x, y).$$

Example 1: properties of u

Properties of u

- 1. The line x = 0 is a line of **critical** points for u.
- 2. No strict maximum principle holds.
- 3. J is differentiable at u.
- 4. *u* solves the non-divergence equation but is **not** a solution the divergence equation in the sense of distributions.

Fréchet derivative of J at ι

$$\int \sqrt{1+|\nabla u|^2} \, \frac{\nabla u}{|\nabla u|} \cdot \nabla \phi \, dxdy = 2 \int \phi(0,y) \, dy - 2 \int_{1 < |x| < \infty} \phi(x,0) \, \frac{|x|}{\sqrt{x^2-1}} \, dx,$$

for every $\phi \in C_0^{\infty}$. Hence, u is not a solution of the divergence equation at the critical points of u (where it is smooth).

Example 1: properties of u

Properties of u

- 1. The line x = 0 is a line of **critical** points for u.
- 2. No strict maximum principle holds.
- 3. J is differentiable at u.
- 4. *u* solves the non-divergence equation but is **not** a solution the divergence equation in the sense of distributions.

Fréchet derivative of J at u

$$\int \sqrt{1+|\nabla u|^2} \ \frac{\nabla u}{|\nabla u|} \cdot \nabla \phi \ dxdy = 2 \int \phi(0,y) \ dy - 2 \int\limits_{1 < |x| < \infty} \phi(x,0) \ \frac{|x|}{\sqrt{x^2-1}} \ dx,$$

for every $\phi \in C_0^{\infty}$. Hence, u is not a solution of the divergence equation at the critical points of u (where it is smooth).

Pictures: contour plots for u and v

Example 1: non-homogeneous media

Non-homogeneous media

This idea may also be used to construct solutions when the refraction coefficient *n* is **piecewise constant**.

Snell's law

In order to do this, we must patch each (complex) incident ray to the interface, to the corresponding refracted ray, by using the well-known Snell's law that is nothing else then Euler's equation for the minimum path problem

$$n_i \sin \theta_i = n_r \sin \theta_r$$

Here θ_i and θ_r are the (complex) angles formed with the normal to the interface by the respective rays.

Example 1: non-homogeneous media

Non-homogeneous media

This idea may also be used to construct solutions when the refraction coefficient *n* is **piecewise constant**.

Snell's law

In order to do this, we must patch each (complex) incident ray to the interface, to the corresponding refracted ray, by using the well-known Snell's law that is nothing else then Euler's equation for the minimum path problem:

$$n_i \sin \theta_i = n_r \sin \theta_r$$
.

Here θ_i and θ_r are the (complex) angles formed with the normal to the interface by the respective rays.

Legendre transformation

A change of variables from the (x, y) plane to the (p, q) plane, where p and q are the components of the gradient of u (hence the transformation depends on each single u considered):

$$p = u_x(x, y)$$
 $x = U_p(p, q)$
 $q = u_y(x, y)$ $y = U_q(p, q)$
 $U = p \times + q y - u$ $u = x p + y q - U$

If the Hessian $u_{xx}u_{yy}-u_{xy}^2\neq 0$, then the application $(x,y)\mapsto (p,q)$ is a local diffeomorphism.

Parametrization for L

Once U is computed, the second set of equations gives a parametrization of u.

Quasilinear equations

This transformation changes quasilinear equations into linear ones.

Legendre transformation

A change of variables from the (x, y) plane to the (p, q) plane, where p and q are the components of the gradient of u (hence the transformation depends on each single u considered):

$$p = u_x(x, y)$$
 $x = U_p(p, q)$
 $q = u_y(x, y)$ $y = U_q(p, q)$
 $U = p \times + q y - u$ $u = x p + y q - U$

If the Hessian $u_{xx}u_{yy}-u_{xy}^2\neq 0$, then the application $(x,y)\mapsto (p,q)$ is a local diffeomorphism.

Parametrization for *u*

Once U is computed, the second set of equations gives a parametrization of u.

Quasilinear equations

This transformation changes quasilinear equations into linear ones.

Legendre transformation

A change of variables from the (x, y) plane to the (p, q) plane, where p and q are the components of the gradient of u (hence the transformation depends on each single u considered):

$$p = u_x(x, y)$$
 $x = U_p(p, q)$
 $q = u_y(x, y)$ $y = U_q(p, q)$
 $U = p \times + q y - u$ $u = x p + y q - U$

If the Hessian $u_{xx}u_{yy}-u_{xy}^2\neq 0$, then the application $(x,y)\mapsto (p,q)$ is a local diffeomorphism.

Parametrization for u

Once U is computed, the second set of equations gives a parametrization of u.

Quasilinear equations

This transformation changes quasilinear equations into linear ones.

Transforming into a linear PDE

$$(|\nabla u|^4 + u_y^2) u_{xx} - 2u_x u_y u_{xy} + (|\nabla u|^4 + u_x^2) u_{yy} = 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{(\rho^2 + q^2)^2 + \rho^2\} U_{\rho\rho} + 2\rho q U_{\rho\sigma} + \{(\rho^2 + q^2)^2 + q^2\} U_{\sigma\sigma} = 0.$$

Lucky change of variables

By the further transformation

$$p=\sinh\lambda\cos\mu,\;q=\sinh\lambda\sin\mu$$

we see that

$$U^*(\lambda,\mu) = U(p,q)$$

is harmonic

Plotting u

Then we can easily plot u by the parametrization:

$$x = \frac{\cos \mu}{\cosh \lambda} \ U_{\lambda}^* - \frac{\sin \mu}{\sinh \lambda} \ U_{\mu}^*,$$

$$y = \frac{\sin \mu}{\cosh \lambda} U_{\lambda}^* + \frac{\cos \mu}{\sinh \lambda} U_{\mu}^*$$

$$z = \frac{\sinh \lambda}{\cosh \lambda} U_{\lambda}^* - U^*$$

The same procedure can be done for v

Transforming into a linear PDE

$$(|\nabla u|^4 + u_y^2) u_{xx} - 2u_x u_y u_{xy} + (|\nabla u|^4 + u_x^2) u_{yy} = 0$$

$$\downarrow \downarrow$$

$$\{(\rho^2 + q^2)^2 + \rho^2\} U_{\rho\rho} + 2\rho q U_{\rho\sigma} + \{(\rho^2 + q^2)^2 + q^2\} U_{\sigma\sigma} = 0.$$

Lucky change of variables

By the further transformation

$$p = \sinh \lambda \cos \mu, \ q = \sinh \lambda \sin \mu$$

we see that

$$U^*(\lambda, \mu) = U(p, q)$$

is harmonic.

Plotting u

Then we can easily plot u by the parametrization:

$$x = \frac{\cos \mu}{\cosh \lambda} \ U_{\lambda}^* - \frac{\sin \mu}{\sinh \lambda} \ U_{\mu}^*,$$

$$y = rac{\sin \mu}{\cosh \lambda} \ U_{\lambda}^* + rac{\cos \mu}{\sinh \lambda} \ U_{\mu}^*$$

$$z = \frac{\sinh \lambda}{\cosh \lambda} U_{\lambda}^* - U^*$$

The same procedure can be done for v

Transforming into a linear PDE

$$(|\nabla u|^4 + u_y^2) u_{xx} - 2u_x u_y u_{xy} + (|\nabla u|^4 + u_x^2) u_{yy} = 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{(\rho^2 + q^2)^2 + \rho^2\} U_{\rho\rho} + 2\rho q U_{\rho\sigma} + \{(\rho^2 + q^2)^2 + q^2\} U_{\sigma\sigma} = 0.$$

Lucky change of variables

By the further transformation

$$p = \sinh \lambda \cos \mu$$
, $q = \sinh \lambda \sin \mu$

we see that

$$U^*(\lambda, \mu) = U(p, q)$$

is harmonic.

