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Abstract. We review some issues about the regularity theory of local minimizers of the

Mumford & Shah energy in the 2-dimensional case. In particular, we stress upon some

recent results obtained in collaboration with C. De Lellis (Universität Zurich). On one

hand, we deal with basic regularity, more precisely we survey on an elementary proof of

the equivalence between the weak and strong formulation of the problem established in

[16]; and on the other hand we discuss fine regularity properties by outlining an higher

integrability result for the approximate gradient proved in [17], implying in turn an

estimate on the Hausdorff dimension of the singular set of minimizers.

Sunto. Verranno presentati alcuni aspetti della teoria di regolarità dei minimi locali del

funzionale di Mumford & Shah in dimensione 2, ottenuti recentemente in collaborazione

con C. De Lellis (Università di Zurigo). In particolare, da una parte si discuterà un

risultato di regolarità bassa, più precisamente l’equivalenza fra la formulazione debole e

quella forte del problema dimostrata in [16]; dall’altra un risultato di regolarità alta, o

meglio la maggiore integrabilità del gradiente approssimato dei minimi provata in [17],

dalla quale segue una stima sulla dimensione di Hausdorff del relativo insieme singolare.
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1. Introduction

The Mumford & Shah model is a prominent example of variational problem in image

segmentation (see [23]). A smoothed version of a black and white picture, whose levels

of gray are represented by a function g ∈ L∞(Ω, [0, 1]), is obtained by minimizing the

Bruno Pini Mathematical Analysis Seminar, Vol. 1 (2012) pp.

ISSN 2240-2829.
2



REGULARITY ISSUES FOR LOCAL MINIMIZERS OF THE MUMFORD & SHAH ENERGY IN 2D 3

functional

(1) (v,K)→ E (v,K) + β

∫
Ω\K
|v − g|2dx,

with

E (v,K) :=

∫
Ω\K
|∇v|2 dx+ γH1(K),

where Ω ⊂ R2 is a fixed open set, K is a closed subset of Ω with finite H1 measure,

v ∈ C1(Ω \ K), and β and γ nonnegative constants. For the sake of simplicity we set

β = γ = 1.

This energy has been then conveniently modified and exploited in problems in Fracture

Mechanics, mainly to model quasi-static irreversible crack-growth for brittle materials

according to Griffith (see [4, Section 4.6.6]).

The role of the squared L2 distance in (1) is that of a fidelity term in order that the

output of the process is close in an average sense to the original input picture g. The set

K represents the set of countours of the objects in the picture, the length of which is kept

controlled by the penalization of its H1 measure, while the Dirichlet energy of u favours

sharp contours rather than zones where a thin layer of gray is used to pass smoothly from

white to black or viceversa.

We stress the attention upon the fact that the set K is not assigned a priori and it is

not a boundary in general. Therefore, this problem is not a free-boundary problem, and

new ideas and techniques had to be developed to solve it.

Since the appearance in the late 80’s to today the research on the Mumford & Shah

problem, and on related fields, has been very active and different approaches have been

developed. In this paper we shall focus mainly on the ideas and the setting proposed

by De Giorgi limited to the 2d case of interest here. More precisely, a weak formulation

of the problem, from which an existence theory for minimizers of E can be developed,

is obtained within the space SBV of Special functions of Bounded Variation introduced

by De Giorgi and Ambrosio: the subspace of BV functions with singular part of the

distributional derivative concentrated on a 1-dimensional set (throughout the paper we

will use standard notations and results concerning the spaces BV and SBV , following the

book [4]). To be more precise we recall that v ∈ L1(Ω) belongs to BV (Ω) if and only if
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Dv is a (vector-valued) Radon measure on Ω. Then, we can decompose the distributional

derivative of v according to

Dv = ∇vL2 Ω + (v+ − v−)νv H1 Sv +Dcv,

where

(i) ∇v is the density of the absolutely continuous part of Dv with respect to the

Lebesgue measure on Ω (and the approximate gradient of v in the sense of Geo-

metric Measure Theory as well),

(ii) Sv is the set of approximate discontinuities of v, an H1-rectifiable set (so that

L2(Sv) = 0) endowed with approximate normal νv(x) for H1 a.e. x,

(iii) v± are the one-sided traces left by v on Sv.

