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Semicontinuity of vectorial functionals
in Orlicz-Sobolev spaces

M. Focarpi *)

SUMMARY. - We study integral vectorial functionals

F(u,Q) —/f(:c,u(x),Du(x))d:c
Q

where f satisfies quasi-convezity assumption and its growth is
controlled in term of N-functions. We obtain semicontinuity re-
sults in the weak * topology of Orlicz-Sobolev spaces.

1. Introduction

Let € be a bounded open subset of R” with 02 lipschitzian, consider
a function f : O x RY x RV — R and the variational integral

Fu,Q) = / (), Du(z)) d (1)
Q

where u : Q — RV,

Assume that f = f(z,s,z) is a Carathéodory function, i.e. f is
measurable in z for every (s, z) € RY x RN™ and continuous in (s, z)
for almost every z € €, and that it is also quasi-convex in z, i.e. for
every (zo,50,20) € 2 x RY x RN" and ¢ € C}(Q,RY)

f(‘TOaSOaZO)'Q' < /f($0780a20 + D(p(.’L‘)) d.
Q
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Moreover, suppose that f satisfies the growth condition
—c {1+ ([s))+®1(|z])} < f(z,5,2) < cof{1+Po(|s]) +Po(|2])} (2)

for every (z,s,2z) € Q x RY x RV where c;,cy are non negative

constants and ®;, 1 = 1,2, is a N-function, i.e. a positive con-

tinuous convex function such that ®;(0) = 0, %imofbi(t) /t = 0 and
%

lim ®,(t)/t = 400 (see Section 2 for definitions).
t—+o00

If in (2) ®;(t) =tP, 4 = 1,2, p > 1, Fusco [15] proved the weak
semicontinuity of (1) in the ordinary Sobolev space W1P+¢(Q, RY),
€ > 0. This result was improved by Acerbi and Fusco in [2] showing
weak semicontinuity of (1) in W1P(Q,RY) if f is non negative and
®y(t) = tP, and by Marcellini in [20] under less restrictive growth
conditions. If ®o(t) = t¥ and if f satisfies some additional structure
conditions, the weak semicontinuity of (1) was proved by Marcellini
[21] in WH(Q,RY) with ¢ > 25p, by Fonseca and Marcellini [14]
for ¢ > p — 1 and by Maly [19] for ¢ > p — 1. Recently, Fonseca and
Maly [13] and Maly [18] proved the lower semicontinuity of (1) for
q > "T_lp. Finally, if (1) is poli-convex and n = N, Dacorogna and
Marcellini [6] proved a semicontinuity result for ¢ > n — 1, while the
borderline case ¢ = n — 1 was established by Acerbi and Dal Maso
[1] and by Dal Maso and Sbordone [8]. An elementary approach was
found by Fusco and Hutchinson [16].

In this paper, we obtain, for quasi-convex integrals satisfying
the non-standard growth condition (2), some semicontinuity results
in the weak * topology of Orlicz-Sobolev space W1H®2(Q, RY) (see
Section 2 for definitions).

In Section 2 we introduce the definitions and some properties of
N-functions, Orlicz and Orlicz-Sobolev spaces.

In Section 3, Theorem 3.1, we show that if f = f(z), ®2 belongs
to class Ag (see Section 2 for definitions) and @, is suitably related
to it, then (1) is sequentially lower semicontinuous in the weak *
topology of the Orlicz-Sobolev space W1®2(Q, RV). The proof gen-
eralizes the technique developed by Marcellini in [20]. Moreover, in
this case, we prove an existence theorem.

In Section 4, Theorem 4.1, we consider functionals depending on
f = f(z,s,2) and satisfying (2) with ®; = &3 = &. We succeed
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in proving a semicontinuity result in W' (€, RY) with " a suitable
N-function related to @ following Marcellini and Sbordone [22].

Finally in Section 5, we exhibit some examples of non trivial
applications of the semicontinuity Theorems 3.1, 4.1 and of the ex-
istence Theorem 3.3.

We observe that Ball in [5] considered some variational problems
in the framework of Orlicz-Sobolev spaces obtaining some semicon-
tinuity and existence results for poli-convex integrals.