Plotting u

Then we can easily plot u by the parametrization:

$$x = \frac{\cos \mu}{\cosh \lambda} \ U_{\lambda}^* - \frac{\sin \mu}{\sinh \lambda} \ U_{\mu}^*,$$
$$y = \frac{\sin \mu}{\cosh \lambda} \ U_{\lambda}^* + \frac{\cos \mu}{\sinh \lambda} \ U_{\mu}^*,$$
$$z = \frac{\sinh \lambda}{\cosh \lambda} \ U_{\lambda}^* - U^*.$$

The same procedure can be done for v.

Pictures: real part, second harmonic

It is natural to expect that u is identically constat in the "hole".

Pictures: imaginary part; third harmonic.

The pictures display v in the elliptic $(|\nabla v| > 1)$ and hyperbolic $(|\nabla v| < 1)$ zone.

Remark

$$w_x^2 + w_y^2 + 1 = 0$$

 $i(w_x, w_y) \in \text{unit circle in } \mathbb{C}^2$.

A semilinear equation

$$2\omega \ \omega_x + (1 - \omega^2) \ \omega_y = 0,$$
or, in complex notation

$$(1+i\omega)$$
 $\omega_{\overline{z}} - (1-i\omega)$ $\omega_{z} = 0$

Notice that

$$|\nabla u| = 0 \Leftrightarrow \operatorname{Im}(\omega) = 0$$

Rational parametrization

Hence, we parametrize:

$$w_x = i \frac{2\omega}{1 + \omega^2}, \quad w_y = i \frac{1 - \omega^2}{1 + \omega^2}$$

Change of variables

If |
abla u|
eq 0, then the **jacobian** $|\omega_z|^2 - |\omega_{\overline{z}}|^2$ is different from zero

We can locally invert $\omega = \omega(z)$ by a function $z = z(\omega)$.

Remark

$$w_x^2 + w_y^2 + 1 = 0$$

 $i(w_x, w_y) \in \text{unit circle in } \mathbb{C}^2$.

A semilinear equation

$$2\omega \ \omega_x + (1 - \omega^2) \ \omega_y = 0$$
or, in complex notation.

$$(1+i\omega)\ \omega_{\overline{z}}-(1-i\omega)\ \omega_{z}=0$$

Notice tha

$$|\nabla u| = 0 \Leftrightarrow \operatorname{Im}(\omega) = 0$$

Rational parametrization

Hence, we parametrize:

$$w_x = i \frac{2\omega}{1 + \omega^2}, \quad w_y = i \frac{1 - \omega^2}{1 + \omega^2};$$

$$\downarrow W_{xy} = w_{yx}$$

Change of variables

If $|\nabla u| \neq 0$, then the **jacobian** $|\omega_z|^2 - |\omega_{\overline{z}}|^2$ is different from zero

We can locally invert $\omega = \omega(z)$ by a function $z = z(\omega)$.

Remark

$$w_x^2 + w_y^2 + 1 = 0$$

$$\Leftrightarrow$$

 $i(w_x, w_y) \in \text{unit circle in } \mathbb{C}^2$.

A semilinear equation

$$2\omega \ \omega_x + (1 - \omega^2) \ \omega_y = 0,$$

or, in complex notation,

$$(1+i\omega)\ \omega_{\overline{z}}-(1-i\omega)\ \omega_{z}=0$$

Notice that

$$|\nabla u| = 0 \Leftrightarrow \operatorname{Im}(\omega) = 0$$

Rational parametrization

Hence, we parametrize:

$$w_x = i \frac{2\omega}{1 + \omega^2}, \quad w_y = i \frac{1 - \omega^2}{1 + \omega^2};$$

$$\psi \quad w_{xy} = w_{yx}$$

Change of variables

If |
abla u|
eq 0, then the **jacobian** $|\omega_{\mathbf{z}}|^2 - |\omega_{\mathbf{z}}|^2$ is different from zero.

We can locally invert $\omega = \omega(z)$ by a function $z = z(\omega)$.

Remark

$$w_x^2 + w_y^2 + 1 = 0$$

$$\Leftrightarrow$$

 $i(w_x, w_y) \in \text{unit circle in } \mathbb{C}^2$.

A semilinear equation

$$2\omega \ \omega_x + (1 - \omega^2) \ \omega_y = 0,$$

or, in complex notation,

$$(1+i\omega)\ \omega_{\overline{z}}-(1-i\omega)\ \omega_{z}=0$$

Notice that

$$|\nabla u| = 0 \Leftrightarrow \operatorname{Im}(\omega) = 0.$$

Rational parametrization

Hence, we parametrize:

$$w_{x} = i \frac{2\omega}{1 + \omega^{2}}, \quad w_{y} = i \frac{1 - \omega^{2}}{1 + \omega^{2}};$$
$$\downarrow w_{xy} = w_{yx}$$

Change of variables

If $|\nabla u| \neq 0$, then the **jacobian** $|\omega_z|^2 - |\omega_{\overline{z}}|^2$ is different from zero

We can locally invert $\omega = \omega(z)$ by a function $z = z(\omega)$.

Remark

$$w_x^2 + w_y^2 + 1 = 0$$

$$\Leftrightarrow$$

 $i(w_x, w_y) \in \text{unit circle in } \mathbb{C}^2$.

A semilinear equation

$$2\omega \ \omega_x + (1 - \omega^2) \ \omega_y = 0,$$

or, in complex notation,

$$(1+i\omega)\ \omega_{\overline{z}}-(1-i\omega)\ \omega_{z}=0$$

Notice that

$$|\nabla u| = 0 \Leftrightarrow \operatorname{Im}(\omega) = 0.$$

Rational parametrization

Hence, we parametrize:

$$w_x = i \frac{2\omega}{1 + \omega^2}, \quad w_y = i \frac{1 - \omega^2}{1 + \omega^2};$$

$$\psi \quad w_{xy} = w_{yx}$$

Change of variables

If $|\nabla u| \neq 0$, then the **jacobian** $|\omega_z|^2 - |\omega_{\overline{z}}|^2$ is different from zero.

We can locally invert $\omega = \omega(z)$ by a function $z = z(\omega)$.

Linearization

Linear equation

We obtain:

$$\partial_{\overline{\omega}}\left\{ (1+i\omega)^2 \ z(\omega) + (1-i\omega)^2 \ \overline{z(\omega)} \right\} = 0.$$

That is, we can write

$$(1+i\omega)^2 z(\omega) + (1-i\omega)^2 \overline{z(\omega)} = 2 f(\omega), \text{ or}$$
$$(1-\omega^2) x - 2\omega y = f(\omega),$$

with $f(\omega)$ holomorphic.

Let $\omega=\xi+i\eta$ and recall that |
abla u|=0 if and only if $\eta=\mathrm{I} m(\omega)=0$. If $\eta=0$, then

$$(1 - \xi^2) \times -2\xi \ y = \text{Re}[f(\xi)] \ \text{and} \ \text{Im}[f(\xi)] = 0$$

For fixed ξ , the first is the equation of a straight line

Linearization

Linear equation

We obtain:

$$\partial_{\overline{\omega}}\left\{(1+i\omega)^2 z(\omega)+(1-i\omega)^2 \overline{z(\omega)}\right\}=0.$$

That is, we can write

$$(1+i\omega)^2 z(\omega) + (1-i\omega)^2 \overline{z(\omega)} = 2 f(\omega), \text{ or}$$
$$(1-\omega^2) x - 2\omega y = f(\omega),$$

with $f(\omega)$ holomorphic.