Definition 1.1 ([14], Section 4.1 [4]). v ∈ BV (Ω) is a Special function of Bounded

Variation, in short v ∈ SBV (Ω), if Dcv = 0, i.e. Dv = ∇vL2 Ω + (v+ − v−)νv H1 Sv.

So, no Cantor staircase type behaviour is allowed for these functions. Simple examples

are collected in the ensuing list:

(i) W 1,1(Ω) ⊂ SBV (Ω),

(ii) v =
∑M

i=1 ai χEi ∈ SBV (Ω) if χEi ∈ BV (Ω), i.e. Ei are sets of finite perimeter,

and ai ∈ R,

(iii) the function
√
ρ · sin(θ/2) for θ ∈ (−π, π) and ρ > 0 is in SBV (B1). Thus,

the direct sum of the subspaces of absolutely continuous functions and piecewise

constant ones in items (i) and (ii) above is strictly included in SBV .

More interesting examples can be obtained as follows (see [4, Proposition 4.4]): if K ⊂ Ω

is a closed set such that H1(K) < +∞ and v ∈ W 1,1∩L∞(Ω \K), then v ∈ SBV (Ω) and

(2) H1(Sv \K) = 0.

Clearly, property (2) above is not valid for a generic member of SBV , but it does for

a significant class of functions: local minimizers of the energy under consideration (see

below for the definition).
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Keeping in mind this example, the weak formulation of the problem is obtained naively

by taking K = Su. Loosely speaking in this approach the set of contours K is identified

by the (Borel) set Sv of (approximate) discontinuities of the function v that is not fixed

apriori. This is the reason for the terminology free-discontinuity problem introduced by

De Giorgi. The Mumford & Shah energy of a function v in SBV (Ω) on an open subset

A ⊆ Ω then reads as

MS(v,Ω) +

∫
Ω

|v − g|2dx,

where

(3) MS(v,A) :=

∫
A

|∇v|2dx+H1(Sv ∩ A).

For the sake of simplicity in case A = Ω we drop the dependence on the set of integration.

Ambrosio’s SBV closure and compactness theorem (see [4, Theorems 4.7 and 4.8])

ensures the existence of a minimizer in SBV . Instead, existence of minimizers for the

strong formulation of the problem is obtained via a regularity property enjoyed by (the

jump set of) the minimizers of the weak counterpart. To this aim we need to analyze

the scaling of the energy in order to understand the local behaviour of minimizers. This

operation has to be done with some care since the volume and length terms in MS scale

differently under affine change of variables of the domain. Let v ∈ SBV (Bρ(x)), set

vρ(y) := ρ−1/2v(x+ ρ y),

then vρ ∈ SBV (B1), with

MS(vρ, B1) = ρ−1MS(v,Bρ(x))

and ∫
B1

|vρ − gρ|2dz = ρ−3

∫
Bρ(x)

|v − g|2dy.

Thus,

1

ρ

(
MS(v,Bρ(x)) +

∫
Bρ(x)

|v − g|2dz

)
= MS(vρ, B1) + ρ2

∫
B1

|vρ − gρ|2dy.

This calculation shows that at first order the leading term in the energy is that related to

the MS functional, the other being a contribution of higher order that can be neglected in
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a preliminary analysis. Motivated by this, we introduce a notion of minimality involving

only the leading part of the energy. In what follows, u will always denote a local minimizer

of MS, that is any u ∈ SBV (Ω) with MS(u) < +∞ and such that

MS(u) ≤ MS(w) whenever {w 6= u} ⊂⊂ Ω.

The class of all local minimizers shall be denoted byM(Ω). Actually, we shall often refer

to local minimizers simply as minimizers if no confusion can arise. Regularity properties

for minimizers of the whole energy can be obtained by perturbing the theory for local

minimizers (cp. with Corollary 2.2 below).