2. N-Functions and Orlicz Spaces

In this section we recall some definitions and well known properties
on N-functions and Orlicz spaces (see for references [3], [17], [25]).
A continuous and convex function ® : [0, +00) — [0,+00) is called
N-function if it satisfies

®(0)=0, P()>0, t>0,
lim ®(t)/t =0, lim ®(t)/t = +oo.

t—0 t——+o0

A N-function & has an integral representation

t
B(t) = / p(s)ds €0, +o0),
0

where p : [0, +00) — [0, +00) is nondecreasing, right continuous and
it satisfies
p(0)=0, p(s)>0 s>0, lim p(s)=+oo.
S$—+00

The function p is the right derivative of ®.

What is important in the definition of a N-function is the be-
haviour at infinity, in fact, a continuous convex function Q:[0, +oo[—
[0, 400 satisfying

Qt)/t = 400 t— +oo

is such that there exist a N-function ® and ¢y > 0 such that for every
t > 19 we get
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Such a function @ is called principal part of the N-function ®.
Let ® be a N-function, for ¢ > 0 consider the function

U(t) = max{st — &(s)},

it is easy to show that W is a N-function, V¥ is called the complemen-
tary N -function of ®. By the very definition of V¥ it is obvious that
the pair &, U satisfies Young’s inequality:

st < ®(s) + () s,t€R,

with equality holding if s = p(t) or t = ¢(s), where g is the right
derivative of W.

In the sequel we will deal with a particular class of N-functions.
We say that a N-function ® belongs to the class Ao, denoted by
® € Ay, if there exist k£ > 1 and tg > 0 such that

tp(t) <k®(t) 1>t (3)

It is not difficult to check that definition (3) is equivalent to the
classical one, i.e. ® € Ay if and only if there exist £ > 1 and t; >0
such that for every t >

(2t) < 28d(t).

For related properties of N-functions of class Ag see [7].

Let © be an open bounded subset of R", the Orlicz class
K®(Q,RY) is the set of all (equivalence classes modulo equality a.e.
in Q of) measurable functions u : Q — RV satisfying

/(I>(|u(x)|)d:c < +o0.

Q

The Orlicz space L®(Q,RY) associated with the N-function & and
the open set €, is the linear hull of K®(Q,RY). The equality
K®(Q,RV) = L?*(Q,RY) holds if and only if ® € A,.

The functional ||u g o : L®(Q,RY) — R, simply denoted by
| ||g, defined by ’

||u||¢’Q:inf{)\>O: Q/@(@) da;g1}, (@)
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is a norm and L®(Q,RY) is a Banach space with respect to it.

In the sequel we will denote with s — L®(Q, R") the norm con-
vergence in L®(Q,RV).

Many relevant properties of the Orlicz spaces are related to class
Ao, for instance:

PROPOSITION 2.1. If ® € Ay and {us}teer C LE(,RN) then

sup || uq ||g o < +o0 if and only if sup /<I>(|ua($)|)dac < +o0.
I ’ I
Q

The closure in the norm topology of C§°(2,RY) in L®(Q,RY)
is denoted by E®(Q,RY). We have E®(Q,RY) C K?(Q,RY) C
L®(Q,RY), with equality holding if and only if ® € A,.

Moreover the Orlicz space associated with a N-function @ is sep-
arable if and only if the generating N-function belongs to class As.
The separability result is a consequence of the following approxima-
tion theorem which generalizes an analogous property of LP spaces
(see [12]).

THEOREM 2.2. Let Q be a bounded open set in R", and let ® € As,.
For a natural number r, let {Q;,} be a family of open cubes satisfying

. 1 L A o
diam Qip < —5 Qir NQjr=¢ i#j; (JQiy =0
i

For u € L*(Q,RY) define the functions
1
up(z) = Z Qi u(y) dy 1 Xq, . (z).
: v Qi,'r
Then {u,} C E*(Q,RY) and moreover {u,} — u s-L*(,RY).
In the sequel we will use the following result (see [17]).

PROPOSITION 2.3. Let ®,1" be N-functions such that

lim w = 400
t—+o0 F(t) - ’
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and let H be a mean bounded family of functions in L®(Q,RY), i.c.

sup /<I>(|u(:v)|) dr < 400, then the set of functions G = {T'(Jul) :
H

Q
u € H} has equi-absolutely continuous integrals on SQ.