Let $\omega=\xi+i\eta$ and recall that $|\nabla u|=0$ if and only if $\eta=\mathrm{I} m(\omega)=0$. If $\eta=0$, then

$$(1 - \xi^2) \times -2\xi \ y = \text{Re}[f(\xi)] \text{ and } \text{Im}[f(\xi)] = 0.$$

For fixed ξ , the first is the equation of a straight line.

Geometric information

Hence,

- (i) if equation $Im[f(\xi)] = 0$ has no roots, ∇u does not vanish;
- (ii) if equation $Im[f(\xi)] = 0$ has roots, ∇u does vanish on **straight lines or segments**;
- (iii) if $\overline{f(\omega)} = f(\overline{\omega})$, then $\operatorname{Im}[f(\xi)]$ vanishes identically; this means that ∇u vanishes on a **pencil of segments** and, hence, on the **region** Ω_0 **swept out** by these segments; the boundary of Ω_0 is the **envelope** of the segments.

For instance, if $f(\omega) = 1 + \omega^2$, we obtain:

$$w(z) = -i\sqrt{z\overline{z} - 1} - \log(\sqrt{z\overline{z} - 1} + i) + \log\overline{z}.$$

Conjecture

The above remarks may lead the path to a proof of the following conjecture the gradient of real part u of the eikonal w either does not vanish or it vanishes on a continuum.

Geometric information

Hence,

- (i) if equation $Im[f(\xi)] = 0$ has no roots, ∇u does not vanish;
- (ii) if equation $Im[f(\xi)] = 0$ has roots, ∇u does vanish on **straight lines or segments**;
- (iii) if $\overline{f(\omega)} = f(\overline{\omega})$, then $\operatorname{Im}[f(\xi)]$ vanishes identically; this means that ∇u vanishes on a **pencil of segments** and, hence, on the **region** Ω_0 **swept out** by these segments; the boundary of Ω_0 is the **envelope** of the segments.

For instance, if $f(\omega) = 1 + \omega^2$, we obtain:

$$w(z) = -i\sqrt{z\overline{z} - 1} - \log(\sqrt{z\overline{z} - 1} + i) + \log\overline{z}.$$

Conjecture

The above remarks may lead the path to a proof of the following conjecture:

the gradient of real part u of the eikonal w
either does not vanish or it vanishes on a continuum.

Geometric information

Hence,

- (i) if equation $Im[f(\xi)] = 0$ has no roots, ∇u does not vanish;
- (ii) if equation $Im[f(\xi)] = 0$ has roots, ∇u does vanish on **straight lines or segments**;
- (iii) if $\overline{f(\omega)} = f(\overline{\omega})$, then $\operatorname{Im}[f(\xi)]$ vanishes identically; this means that ∇u vanishes on a **pencil of segments** and, hence, on the **region** Ω_0 **swept out** by these segments; the boundary of Ω_0 is the **envelope** of the segments.

For instance, if $f(\omega) = 1 + \omega^2$, we obtain:

$$w(z) = -i\sqrt{z\overline{z} - 1} - \log(\sqrt{z\overline{z} - 1} + i) + \log\overline{z}.$$

Conjecture

The above remarks may lead the path to a proof of the following conjecture:

the gradient of real part u of the eikonal w either does not vanish or it vanishes on a continuum.

Pictures

Non-isolated critical points: partial results

THEOREM 1

Assume n is strictly positive and that w = u + iv is a smooth (C^2) solution of

$$w_x^2 + w_y^2 + n(x, y)^2 = 0.$$

If $\nabla u = \underline{0}$ at some point, then $\nabla u \equiv \underline{0}$ on a ray through that point.

Definition of a ray

A path $t \mapsto (x(t), y(t))$, between two points F and Q, that has minimal length (in the metric induced by n):

$$\int_0^1 n(x(t), y(t)) \sqrt{x'(t)^2 + y'(t)^2} \ dt, \to \min$$

where
$$(x(0), y(0)) = P, (x(1), y(1)) = Q$$

THEOREM 2

Assume n is strictly positive and that u is a smooth solution of

$$(|\nabla u|^4 + n^2 u_y^2) u_{xx} - 2n^2 u_x u_y u_{xy} + (|\nabla u|^4 + n^2 u_x^2) u_{yy} + n|\nabla u|^2 \nabla n \cdot \nabla u = 0.$$

- If $\nabla u(z_0) = \underline{0}$, then det $\nabla^2 u(z_0) = 0$
- If $\nabla u(z_0) = \underline{0}$ and $|\nabla^2 u(z_0)| > 0$, then $\nabla u \equiv \underline{0}$ on a smooth curve through z_0 , and this curve is a ray.

Non-isolated critical points: partial results

THEOREM 1

Assume n is strictly positive and that w = u + iv is a smooth (C^2) solution of

$$w_x^2 + w_y^2 + n(x, y)^2 = 0.$$

If $\nabla u = \underline{0}$ at some point, then $\nabla u \equiv \underline{0}$ on a ray through that point.

Definition of a ray

A path $t \mapsto (x(t), y(t))$, between two points P and Q, that has minimal length (in the metric induced by n):

$$\int_0^1 n(x(t),y(t))\sqrt{x'(t)^2+y'(t)^2}\ dt, \to \min$$

where
$$(x(0), y(0)) = P$$
, $(x(1), y(1)) = Q$.

ΓHEOREM 2

Assume n is strictly positive and that u is a smooth solution of

$$(|\nabla u|^4 + n^2 u_y^2) u_{xx} - 2n^2 u_x u_y u_{xy} + (|\nabla u|^4 + n^2 u_x^2) u_{yy} + n|\nabla u|^2 \nabla n \cdot \nabla u = 0.$$

- If $\nabla u(z_0) = \underline{0}$, then det $\nabla^2 u(z_0) = 0$.
- If $\nabla u(z_0) = \underline{0}$ and $|\nabla^2 u(z_0)| > 0$, then $\nabla u \equiv \underline{0}$ on a smooth curve through z_0 , and this curve is a ray.

Non-isolated critical points: partial results

THEOREM 1

Assume n is strictly positive and that w = u + iv is a smooth (C^2) solution of

$$w_x^2 + w_y^2 + n(x, y)^2 = 0.$$

If $\nabla u = \underline{0}$ at some point, then $\nabla u \equiv \underline{0}$ on a ray through that point.

Definition of a ray

A path $t \mapsto (x(t), y(t))$, between two points P and Q, that has minimal length (in the metric induced by n):

$$\int_0^1 n(x(t), y(t)) \sqrt{x'(t)^2 + y'(t)^2} \ dt, \to \min$$

where
$$(x(0), y(0)) = P$$
, $(x(1), y(1)) = Q$.

THEOREM 2

Assume n is strictly positive and that u is a smooth solution of

$$\begin{split} \left(\left| \nabla u \right|^4 + n^2 u_y^2 \right) \, u_{xx} - 2 n^2 u_x u_y u_{xy} \, + \\ \left(\left| \nabla u \right|^4 + n^2 u_x^2 \right) \, u_{yy} \, + n |\nabla u|^2 \nabla n \cdot \nabla u = 0. \end{split}$$

- If $\nabla u(z_0) = \underline{0}$, then det $\nabla^2 u(z_0) = 0$.
- If $\nabla u(z_0) = \underline{0}$ and $|\nabla^2 u(z_0)| > 0$, then $\nabla u \equiv \underline{0}$ on a smooth curve through z_0 , and this curve is a ray.