As established in [15] in all dimensions (and proved alternatively in [9] and [10] in

dimension two), if u ∈ M(Ω) then the pair (u, Su) is a minimizer of E . The main point

is the identity H1(Su \ Su) = 0, which holds for every u ∈ M(Ω). The groundbreaking

paper [15] proves this identity via the following density lower bound estimate (actually

established in any dimension with the obvious changes in the statement, see [4, Theorem

7.21]).

Theorem 1.1 (De Giorgi, Carriero & Leaci [15]). Let u ∈ M(Ω), then there exists a

dimensional constant θ independent of u such that

(4)
MS(u,Br(z))

2r
≥ θ for all z ∈ Su, and all r ∈ (0, dist(z, ∂Ω)).

Building upon the same ideas, in [8] it is proved a slightly more precise result (see again

[4, Theorem 7.21]).

Theorem 1.2 (Carriero & Leaci [8]). Let u ∈M(Ω), then for some dimensional constant

θ0 independent of u it holds

(5)
H1(Su ∩Br(z))

2r
≥ θ0 for all z ∈ Su, and all r ∈ (0, dist(z, ∂Ω)).

The argument for (4) used by De Giorgi, Carriero & Leaci in [15], and similarly in

[8] for (5), is indirect: it relies on Ambrosio’s SBV compactness theorem, an SBV

Poincaré-Wirtinger type inequality established in [15] (see also [4, Theorem 4.14]) and

the asymptotic analysis of blow-up limits of minimizers with vanishing jump energy (see

[4, Theorem 7.21]). In the paper [16] a simpler proof in 2 dimensions is given, that does
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not require any Poincaré-Wirtinger inequality, nor any compactness argument. Indeed,

the proof in [16] is based on an observation of geometric nature and on a direct variational

comparison argument, it differs from those exploited in [9] and [10] to derive (5) in the

two dimensional case as well (see Section 2 for more details and further comments).

Theorem 1.3 (De Lellis & Focardi [16]). Let u ∈M(Ω). Then

(6)
mz(r)

r
≥ 1 for all z ∈ Su and all r ∈ (0, dist(z, ∂Ω)).

More precisely, the set Ωu := {z ∈ Ω : (6) fails} is open and Ωu = Ω \ Ju = Ω \ Su.

Furthermore, Corollary 2.1 provides a similar conclusion involving only the H1 measure

of the jump set in analogy with Theorem 5 above.

Having established the existence of (local) minimizers for E we discuss next more refined

regularity properties of the minimizers. The interest of the researchers in this problem

is motivated by the Mumford & Shah conjecture that we recall below for the readers’

convenience.

Conjecture 1.4 (Mumford & Shah [23]). If u ∈M(Ω), then Ju is the union of (at most)

countably many injective C1 arcs γi : [ai, bi]→ Ω with the following properties:

(c1) Any compact K ⊂ Ω intersects at most finitely many arcs;

(c2) Two arcs can have at most an endpoint p in common, and if this is the case, then

p is in fact the endpoint of three arcs, forming equal angles of 2π/3.

So according to this conjecture only two possible singular configurations occur: either

three arcs meet in an end with angles of 2π/3, or an arc has a free-end. In what follows,

we shall call triple junction or spider the first configuration and crack-tip the second.

It was shown by Alberti, Bouchitté & Dal Maso [1] that triple junctions are indeed local

minimizers by developing a suitable theory of calibrations for free-discontinuity problems.

Instead, Bonnet & David [6] have shown that crack-tip functions are global minimizers of

the Mumford & Shah energy, a slightly different notion including a topological condition

(see [5]). We do not know yet whether they are local minimizers as well or not.

Let us now review the state of the art about Conjecture 1.4.
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Theorem 1.5 (Ambrosio, Fusco & Pallara [3]). Let u ∈M(Ω), then there exists Σ ⊂ Su

relatively closed in Ω with H1(Σ) = 0, and such that Su \ Σ is locally a C1,1 arc.

More precisely, there exists ε0 > 0 such that

(7) Σ = {x ∈ Su : lim inf
ρ↓0

(D(x, ρ) + A (x, ρ)) ≥ ε0}

where

D(x, ρ) := ρ−1

∫
Bρ(x)

|∇u|2dy, (scaled Dirichlet energy)

A (x, ρ) := ρ−3 min
T line

∫
Su∩Bρ(x)

dist2(y, T )dH1(y), (scaled mean flatness).