The Orlicz-Sobolev space WH®(Q, RY) consists of all functions u
in L®(Q,RY) whose distributional derivatives belong to L®(Q, RY).
As in the case of ordinary Sobolev spaces, WO1 ’q)(Q,]RN ) is taken to
be the closure in the norm topology of C§°(€, RY) in WhH®(Q,RY).

The following embedding theorem holds (see [3], [4], [10]).

THEOREM 2.4. Let 2 be an open subset of R" with 0Q lipschitzian,
let ® € Aoy, then the imbedding

whe(Q,RY) — L?(Q,RY)
18 compact.

We now introduce the weak * convergence in L®(Q,RV). The
space L®(,RY) can be regarded as the dual space of E¥(Q2,RY)
(see [3], [17], [25]), so it is possible to characterize the convergence of
sequences in the weak * topology of L®(€,R") in the following way:
{uy} = u *w-L*(Q,RY) if and only if for every v € EY (2, RY)

lim /ur(:c)v(x) dr = /u(w)v(w) dz.
T
Q Q
Since this, weak * convergence is often called EY-convergence.

By means of the Hahn-Banach theorem we characterize the weak*
convergence in the space WH®(Q,RY) : {u,} — u »w-WH®(Q,RY)
if and only if {u,} and {D;u,}, 1 < i < n, converge to u, D;u *w-
L®(Q,RY), respectively. Finally if ® € Ay we get [L‘I)(Q,]RN)]I ~
LY (Q,RY).

3. Semicontinuity theorem: the case f = f(z)

THEOREM 3.1. Let € be an open bounded subset of R™ with 09 lip-
schitzian, let v : Q — RY | consider the functional

F(u,Q) = / F(Du(z)) da,
Q
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where f : RN™ — R is a quasi-convez function such that for every
z € RN™ we have

—c{1+ @1(|2)} < f(2) < {1+ 2(|2])} (5)

with ¢ positive constant, ® € As and ®1 N-function such that

lim = +o0. (6)

Then F is sequentially lower semicontinuous in *w-Wh®(Q,RN),
i.e. for every sequence {u,} — u xw-WH®(Q,RV) we have

lim inf /f(Du,) dz > /f(Du) dz.
T
Q Q
In the sequel we will use the following result which generalizes a
proposition given by Marcellini [20].

PROPOSITION 3.2. Let g : RV™ — R be a function separately convez
in each variable, such that there exist a N-function I' € Ay and a
positive constant ¢ such that for every z € RN®

l9(2)| < {1 +T(|2])}- (7)

Then g is continuous, besides, denoted by h the right derivative of
I', we have

l9(2) — q(w)| < ci{1+h(1 + |2 + |w|)}z — w| (8)
for every z,w € RN™ with ¢; positive constant.
Proof. For z,w € RNY™ consider the vectors

a* = (wy, ..., Wk, Zks1, - 2Nn) 0< k< Nn,
then using the convexity of g in each variable, we have for ¢ > 1

gla* + #(a**! — a¥)) — g(a*)
t

g(a"*t) — g(a*) <
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By the very definition of a it follows that, for every k and ¢, we have
la® 4+ t(aF Tt — a®)| < 1+ |2| + |w| + t|z — w|,

1+ |z + |w]|

so if we choose t =
|z — wl

> 1 we get

laF +F(a* T — a®)| < 2{1 + |2| + |w]}.
By (7) we have
|9(a®)| < {1+ T+ |2| + [w])}.
and also, using assumption I' € Ay we get
l9(a* + (@ — a®))| < er{l + T (1 + |2 + w])}.

Thus we have

k+1 k
a — a <ec VA w

< cafl + A1+ |2 + lw])}z —wl,

adding up on k we get the inequality
g(w) — g(2) < c2{1 +h(1 + |2 + |w[) }|z — wl,

reversing the role of z and w we get (8). O

Proof of Theorem 3.1. We assume first that « € WH®(Q,RY) is an
affine function, i.e. there exists zy € RV™ such that for every z € R”
it holds Du(z) = 2.
Denote with {u,} a sequence such that {u,} — u *xw-WbH®(Q,RV).
If u, u, have the same boundary values, i.e. (u, —u) € Wol’q)(Q, RM),
for every r, the result follows easily by quasi-convexity. In fact, by
(5), the functional F is continuous in s-W5® (€, RY), then the quasi-
convexity inequality holds for test functions in WO1 ’<I>(Q, RY) and so
we get semicontinuity inequality.