Problem

We want to find solutions of the system:

$$\begin{array}{ll} |\nabla u|^2 - |\nabla v|^2 + \textit{n}(x,y)^2 & = 0 \\ \nabla u \cdot \nabla v & = 0 \end{array} \quad \text{in } \Omega,$$

$$u=\phi$$
 on $\partial\Omega,$ $\int_{\partial\Omega}vdx=0.$

Here, $\Omega \subset \mathbb{R}^2$ is simply connected.

\La+a

When $n \equiv 0$, this problem amounts to find a function w, holomorphic (or anti-holomorphic) in Ω , when its real part is given on the boundary.

1st ster

We find a solution $u \in \phi + H^1_0(\Omega)$ of the equation

2nd step

$$\nabla v = \pm \sqrt{n^2 + |\nabla u|^2} \frac{(\nabla u)^{\perp}}{|\nabla u|}, \text{ in } \Omega$$

$$\int_{\Omega} v \ dx = 0.$$

Problem

We want to find solutions of the system:

$$\begin{array}{ll} |\nabla u|^2 - |\nabla v|^2 + \textit{n}(x,y)^2 & = 0 \\ \nabla u \cdot \nabla v & = 0 \end{array} \quad \text{in } \Omega,$$

$$u=\phi$$
 on $\partial\Omega,$ $\int_{\partial\Omega}vdx=0.$

Here, $\Omega \subset \mathbb{R}^2$ is simply connected.

Note

When $n\equiv 0$, this problem amounts to find a function w, holomorphic (or anti-holomorphic) in Ω , when its real part is given on the boundary.

1st ste

We find a solution $u \in \phi + H^1_0(\Omega)$ of the equation

$$\left(|\nabla u|^4 + n^2 u_y^2 \right) u_{xx} - 2n^2 u_x u_y u_{xy} + \left(|\nabla u|^4 + n^2 u_x^2 \right) u_{yy} + n |\nabla u|^2 \nabla n \cdot \nabla u = 0.$$

2nd step

$$\nabla v = \pm \sqrt{n^2 + |\nabla u|^2} \frac{(\nabla u)^{\perp}}{|\nabla u|}, \text{ in } \Omega$$

$$\int_{\Omega} v \ dx = 0.$$

Problem

We want to find solutions of the system:

$$\begin{array}{ll} |\nabla u|^2 - |\nabla v|^2 + \textit{n}(x,y)^2 & = 0 \\ \nabla u \cdot \nabla v & = 0 \end{array} \quad \text{in } \Omega,$$

$$u=\phi$$
 on $\partial\Omega,$ $\int_{\partial\Omega}vdx=0.$

Here, $\Omega \subset \mathbb{R}^2$ is simply connected.

Note

When $n\equiv 0$, this problem amounts to find a function w, holomorphic (or anti-holomorphic) in Ω , when its real part is given on the boundary.

1st step

We find a solution $u \in \phi + H^1_0(\Omega)$ of the equation

$$\begin{split} \left(|\nabla u|^4 + n^2 u_y^2 \right) u_{xx} - 2 n^2 u_x u_y u_{xy} + \\ \left(|\nabla u|^4 + n^2 u_x^2 \right) u_{yy} + n |\nabla u|^2 \nabla n \cdot \nabla u = 0. \end{split}$$

2nd step

$$\nabla v = \pm \sqrt{n^2 + |\nabla u|^2} \frac{(\nabla u)^{\perp}}{|\nabla u|}, \text{ in } \Omega$$

$$\int_{0}^{\infty} v \ dx = 0.$$

Problem

We want to find solutions of the system:

$$\begin{array}{ll} |\nabla u|^2 - |\nabla v|^2 + \textit{n}(x,y)^2 & = 0 \\ \nabla u \cdot \nabla v & = 0 \end{array} \quad \text{in } \Omega,$$

$$u = \phi$$
 on $\partial \Omega$, $\int_{\partial \Omega} v dx = 0$.

Here, $\Omega \subset \mathbb{R}^2$ is simply connected.

Note

When $n\equiv 0$, this problem amounts to find a function w, holomorphic (or anti-holomorphic) in Ω , when its real part is given on the boundary.

1st step

We find a solution $u \in \phi + H^1_0(\Omega)$ of the equation

$$\begin{split} \left(\left| \nabla u \right|^4 + n^2 u_y^2 \right) \, u_{xx} - 2 n^2 \, u_x u_y \, u_{xy} \, + \\ \left(\left| \nabla u \right|^4 + n^2 u_x^2 \right) \, u_{yy} \, + n |\nabla u|^2 \nabla n \cdot \nabla u = 0. \end{split}$$

2nd step

$$abla v = \pm \sqrt{n^2 + |
abla u|^2} \; rac{(
abla u)^\perp}{|
abla u|}, \; \mathsf{in} \; \Omega$$

$$\int_{\Omega} v \ dx = 0.$$

Problem

We minimize the functional

$$J(u) = \int\limits_{\Omega} j\left(\frac{|\nabla u|}{n}\right) n^2 dx dy$$

for $u\in\phi+H^1_0(\Omega).$ Here

$$j'(\rho)=\sqrt{1+\rho^2},$$

A possible obstruction

J is **not** differentiable: the one-sided directional derivative of J is:

$$\lim_{\epsilon \to 0^+} \frac{J(u + \epsilon \eta) - J(u)}{\epsilon} =$$

$$\int\limits_{\{\nabla u\neq 0\}} \sqrt{n^2+|\nabla u|^2} \, \frac{\nabla u}{|\nabla u|} \cdot \nabla \eta dxdy + \int\limits_{\{\nabla u=0\}} n \, |\nabla \eta| dxdy$$

This is due to the fact thet j'(0)=1>0.

No problen

However

J is strictly convex and coercive

Then a unique minimizing function exists

A more serious obstruction

We would like to solve the Bäcklund transformation but, as we have seen, u may be constant on open sets and hence the right-hand side of the system may not be defined.

Finding u

Problem

We minimize the functional

$$J(u) = \int\limits_{\Omega} j\left(\frac{|\nabla u|}{n}\right) n^2 dx dy$$

for
$$u\in\phi+H^1_0(\Omega).$$
 Here

$$j'(\rho)=\sqrt{1+\rho^2},$$

A possible obstruction

J is **not** differentiable: the one-sided directional derivative of J is:

$$\lim_{\epsilon \to 0^+} \frac{J(u+\epsilon \eta) - J(u)}{\epsilon} =$$

This is due to the fact that j'(0) = 1 > 0.

No problen

However

J is strictly convex and coercive

Then a unique minimizing function exists

A more serious obstruction

We would like to solve the Bäcklund transformation but, as we have seen, u may be constant on open sets and hence the right-hand side of the system may not be defined.

Problem

We minimize the functional

$$J(u) = \int\limits_{\Omega} j\left(\frac{|\nabla u|}{n}\right) n^2 dx dy$$

for $u \in \phi + H_0^1(\Omega)$. Here

$$j'(\rho)=\sqrt{1+\rho^2},$$

A possible obstruction

I is not differentiable; the one-sided directional derivative of J is:

$$\lim_{\epsilon \to 0^+} \frac{J(u+\epsilon \eta) - J(u)}{\epsilon} =$$

This is due to the fact that j'(0) = 1 > 0.

No problem

However,

J is strictly convex and coercive;

Then a unique minimizing function exists.