Note that the affine change of variables mapping Bρ(x) into B1 shows that D(x, ·) and

A (x, ·) are equal to the Dirichlet energy and the mean flatness of the blow-up maps uρ

on B1, respectively.

Theorem 1.5, or better the characterization of the singular set Σ in (7), can be employed

to subdivide Σ according to the Mumford & Shah conjecture as follows: Σ = Σ1∪Σ2∪Σ3,

where

Σ1 := {x ∈ Σ : lim
ρ↓0

D(x, ρ) = 0}, the subset of triple junctions or spiders

Σ2 := {x ∈ Σ : lim
ρ↓0

A (x, ρ) = 0}, the subset of crack-tips

Σ3 := {x ∈ Σ : lim inf
ρ↓0

D(x, ρ) > 0, lim inf
ρ↓0

A (x, ρ) > 0}.

According to the Mumford & Shah conjecture we should expect Σ3 = ∅.

In the paper [2], Ambrosio, Fusco & Hutchinson investigated the connection between

the higher integrability of ∇u and the Mumford & Shah conjecture. If Conjecture 1.4

does hold, then ∇u ∈ Lploc for all p < 4 (cp. with [2, Proposition 6.3] under C1,1 regularity

assumptions on Ju, see also Proposition 1.10 below). Viceversa, the higher integrability

can be translated into an estimate for the size of the singular set Σ of Ju (see [2, Corollary

5.7]): in particular this set has Hausdorff dimension 2−p/2 under the apriori assumption

that ∇u ∈ Lploc for some p > 2. In fact [2] proves also an higher-dimensional analog of

this second result.
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Theorem 1.6 (Ambrosio, Fusco & Hutchinson [2]). If u ∈M(Ω) and |∇u| ∈ Lploc(Ω) for

some 2 < p < 4, then

dimHΣ ≤ 2− p/2 ∈ (0, 1).

Few remarks are in order:

(i) the limitation p < 4 is motivated not only because we need the rhs in the estimate

above to be positive, but also because explicit examples show that it is the best

exponent one can hope for (see the crack-tip example below);

(ii) If we were able to prove the higher integrability property for every p < 4 then we

would infer that dimHΣ = 0. Clearly, a big step towards the solution in positive

of the Mumford & Shah conjecture. For further progress in this direction see

Proposition 1.10 below.

Theorem 1.6 is a straightforward corollary of a much deeper and technically demanding

result, that we report in the 2-dimensional case of interest here though it holds true with

a similar statement in n-dimensions as well.

Theorem 1.7 (Ambrosio, Fusco & Hutchinson, [2]). The subset of triple junctions Σ1

has Hausdorff dimension zero.

Given Theorem 1.7 for granted, Theorem 1.6 is a simple consequence of soft measure

theoretic arguments. We shall comment further on Theorem 1.7 in Section 3. Instead,

here we outline the proof of Theorem 1.6 to show the role of higher integrability.

Sketch of the Proof of Theorem 1.6. Suppose that |∇u| ∈ Lploc, then for all s ∈ (2−p/2, 1)

the set

Λs :=

{
x ∈ Ω : lim sup

ρ
ρ−s

∫
Bρ(x)

|∇u|pdy > 0

}

satisfies Hs(Λs) = 0 by an elementary covering argument.

Hence, if we rewrite Σ as the disjoint union of Σ ∩ Λs and of Σ \ Λs, we deduce the

estimate dimH(Σ ∩ Λs) ≤ s.
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Furthermore, it is easy to prove that Σ \ Λs ⊆ Σ1, since if x ∈ Σ \ Λs by the higher

integrability it follows that

D(x, ρ) = ρ−1

∫
Bρ(x)

|∇u|2dy ≤ π1− 2
p ρ1+ 2

p
(s−2)

(
ρ−s

∫
Bρ(x)

|∇u|pdy

) 2
p
ρ↓0+

−→ 0.

By taking into account Theorem 1.7 we have that dimH(Σ \ Λs) = 0.