In the general case we change the boundary data of u, using a
method developed by De Giorgi [9]. Let Q2 be an open set compactly
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1 —
contained in Q and fix k = idist (Q0,09), for h € N define the open
sets

Qi:{.’L‘EQ: diSt(.’L‘,Qo)<%k} 1<i<h

and consider a family of functions ¢; € Cj(£;) such that

h+1
0<¢;<1l; =1 Qg5 =0 Q\Q; |D¢"<T

For every r, let v, = u, — u, then {v,} — 0 *w-WH?(Q,RY), now
define the functions

Vi,r(x) = ¢i(z)vr(z),

since v, € WO1 ?(Q,RN) for every i and 7 we have
F(u,Q) < F(u +v;,,9Q) :/f 2o + Dv; ) dz

/f Du,)dx + / fzo~|—D1/”da:+/f 20)d.

Q\ Qi1 o\
/f Du,)dz— /f Du,)dz+ /f 20 + Dv;,)dz+
Q\Q_1
—I—\Q\Qo|fz0 /fDudac
i\

(9)
Since {v,} is weakly * convergent, then {Dv;,} is bounded in norm
L®(Q,RY), and then, by Proposition 2.1, there exists a positive con-
stant ¢; such that

sup/@(|D1/,.|)d:z; <.
T
Q

Therefore there is 0 < 5 < h such that

lim sup / ®(|Dvy|)dz < %

T
2\ Q251
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Since the imbedding W1® — L?® is compact we obtain that {v,} — 0
s-L®(9,RY) and then

lim /@(w)dx ~ 0.
T
Q
Now we estimate the integrals in (9), we have

/f(zo + Dvj;)dx

2;\2;-1
<c [{1+8(al+ 6,/ 1Dw| + D&l rD}de (1)
2\ -1

h+1\™
Scle\Qo|+%+63<—Z ) Rl
Q

besides by (5) we get

- /f(DuT)dx— /f(Du)dac < /{1+®1(|Dur|)+@1(|Du|)}dx.
O\Qj_1 2;\Q0 2\
(11)
Using Proposition 2.3 we obtain that the functions ®;(|Du,|) have
equi-absolutely continuous integrals, so that the right term of (11)
goes to zero if the measure of 2\ ©Qy does.
So, by (10) and (11), (9) becomes

h+1\™
P9 < Pl )+ “0) [ oo+ S
Q

e [ (@D + B(Dul}do + ol Rl
2\
the assertion follows passing to the limit as [\ Qo] — 0, 7 = 400
and h — +o00.

Passing to the general case let u € WH®(Q,RY) and {u,} be a
sequence such that {u,} — u *w-Wh®(Q,RY). Consider a family
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of open cubes {Q;m} as in Theorem 2.2, and define on every cube
Qi,m the functions

Vpm = Up — U+ < (D), >

where
1
(DWim = 15— [ Dulwdy.
|Qi,m
Ql m
Then
Dv, y, = Du, — Du+ (Du)p,
where

(Dw)m(2) = Y (Du)imXq,,, ().

i

Fix 0 < € < 1, we prove that for suitable m we have
|F(ur, Q) — F(vpm, Q)| <e.

Let p be the right derivative of ®, by Proposition 3.2 and Young’s
inequality we get

|F(UT’Q) _F(VT,maQN
<> [ 11(Dw) - 1(Dvy)lds
: Qi,m
<0y [ L+p(+ Dur| + D) WD, — D] ds
g Qi,m
<c. [ @(1Du=(Du)mdo +

Q

teeY /{w(l>+\v(p<1+|Dur|+\Dur,m|>>}dw
L Qi,m
=1+ Is.