Problem

We minimize the functional

$$J(u) = \int\limits_{\Omega} j\left(\frac{|\nabla u|}{n}\right) n^2 dx dy$$

for
$$u\in \phi+H^1_0(\Omega).$$
 Here

$$j'(\rho) = \sqrt{1 + \rho^2},$$

A possible obstruction

J is **not** differentiable: the one-sided directional derivative of J is:

$$\lim_{\epsilon \to 0^+} \frac{J(u+\epsilon \eta) - J(u)}{\epsilon} =$$

This is due to the fact that j'(0) = 1 > 0.

No problem

However,

J is strictly convex and coercive;

Then a unique minimizing function exists.

A more serious obstruction

We would like to solve the Bäcklund transformation but, as we have seen, u may be constant on open sets and hence the right-hand side of the system may not be defined.

Approximating J

We approximate j

We choose j_{ϵ} such that j_{ϵ} is convex, $j'_{\epsilon}(0) = 0$, and j_{ϵ} converges to j uniformly on $[0, +\infty)$.

There exists a unique function $u^{\epsilon} \in \phi + H_0^1(\Omega)$ minimizing the functional:

$$J_{\epsilon}(u) = \int\limits_{\Omega} j_{\epsilon}\left(\frac{|\nabla u|}{n}\right) n^2 dx dy$$

$$\operatorname{div}\left\{n\;j_{\epsilon}'\left(\frac{\left|\nabla u^{\epsilon}\right|}{n}\right)\;\frac{\nabla u^{\epsilon}}{\left|\nabla u^{\epsilon}\right|}\right\}=0$$

$$\frac{\alpha_{\epsilon}\left(\rho\right)\left(u_{\mathbf{x}}^{\epsilon}\right)^{2}+\left(u_{\mathbf{y}}^{\epsilon}\right)^{2}}{1-\alpha_{\epsilon}\left(\rho\right)}\;u_{\mathbf{x}\mathbf{x}}^{\epsilon}-2u_{\mathbf{x}}^{\epsilon}u_{\mathbf{y}}^{\epsilon}u_{\mathbf{x}\mathbf{y}}^{\epsilon}+\frac{\left(u_{\mathbf{x}}^{\epsilon}\right)^{2}+\alpha_{\epsilon}\left(\rho\right)\left(u_{\mathbf{y}}^{\epsilon}\right)^{2}}{1-\alpha_{\epsilon}\left(\rho\right)}\;u_{\mathbf{y}\mathbf{y}}^{\epsilon}=-|\nabla u^{\epsilon}|^{2}\nabla u^{\epsilon}\cdot\nabla\ln n,$$

$$0<\alpha_{\epsilon}^*\leq \alpha_{\epsilon}(\rho):=\frac{\rho j_{\epsilon}^{\prime\prime}(\rho)}{j_{\epsilon}^{\prime}(\rho)}<1,\ \alpha_{\epsilon}(\rho)\rightarrow\frac{\rho^2}{1+\rho^2}$$

Approximating J

We approximate j

We choose j_{ϵ} such that j_{ϵ} is convex, $j'_{\epsilon}(0) = 0$, and j_{ϵ} converges to j uniformly on $[0, +\infty)$.

There exists a unique function $u^{\epsilon} \in \phi + H_0^1(\Omega)$ minimizing the functional:

$$J_{\epsilon}(u) = \int\limits_{\Omega} j_{\epsilon}\left(\frac{|\nabla u|}{n}\right) n^2 dx dy$$

J_{ϵ} is now differentiable

Since J_{ϵ} is differentiable, then

$$\operatorname{div}\left\{n \ j_{\epsilon}'\left(\frac{|\nabla u^{\epsilon}|}{n}\right) \ \frac{\nabla u^{\epsilon}}{|\nabla u^{\epsilon}|}\right\} = 0$$

in the sense of distributions.

$$\frac{\alpha_{\epsilon}\left(\rho\right)\left(u_{\mathbf{x}}^{\epsilon}\right)^{2}+\left(u_{\mathbf{y}}^{\epsilon}\right)^{2}}{1-\alpha_{\epsilon}\left(\rho\right)}\;u_{\mathbf{x}\mathbf{x}}^{\epsilon}-2u_{\mathbf{x}}^{\epsilon}u_{\mathbf{y}}^{\epsilon}u_{\mathbf{x}\mathbf{y}}^{\epsilon}+\frac{\left(u_{\mathbf{x}}^{\epsilon}\right)^{2}+\alpha_{\epsilon}\left(\rho\right)\left(u_{\mathbf{y}}^{\epsilon}\right)^{2}}{1-\alpha_{\epsilon}\left(\rho\right)}\;u_{\mathbf{y}\mathbf{y}}^{\epsilon}=-|\nabla u^{\epsilon}|^{2}\nabla u^{\epsilon}\cdot\nabla\ln n,$$

$$0<\alpha_{\epsilon}^*\leq \alpha_{\epsilon}(\rho):=\frac{\rho j_{\epsilon}''(\rho)}{j_{\epsilon}'(\rho)}<1,\ \alpha_{\epsilon}(\rho)\to \frac{\rho^2}{1+\rho^2}$$

Approximating J

We approximate j

We choose j_{ϵ} such that j_{ϵ} is convex, $j'_{\epsilon}(0) = 0$, and j_{ϵ} converges to j uniformly on $[0, +\infty)$.

There exists a **unique** function $u^{\epsilon} \in \phi + H_0^1(\Omega)$ minimizing the functional:

$$J_{\epsilon}(u) = \int\limits_{\Omega} j_{\epsilon}\left(\frac{|\nabla u|}{n}\right) n^2 dx dy$$

J_{ϵ} is now differentiable

Since J_{ϵ} is differentiable, then

$$\operatorname{div}\left\{n \ j_{\epsilon}'\left(\frac{|\nabla u^{\epsilon}|}{n}\right) \ \frac{\nabla u^{\epsilon}}{|\nabla u^{\epsilon}|}\right\} = 0$$

in the sense of distributions.

Quasilinear equation for u^{ϵ}

 u^{ϵ} satisfies the quasi-linear equation:

$$\frac{\alpha_{\epsilon}\left(\rho\right)\left(u_{\mathbf{x}}^{\epsilon}\right)^{2}+\left(u_{\mathbf{y}}^{\epsilon}\right)^{2}}{1-\alpha_{\epsilon}\left(\rho\right)}\;u_{\mathbf{x}\mathbf{x}}^{\epsilon}-2u_{\mathbf{x}}^{\epsilon}u_{\mathbf{y}}^{\epsilon}u_{\mathbf{x}\mathbf{y}}^{\epsilon}+\frac{\left(u_{\mathbf{x}}^{\epsilon}\right)^{2}+\alpha_{\epsilon}\left(\rho\right)\left(u_{\mathbf{y}}^{\epsilon}\right)^{2}}{1-\alpha_{\epsilon}\left(\rho\right)}\;u_{\mathbf{y}\mathbf{y}}^{\epsilon}=-|\nabla u^{\epsilon}|^{2}\nabla\,u^{\epsilon}\cdot\nabla\,\ln\,n,$$

where $ho = |\nabla u^\epsilon|/n$ and the **ellipticity ratio** satisfies:

$$0<\alpha_{\epsilon}^*\leq \alpha_{\epsilon}(\rho):=\frac{\rho j_{\epsilon}^{\prime\prime}(\rho)}{j_{\epsilon}^{\prime}(\rho)}<1,\ \alpha_{\epsilon}(\rho)\rightarrow \frac{\rho^2}{1+\rho^2}.$$

Compactness for the sequence u^ϵ

Bernstein inequality

Let

$$r = u_{xx}^{\epsilon}, \ s = u_{xy}^{\epsilon} \ t = u_{yy}^{\epsilon}$$

For solutions u^{ϵ} of the perturbed quasi-linear equation a **Bernstein** inequality holds:

$$\frac{|\nabla u^{\epsilon}|^2}{n^2+|\nabla u^{\epsilon}|^2} (r^2+2s^2+t^2) \le$$
$$2(s^2-rt)+|\nabla n|^2.$$

A priori estimate

By integrating over the domain

$$\Omega(L) = \{(x, y) \in \Omega : \text{dist } ((x, y), \partial\Omega) > L\}$$

and by using level set analysis, we obtain the estimate:

$$\int\limits_{\Omega(L)} \frac{|\nabla u^{\epsilon}|^2}{n^2 + |\nabla u^{\epsilon}|^2} |\nabla^2 u^{\epsilon}|^2 dx dy \le$$

$$\int\limits_{\Omega} |\nabla n|^2 dx dy + \frac{1}{L^2} \Big\{ \int\limits_{\Omega} n^2 dx dy + 2J(u) \Big\}$$

Compactness

Our estimate gives enough compactness to show:

- u^{ϵ} converges uniformly on compact subsets of Ω to a function u.
- u satisfies the quasi-linear equation with e = 0 in the viscosity sense.

Compactness for the sequence u^{ϵ}

Bernstein inequality

Let

$$r = u_{xx}^{\epsilon}, \ s = u_{xy}^{\epsilon} \ t = u_{yy}^{\epsilon}$$

For solutions u^{ϵ} of the perturbed quasi-linear equation a Bernstein inequality holds:

$$\frac{|\nabla u^{\epsilon}|^2}{n^2+|\nabla u^{\epsilon}|^2} (r^2+2s^2+t^2) \leq 2(s^2-rt)+|\nabla n|^2.$$

A priori estimate

By integrating over the domain

$$\Omega(L) = \{(x,y) \in \Omega : \text{dist } ((x,y), \partial\Omega) > L\},$$

and by using level set analysis, we obtain the estimate:

$$\int\limits_{\Omega(L)} \frac{|\nabla u^\epsilon|^2}{n^2+|\nabla u^\epsilon|^2} \ |\nabla^2 u^\epsilon|^2 \ dx \ dy \le$$

$$\int\limits_{\Omega} |\nabla \, n|^2 \ dx \ dy + \frac{1}{L^2} \Bigl\{ \int\limits_{\Omega} n^2 \ dx \ dy + 2 J(u) \Bigr\}$$

Compactness for the sequence u^ϵ

Bernstein inequality

Let

$$r = u_{xx}^{\epsilon}, \ s = u_{xy}^{\epsilon} \ t = u_{yy}^{\epsilon}$$

For solutions u^{ϵ} of the perturbed quasi-linear equation a **Bernstein** inequality holds:

$$\frac{|\nabla u^{\epsilon}|^2}{n^2+|\nabla u^{\epsilon}|^2} (r^2+2s^2+t^2) \leq 2(s^2-rt)+|\nabla n|^2.$$

A priori estimate

By integrating over the domain

$$\Omega(L) = \{(x,y) \in \Omega : \text{dist } ((x,y), \partial\Omega) > L\},\$$

and by using level set analysis, we obtain the estimate:

$$\int\limits_{\Omega(L)} \frac{|\nabla u^{\epsilon}|^2}{n^2 + |\nabla u^{\epsilon}|^2} |\nabla^2 u^{\epsilon}|^2 dx dy \le$$

$$\int\limits_{\Omega} |\nabla \, n|^2 \ dx \ dy + \frac{1}{L^2} \Bigl\{ \int\limits_{\Omega} n^2 \ dx \ dy + 2 J(u) \Bigr\}$$

Compactness

Our estimate gives enough compactness to show:

- u converges uniformly on compact subsets of Ω to a function u.
- 2 u satisfies the quasi-linear equation with $\epsilon=0$ in the viscosity sense.

The sequence v^{ϵ}

We apply Bäcklund safely

By the Bäcklund transform:

$$\nabla v^{\epsilon} = n \; j'_{\epsilon} \left(\frac{|\nabla u^{\epsilon}|}{n} \right) \; \frac{(\nabla u^{\epsilon})^{\perp}}{|\nabla u^{\epsilon}|}$$

since $d^2v^{\epsilon}=0$, we can find v^{ϵ} normalized by $\int\limits_{0}^{\infty}v^{\epsilon}dxdy=0$.

Remark

 v^{ϵ} is a critical point of the functional

$$K_{\epsilon}(v) = \int\limits_{\Omega} k_{\epsilon} \left(\frac{|\nabla v|}{n} \right) n^2 dx dy,$$

where k_{ϵ} is the **Young conjugate** of j_{ϵ}

The sequence v^{ϵ}

We apply Bäcklund safely

By the Bäcklund transform:

$$abla v^{\epsilon} = n \, j'_{\epsilon} \left(\frac{|\nabla u^{\epsilon}|}{n} \right) \, \frac{(\nabla u^{\epsilon})^{\perp}}{|\nabla u^{\epsilon}|},$$

since $d^2 v^{\epsilon} = 0$, we can find v^{ϵ} normalized by $\int\limits_{\Omega} v^{\epsilon} dx dy = 0.$

$$K_{\epsilon}(v) = \int\limits_{\Omega} k_{\epsilon} \left(\frac{|\nabla v|}{n} \right) n^2 dx dy,$$

The sequence v^{ϵ}

We apply Bäcklund safely

By the Bäcklund transform:

$$abla v^{\epsilon} = n \, j'_{\epsilon} \left(\frac{|\nabla u^{\epsilon}|}{n} \right) \, \frac{(\nabla u^{\epsilon})^{\perp}}{|\nabla u^{\epsilon}|},$$

since $d^2 v^{\epsilon} = 0$, we can find v^{ϵ} normalized by $\int\limits_{\Omega} v^{\epsilon} dx dy = 0.$

Remark

 v^{ϵ} is a critical point of the functional

$$K_{\epsilon}(v) = \int\limits_{\Omega} k_{\epsilon} \left(rac{|
abla v|}{n}
ight) \ n^2 \ dx \ dy,$$

where k_{ϵ} is the **Young conjugate** of j_{ϵ} .

Taking the v^{ϵ} to the limit

Quasilinear equation for v^ϵ

 v^{ϵ} is a solution of the quasi-linear equation:

$$\frac{\beta_{\epsilon}\left(\mathit{r}\right)\left(\mathit{v}_{x}^{\epsilon}\right)^{2}+\left(\mathit{v}_{y}^{\epsilon}\right)^{2}}{\beta_{\epsilon}\left(\mathit{r}\right)-1}\mathit{v}_{xx}^{\epsilon}+2\mathit{v}_{x}^{\epsilon}\mathit{v}_{y}^{\epsilon}\mathit{v}_{xy}^{\epsilon}+\frac{\left(\mathit{v}_{x}^{\epsilon}\right)^{2}+\beta_{\epsilon}\left(\mathit{r}\right)\left(\mathit{v}_{y}^{\epsilon}\right)^{2}}{\beta_{\epsilon}\left(\mathit{r}\right)-1}\;\mathit{v}_{yy}^{\epsilon}=|\nabla\,\mathit{v}^{\epsilon}|^{2}\nabla\,\mathit{v}^{\epsilon}\cdot\nabla\,\ln\,\mathit{n},$$

where $r = |\nabla v^{\epsilon}|/n$ and $\beta_{\epsilon}(r) = \alpha_{\epsilon}(g'_{\epsilon}(r))^{-1}$.