For a suitable m, by Theorem 2.2, we obtain

Ilg&
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Since ® € As, there exist £k > 1 and ty > 0 such that for every
t >tg > 0: U(p(t)) < kd(t), then
I < coe + 035/{§)(|Dur|) 4 3(|Du — (D))} da,
Q
therefore by Proposition 2.1 and Theorem 2.2 we have

‘F(uTaQ) - F(VT,maQ” < cse.

In a similar way we can show that

Fu, Q) - / F(Dw)m) da| < e.
Q

M

Fix M € N and set Qp = Y Qi,m, since {Vy;m} =< (Du)im,z >
1=

*w—Wl’q)(Qi,m, RY) for every i by the first part of the proof we have

Qé f((Du)m)dxglixgiané F(Dvy ) da

Using (5) and the convexity of @, it is easy to prove that for suitable
M it holds

Moreover, as the integrals of functions ®1(|Du,|) are equi-absolutely
continuous, we get

— / F(Dvy ) dz < €.

Q\Qur

We can conclude that

Fu,Q) < / F((Du)) dz +
Q
< f((Du)p) dx + 2¢ < liminf [ f(Dvyn)dz+ 2
/ /

< lim inf/ [ (Dvym) dz + 3e < lim inf/ f(Du,) dx + cse.
T T
Q Q
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Finally the semicontinuity follows. O

By the previous semicontinuity result, we are able to state the
following existence theorem in the context of Orlicz-Sobolev spaces,
using the Direct Methods of the Calculus of Variations.

THEOREM 3.3. Let f : RV™ — R be a quasi-convez function satisfy-
ing
ci{®(|z]) —1} < f(2) < c2{®(|2]) + 1} (12)

for every z € RN™, where ¢; and co are positive constants and ® €
As.

Let Q be an open bounded subset of R" with 00 lipschitzian, let
v be a function in WH®(Q,RY), consider the Dirichlet’s class

V=v+W,*(Q,RY),

then the problem m = ir‘}f F(u,Q) has solution.

Proof. Functional F' is lower bounded and coercive in the strong
topology of V.
In fact for every w € L®(Q, RY) it holds

Jwlle <1+ / &(|w]) dz,
Q

then by (12) we have
F(ua Q) > 03{” Du ||'I> - 1}7

so F' is lower bounded on V, i.e. m > —oo0.
On the other hand from

[ Dulle 2 || D(u=v) [l = Dv |le

it follows
F(u,Q) > ca{|| D(u —v) [l — 1},

and, as in WO1 ’CI)(Q, RY) the norm of the gradient and the usual one
are equivalent, F' is coercive with respect to the strong topology of

V.
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Let {u,} be a minimizing sequence of F on V, i.e. lim F'(u,, ) =
A

m, then, by coercitivity of F', {u,} is bounded in norm. Thus, there
exist a subsequence of {u,}, which we still denote by {u,}, and a
function u € v+ Wy ® (2, RV ) such that {u,} — u *w-WhH®(Q,RV).

By Theorem 3.1 F is sequentially lower semicontinuous in *w-
Wh®(Q,RY) then

F(u,Q) <liminf F(u,,Q) =m,
T

since this we get m = F(u, Q). O

4. Semicontinuity theorem: the general case

THEOREM 4.1. Let 2 be an open bounded subset of R" with 0 lip-
schitzian, let f(xz,s,z), defined on Q x RN x RN™ with real values,
be a Carathéodory function quasi-convex in z such that there exist

positive constants ¢y, c1,co and @1, Po N-functions belonging to class
Ao such that

|f(z,5,2)] <o+ c1@i([s]) + c2®2(l2]) (13)

for every (z,s,2) € Q2 x RN x RN",
Then the functional

F(u,9) = / f(z,u(x), Du(z)) dz
Q

is sequentially lower semicontinuous in *w-WhT(Q,RN) for every
N-function T' € Ay such that

T'(t)
150 By (1)

=400 i=1,2. (14)

REMARK 4.2. The assumptions I' € A, and (14) imply that the
following embeddings are compact

whh(Q,RY) —» L%(Q,RY)  i=1,2.

REMARK 4.3. If f = f(z) Theorem 4.1 is a consequence of Theo-
rem 3.1.



SEMICONTINUITY OF VECTORIAL etc. 155

The following result, due to Scorza Dragoni (see [11]), character-
izes the Carathéodory functions.