Compactness

The compactness properties of u^{ϵ} imply that

- 1 there exists a subsequence v^{ϵ} that uniformly converges on compact subsets of Ω to a v;

The limit v

v is a critical point of the functional

$$K(v) = \int\limits_{\Omega} k\left(\frac{|\nabla v|}{n}\right) n^2 dx dy$$

and k is the Young conjugate of j.

Taking the v^{ϵ} to the limit

Quasilinear equation for v^{ϵ}

 v^{ϵ} is a solution of the quasi-linear equation:

$$\frac{\beta_{\epsilon}\left(\mathit{r}\right)\left(\mathit{v}_{x}^{\epsilon}\right)^{2}+\left(\mathit{v}_{y}^{\epsilon}\right)^{2}}{\beta_{\epsilon}\left(\mathit{r}\right)-1}\mathit{v}_{xx}^{\epsilon}+2\mathit{v}_{x}^{\epsilon}\mathit{v}_{y}^{\epsilon}\mathit{v}_{xy}^{\epsilon}+\frac{\left(\mathit{v}_{x}^{\epsilon}\right)^{2}+\beta_{\epsilon}\left(\mathit{r}\right)\left(\mathit{v}_{y}^{\epsilon}\right)^{2}}{\beta_{\epsilon}\left(\mathit{r}\right)-1}\;\mathit{v}_{yy}^{\epsilon}=|\nabla\,\mathit{v}^{\epsilon}|^{2}\nabla\,\mathit{v}^{\epsilon}\cdot\nabla\,\ln\,\mathit{n},$$

where $r=|
abla v^\epsilon|/n$ and $eta_\epsilon(r)=lpha_\epsilon(g_\epsilon'(r))^{-1}$.

Compactness

The compactness properties of u^{ϵ} imply that

- 1 there exists a subsequence v^{ϵ} that uniformly converges on compact subsets of Ω to a v;

The limit v

v is a critical point of the functional

$$K(v) = \int_{\Omega} k\left(\frac{|\nabla v|}{n}\right) n^2 dx dy$$

and k is the Young conjugate of j

Taking the v^{ϵ} to the limit

Quasilinear equation for v^{ϵ}

 v^{ϵ} is a solution of the quasi-linear equation:

$$\frac{\beta_{\epsilon}\left(\mathit{r}\right)\left(\mathit{v}_{x}^{\epsilon}\right)^{2}+\left(\mathit{v}_{y}^{\epsilon}\right)^{2}}{\beta_{\epsilon}\left(\mathit{r}\right)-1}\mathit{v}_{xx}^{\epsilon}+2\mathit{v}_{x}^{\epsilon}\mathit{v}_{y}^{\epsilon}\mathit{v}_{xy}^{\epsilon}+\frac{\left(\mathit{v}_{x}^{\epsilon}\right)^{2}+\beta_{\epsilon}\left(\mathit{r}\right)\left(\mathit{v}_{y}^{\epsilon}\right)^{2}}{\beta_{\epsilon}\left(\mathit{r}\right)-1}\;\mathit{v}_{yy}^{\epsilon}=|\nabla\,\mathit{v}^{\epsilon}|^{2}\nabla\,\mathit{v}^{\epsilon}\cdot\nabla\,\ln\,\mathit{n},$$

where $r=|
abla v^\epsilon|/n$ and $eta_\epsilon(r)=lpha_\epsilon(g_\epsilon'(r))^{-1}$.

Compactness

The compactness properties of u^{ϵ} imply that

- 1 there exists a subsequence v^{ϵ} that uniformly converges on compact subsets of Ω to a v;

The limit v

v is a critical point of the functional

$$K(v) = \int\limits_{\Omega} k\left(\frac{|\nabla v|}{n}\right) n^2 dx dy$$

and k is the Young conjugate of j.

Quasilinear equation for v

v is a viscosity solution of the equation:

$$<\nabla^2 v \ \nabla v, \nabla v>+n^2 B(|\nabla v|/n) \ \Delta v=|\nabla v|^2 \nabla(\ln n) \cdot \nabla v,$$

where B is the **uniform** limit in compact subsets of $(0,+\infty)$ of the sequence:

$$B_{\epsilon}(r) = \frac{r^2}{\beta_{\epsilon}(r)-1}.$$

Non unique E

B depends on the way we approximate the function $j(\rho)$: different j_e 's may lead to different B's and hence to different equations for v.

K is flat for $|\nabla v| < 1$

This depends also on the fact that the limiting functional K is convex, but not strictly convex.

A possible *B*

For a particular choice of j_{ϵ}

$$B(r) = \begin{cases} 1 - r^2 & \text{if } 0 \le r \le 1 \\ r^2(r^2 - 1) & \text{if } r > 1. \end{cases}$$

Another possible b

$$B(r) = \begin{cases} 0 & \text{if } 0 \le r \le 1, \\ r^2(r^2 - 1) & \text{if } r > 1. \end{cases}$$

Quasilinear equation for v

v is a viscosity solution of the equation:

$$<\nabla^2 v \ \nabla v, \nabla v> + n^2 B(|\nabla v|/n) \ \Delta v = |\nabla v|^2 \nabla (\text{In } n) \cdot \nabla v,$$

where B is the uniform limit in compact subsets of $(0, +\infty)$ of the sequence:

$$B_{\epsilon}(r) = \frac{r^2}{\beta_{\epsilon}(r)-1}$$

Non unique B

B depends on the way we approximate the function $j(\rho)$: different j_{ϵ} 's may lead to different B's and hence to different equations for v.

$$B(r) = \begin{cases} 1 - r^2 & \text{if } 0 \le r \le 1, \\ r^2(r^2 - 1) & \text{if } r > 1. \end{cases}$$

$$B(r) = \begin{cases} 0 & \text{if } 0 \le r \le 1, \\ r^2(r^2 - 1) & \text{if } r > 1. \end{cases}$$

Quasilinear equation for v

v is a viscosity solution of the equation:

$$<\nabla^2 v \; \nabla v, \nabla v> + n^2 B(|\nabla v|/n) \; \Delta v = |\nabla v|^2 \nabla (\ln n) \cdot \nabla v,$$

where B is the uniform limit in compact subsets of $(0, +\infty)$ of the sequence:

$$B_{\epsilon}(r) = \frac{r^2}{\beta_{\epsilon}(r)-1}.$$

Non unique B

B depends on the way we approximate the function $j(\rho)$: different j_{ϵ} 's may lead to different B's and hence to different equations for v.

K is flat for $|\nabla v| < 1$

This depends also on the fact that the limiting functional K is convex, but **not** strictly convex.

$$B(r) = \begin{cases} 1 - r^2 & \text{if } 0 \le r \le 1, \\ r^2(r^2 - 1) & \text{if } r > 1. \end{cases}$$

$$B(r) = \left\{ \begin{array}{cc} 0 & \text{if } 0 \leq r \leq 1, \\ r^2(r^2-1) & \text{if } r > 1. \end{array} \right.$$

Quasilinear equation for v

v is a viscosity solution of the equation:

$$<\nabla^2 v \ \nabla v, \nabla v>+n^2 B(|\nabla v|/n) \ \Delta v=|\nabla v|^2 \nabla(\ln n) \cdot \nabla v,$$

where B is the uniform limit in compact subsets of $(0, +\infty)$ of the sequence:

$$B_{\epsilon}(r) = \frac{r^2}{\beta_{\epsilon}(r)-1}.$$

Non unique B

B depends on the way we approximate the function $j(\rho)$: different j_e 's may lead to different B's and hence to different equations for ν .

K is flat for $|\nabla v| < 1$

This depends also on the fact that the limiting functional K is convex, but **not** strictly convex.

A possible B

For a particular choice of j_ϵ :

$$B(r) = \begin{cases} 1 - r^2 & \text{if } 0 \le r \le 1, \\ r^2(r^2 - 1) & \text{if } r > 1. \end{cases}$$

Another possible B

$$B(r) = \begin{cases} 0 & \text{if } 0 \le r \le 1, \\ r^2(r^2 - 1) & \text{if } r > 1. \end{cases}$$

System for $(u^{\epsilon}, v^{\epsilon})$

As far as our first order system is concerned, we have:

$$|\nabla v^{\epsilon}| = n \ j_{\epsilon}' \left(\frac{|\nabla u^{\epsilon}|}{n}\right)$$
$$\nabla u^{\epsilon} \cdot \nabla v^{\epsilon} = 0.$$

Unfavourable occurrence

If $\{(x, y) \in \Omega : \nabla u(x, y) = (0, 0)\}$ has positive measure, then

$$\begin{cases} |\nabla u|^2 - |\nabla v|^2 + n(x, y)^2 & \leq 0 \\ \nabla u \cdot \nabla v & = 0 \end{cases}$$

-Favourable occurrence

Since j_e' does not converge uniformly to j', we obtain: if $\{(x,y)\in\Omega: \nabla u(x,y)=(0,0)\}$ has zero measure, then $v^e\to v$ uniformly and v satisfies the system:

$$\begin{cases} |\nabla u|^2 - |\nabla v|^2 + n(x,y)^2 &= 0\\ \nabla u \cdot \nabla v &= 0. \end{cases}$$

Changing our point of view

$$|\nabla u^{\epsilon}| = n \ k'_{\epsilon} \left(\frac{|\nabla v^{\epsilon}|}{n}\right)$$
$$\nabla u^{\epsilon} \cdot \nabla v^{\epsilon} = 0,$$

also holds and, since k'_{ϵ} converges to k' uniformly we obtain that u and v satisfy the system:

$$\begin{cases} |\nabla u|^2 - \max\left[|\nabla v|^2, n^2\right] + n^2 = 0, \\ \nabla u \cdot \nabla v = 0 \end{cases}$$

System for $(u^{\epsilon}, v^{\epsilon})$

As far as our first order system is concerned, we have:

$$\begin{split} |\nabla v^{\epsilon}| &= n \ j_{\epsilon}' \left(\frac{|\nabla u^{\epsilon}|}{n} \right) \\ \nabla u^{\epsilon} \cdot \nabla v^{\epsilon} &= 0. \end{split}$$

Unfavourable occurrence

If $\{(x, y) \in \Omega : \nabla u(x, y) = (0, 0)\}$ has positive measure, then

$$\begin{cases} |\nabla u|^2 - |\nabla v|^2 + n(x, y)^2 & \leq 0 \\ \nabla u \cdot \nabla v & = 0 \end{cases}$$

Favourable occurrence

Since j_ϵ' does not converge uniformly to j', we obtain: if $\{(x,y)\in\Omega: \nabla u(x,y)=(0,0)\}$ has zero measure, then $v^\epsilon\to v$ uniformly and v satisfies the system:

$$\left\{ \begin{array}{ll} |\nabla u|^2 - |\nabla v|^2 + n(x,y)^2 & = 0 \\ \nabla u \cdot \nabla v & = 0. \end{array} \right.$$

Changing our point of view

$$\begin{split} |\nabla u^{\epsilon}| &= n \ k_{\epsilon}' \left(\frac{|\nabla v^{\epsilon}|}{n} \right) \\ \nabla u^{\epsilon} \cdot \nabla v^{\epsilon} &= 0, \end{split}$$

also holds and, since k'_{ϵ} converges to k' uniformly we obtain that u and v satisfy the system:

$$\begin{cases} |\nabla u|^2 - \max\left[|\nabla v|^2, n^2\right] + n^2 = 0, \\ \nabla u \cdot \nabla v = 0 \end{cases}$$

System for $(u^{\epsilon}, v^{\epsilon})$

As far as our first order system is concerned, we have:

$$\begin{aligned} |\nabla v^{\epsilon}| &= n \ j_{\epsilon}' \left(\frac{|\nabla u^{\epsilon}|}{n} \right) \\ \nabla u^{\epsilon} \cdot \nabla v^{\epsilon} &= 0. \end{aligned}$$

Unfavourable occurrence

If $\{(x, y) \in \Omega : \nabla u(x, y) = (0, 0)\}$ has positive measure, then

$$\begin{cases} |\nabla u|^2 - |\nabla v|^2 + n(x, y)^2 & \leq 0 \\ \nabla u \cdot \nabla v & = 0 \end{cases}$$

Favourable occurrence

Since j_ϵ' does not converge uniformly to j', we obtain: if $\{(x,y)\in\Omega: \nabla u(x,y)=(0,0)\}$ has zero measure, then $v^\epsilon\to v$ uniformly and v satisfies the system:

$$\left\{ \begin{array}{ll} |\nabla u|^2 - |\nabla v|^2 + n(x,y)^2 & = 0 \\ \nabla u \cdot \nabla v & = 0. \end{array} \right.$$

Changing our point of view

$$|\nabla u^{\epsilon}| = n \ k_{\epsilon}' \left(\frac{|\nabla v^{\epsilon}|}{n}\right)$$
$$\nabla u^{\epsilon} \cdot \nabla v^{\epsilon} = 0,$$

also holds and, since k'_{ϵ} converges to k' uniformly we obtain that u and v satisfy the system:

$$\begin{cases} |\nabla u|^2 - \max\left[|\nabla v|^2, n^2\right] + n^2 = 0, \\ \nabla u \cdot \nabla v = 0 \end{cases}$$

System for (u^ϵ, v^ϵ)

As far as our first order system is concerned, we have:

$$\begin{split} |\nabla v^{\epsilon}| &= n \; j_{\epsilon}' \left(\frac{|\nabla u^{\epsilon}|}{n} \right) \\ \nabla u^{\epsilon} \cdot \nabla v^{\epsilon} &= 0. \end{split}$$

Unfavourable occurrence

If $\{(x, y) \in \Omega : \nabla u(x, y) = (0, 0)\}$ has positive measure, then

$$\left\{ \begin{array}{ll} |\nabla u|^2 - |\nabla v|^2 + \textit{n}(x,y)^2 & \leq 0 \\ \nabla u \cdot \nabla v & = 0 \end{array} \right.$$

Favourable occurrence

Since j_ϵ' does not converge uniformly to j', we obtain: if $\{(x,y)\in\Omega: \nabla u(x,y)=(0,0)\}$ has zero measure, then $v^\epsilon\to v$ uniformly and v satisfies the system:

$$\left\{ \begin{array}{ll} |\nabla u|^2 - |\nabla v|^2 + n(x,y)^2 & = 0 \\ \nabla u \cdot \nabla v & = 0. \end{array} \right.$$

Changing our point of view

$$|\nabla u^{\epsilon}| = n \ k_{\epsilon}' \left(\frac{|\nabla v^{\epsilon}|}{n}\right)$$
$$\nabla u^{\epsilon} \cdot \nabla v^{\epsilon} = 0,$$

also holds and, since k_ϵ' converges to k' uniformly, we obtain that u and v satisfy the system:

$$\left\{ \begin{array}{ll} |\nabla u|^2 - \max\left[|\nabla v|^2, n^2\right] + n^2 = 0, \\ \nabla u \cdot \nabla v = 0 \end{array} \right.$$