PROPOSITION 4.4. g: R xRN x RV — R is a Carathéodory func-
tion if and only if for every compact subset C C R" and every v > 0
there exists a compact subset C, C C such that |C\ C,| < and that
the restriction of g to Cy x RY x RN™ s continuous.

Proof of Theorem 4.1. Let 7 > 0, then there exist a positive integer
m and a finite number of open cubes {Q; ,}, whose sides have length
1/m, satisfying

Qim CC R QimNQjm=0¢ i#3j |2\ Qim|<T
i<m
Let ¢ > 0 and v be a function, define
O ={z€Q:|v(z)| >t}

and set
vi(z) = v(z)Xa\q,, (7)-

Fix m and 4, define

1 /
Vigp = —— v(z)dx
2,1 ‘Qi,m'Q ( ) ’

then consider
Z VimXQ; n (T) T € Qm
i
0 z€Q\Qnm

l/m(.’L') = ’

and set Vi, = (V4)m-

Let u € WHT(Q,RY) and {u,} be a sequence convergent to u in
sw-WHE(Q,RY).

By Remark 4.2, {u,} converges to u in s-L®1(Q,R") and then
it is convergent to u almost everywhere in 2. Moreover, by Proposi-
tion 2.3, the functions @1 (|ul), @1 (|ur|), P2(|Du|) and ®2(|Du,|) have
equi-absolutely continuous integrals on €.
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Consider {z,}, m = [Idrn]m, {ur,m} and {[Du)tm}, by Theo-
rem 2.2 they are convergent almost everywhere in Q to Idgn, u, [Dult
respectively.

We get

Q/ f (5,1, Du) dz

- / F(z,u, Du) dz + ()
20\ Qm

+ [{7(,0. D) = flo,u (D)} do -+ (1)
Qm

+ /{f(wauta [Dult) — f(@m, ut;m, [Dulm) } do + (I3)
Q

+ /{f(xm,ut,ma [Du]t,m) - f(xma Ut,ma [Du]t,m +
Qm
+ D(ur — u))} dz + (1)
+/{f($maut,ma[Du]t,m+D(Ur_U))‘l‘
Qm

— f (mm,ut,m, [Du]t’m + [D'U/r]t - [Du]t) }d]? + (15)

+ / (F @y s (Dl + [Dr)e — [Ddly) +

Qm
— f(.’L‘, Ut, [Dur]t)} diL' + (16)
+ [ 1@ 1Dl — £l (D10} da + (1)
Qm
+ [ furls D) — £, D)} ds + (Is)
Qm
— / f(z,up, Du,) dz + (Iy)

2\Qm
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+/f(x,ur,DuT)dm. (I1o)
Q

By Proposition 2.3 it follows from (13) and (14) the equi-absolute
continuity of integrals F'(u, ) and F'(u,, ), thus if ¢ is large enough
we get

L+ Is+ 1z <e.

Fixing a suitable m and using (13) we get
L+ 1Iy<e.

Cousider I3, Ig and Iy, by Egorov theorem, Proposition 4.4 and
equi-absolute continuity of integrals it follows that the sum of these
addenda is less than €.

Finally I4 has non positive inferior limit by Remark 4.3.

So we have

/f(x,u,Du)d:vSce—I—/f(x,ur,Dur)dzv
Q

Q

and finally the result follows passing to inferior limits for r — 4o0c.
a

5. Examples

In this section we exhibit some examples of applications of the semi-
continuity Theorems 3.1, 4.1 and of the existence Theorem 3.3. The
first example deals with Theorem 4.1. We are interested in the
case N = n = 2, completely solved in [1], [6] and [8] for positive
poli-convex functionals, so we consider a suitable modification of a
family of quasi-convex functions, introduced by Sverdk [26], with
sub-quadratic growth at infinity, which, then, are neither convex nor
poli-convex.

Let A, B € M?*? such that
rank (A — B) > 2,

then K = {A, B} is compact and non convex.
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For p > 1 define the function

dp(2) = [d(2)]",

where z € M?*? and d(z) denotes the distance of z from K.
Sverdk in [26] proved that the quasi-convex envelope Qd, of d,
satisfies
Qdy(2) >0 for every z € M**? \ K,

moreover if 1 < p < 2 then Q)d, is quasi-convex but not poli-convex.
For 1 < p < 2 define the function f, : M?*? — R by

fp(z) = dp(z) In(e + d(z)).

Since d), < f, we have (Qf,)"1(0) = K, then Qf, is not convex, and
not even poli-convex since it has sub-quadratic growth at infinity.
Moreover, since d(z) has linear growth at infinity, we obtain

0<Qfp(2) < er{l + 2P In(e + |2[)}- (15)

Let a : 2 x R?> — R be a non negative measurable function belonging
to L*°(€), define the function g,(z, s, z) = a(z, s)Qfp(z). Then, by
(15), gp satisfies growth conditions of type (13) with the N-function
®,(t) = t?In(e + t) € Ay, thus by Theorem 4.1 the functional

Gp(u,Q) = /gp(w,u,Du) dz (16)
Q

is sequentially lower semicontinuous in *w-W1®ar(Q R?) with
Dy p(t) =tPIn*(e +1t), > 1.

Finally, observe that applying Theorem 2.4 of [2], Proposition 1 of
[15] and Theorem 1.1 of [20] we obtain the weak lower semicontinuity
of (16) in W1P+e(Q, R?) for every € > 0, which is a proper subspace
of Wh®ar(Q,R?) for every a > 1, & > 0.

The following example is obtained by applying a result of Zhang
who developed in [27] a method to construct quasi-convex functions
with linear growth at infinity from known quasi-convex functions.

Consider, as before, A, B € MN*" such that

rank (A — B) > 2,
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and set K = {A, B}, then K is compact and non convex.
Let z € MYV *™ and denote with d(z) the distance of z from K, in
[27] Zhang proved that the quasi-convex envelope Qd of d satisfies

Qd(z) >0 for every z € MYV*"\ K.

Thus @Qd is a quasi-convex function with linear growth at infinity,
i.e. there exist ¢;, 1 < ¢ < 4, non negative constants satisfying for
every z € MNxn

—c1 + c2|z] < Qd(z) < c3 + calz], (17)

and Qd is not convex since (Qd)~!(0) = K.
Consider @, ;(t) = ta+? sin(In(In?)) " which is the principal part of a
N-function of class Ag ifa > 1+ b\/i, then the function

hap(2) = (@gp o Qd)(2)

is quasi-convex but not convex. In fact h,p is the composition of a
N-function with a quasi-convex function, then, since ®,;(t) = 0 if
and only if t = 0, it follows (hep)~1(0) = K.

Since @, € A, by (17), there exist c5, ¢ non negative constants
such that for every z € MN*n

0 < hap(2) < Buples + cal#l) < 5 + csBall2l).  (19)
By (18) we get that kg satisfies
0 < hap(2) < 5+ cl2|*T?, (19)

moreover by (17) and the continuity of Qd it is easy to show that
the power a + b in (19) is sharp.

By Theorem 3.1, it follows the sequential lower semicontinuity of
the functional

oy, Q) = / has(Du) dz (20)
Q

in xw-Wh®at(Q,RY). Moreover, Theorem 3.3 gives the existence
of minimizers for the Dirichlet problem H%/inHa,b(u, ), where V =

v+ Wy (Q,RY) and v € Whes(Q,RV).
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We remark that Theorem 3.1 applied to (20) gives a different
result with respect to semicontinuity theorems known in ordinary
Sobolev spaces. Let N =n > 3, Theorems 2.4 of [2] and 1.1 of [20],
assure the weak lower semicontinuity of (20) in W4+(Q, RY) which
is a proper subspace of W®a(Q, RY). Moreover, the results in [13]
and [18] give the lower semicontinuity of (20) in w-W!P(Q,RY) for
p > Y=1(a+b), and taking in account [19] we get semicontinuity for
p>a+b—1. Leta+b< N, then XL (a+b) > a+b—1, if we assume
a+b—1>a—b,ie b> 3, since ,,(t) = t*° for infinite t € R, we
can conclude that Theorem 3.1 states semicontinuity in a different
space with respect to previous results. We observe explicitly that
there exist positive constants a, b satisfying a > 1 +bv/2,a+b< N
and b > %,e.g. forN:3takea:2andb:%.
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