In conclusion, we infer that for all s ∈ (2− p/2, 1)

dimHΣ = dimH(Σ ∩ Λs) ≤ s,

by letting s ↓ (2− p/2)+ we are done. �

The estimate dimHΣ < 1 was already present in literature (see David [10], Maddalena

& Solimini [21]), though not related to the higher integrability property of the gradient.

So far, in [17, Theorem 1.1] we have been able to prove the following statement that

was conjectured by De Giorgi in all space dimensions (cp. with [13, Conjecture 1]).

Theorem 1.8 (De Lellis & Focardi [17]). There is p > 2 such that ∇u ∈ Lploc(Ω) for all

u ∈M(Ω) and for all open sets Ω ⊆ R2.

For a hint of the proof and further comments see Section 3.

Let us now go back to the role of the exponent 4 in the higher integrability result.

We consider crack-tip minimizers (Bonnet & David [6]), i.e. functions that up to a rigid

motion can be written as

u(ρ, θ) = C ±
√

2

π
ρ · sin(θ/2)

for θ ∈ (−π, π) and ρ > 0, and some constant C ∈ R. Simple calculations imply that

crack-tip minimizers satisfy

|∇u| ∈ Lploc(R
2) \ L4

loc(R2) for all p < 4.

Actually, beyond the scale of Lp space something better holds true: |∇u| ∈ L4,∞
loc (R2).

The latter is a weak-Lebesgue space, i.e. if U ⊆ R2 is open then f ∈ L4,∞
loc (U) if and only

if for all U ′ ⊂⊂ U there exists K = K(U ′) > 0 such that

|{x ∈ U ′ : |f(x)| > λ}| ≤ Kλ−4 for all λ > 0.
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As a side effect of our considerations, we remark a small improvement of the result in

[2] in the 2-dimensional case: a weaker form of the Mumford-Shah conjecture in 2d is

equivalent to a sharp Lp estimate of the gradient of the minimizers.

Conjecture 1.9. If u ∈M(Ω), then Ju is the union of (at most) countably many injective

C0 arcs γi : [ai, bi]→ Ω which are C1 on ]ai, bi[ and satisfy the two conditions of Conjecture

1.4.

Our refinement of the result in [2] is in the following proposition (see [16, Proposition

1.5]).

Proposition 1.10 (De Lellis & Focardi [16]). The Conjecture 1.9 is true for u ∈ M(Ω)

if and only if ∇u ∈ L4,∞
loc (Ω).

The if direction of Proposition 1.10 is achieved by first proving that Ju has locally

finitely many connected components and then invoking the regularity theory developed

by Bonnet [5]. In turn, the proof that the connected components are locally finite is a

fairly simple application of David’s ε-regularity theory [11]. The subtle difference between

Conjecture 1.4 and Conjecture 1.9 is in the following point: assuming Conjecture 1.9 holds,

if p = γi(ai) is a “loose end” of the arc γi, i.e. does not belong to any other arc, then

the techniques in [5] show that any blow-up is a cracktip, but do not give the uniqueness.

In particular, Bonnet is not able to exclude the possibility that γi “spirals” around p

infinitely many times (compare with the discussion at the end of [5, Section 1]). As far

as we know this point is still open.

We have concluded this long introduction to the motivations of our researches, in the

rest of the paper we shall go into more details on the results we proved in [16] and [17] in

Sections 2 and 3, respectively.

2. The Density Lower Bound Estimate

We first introduce some useful notation. Given u ∈M(Ω), z ∈ Ω and r ∈ (0, dist(z, ∂Ω))

let

ez(r) :=

∫
Br(z)

|∇u|2dx, `z(r) := H1(Su ∩Br(z)), and mz(r) := MS(u,Br(z)).
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The quantity mz(·) in Theorem 1.3 allows us to take advantage of a suitable mono-

tonicity formula, discovered independently by David and Léger in [12] and Maddalena

and Solimini in [21].

Lemma 2.1. Let u ∈M(Ω), then for every z ∈ Ω and for L1 a.e. r ∈ (0, dist(z, ∂Ω))∫
∂Br(z)

((
∂u

∂ν

)2

−
(
∂u

∂τ

)2
)
dH1 +

`z(r)

r
=

1

r

∫
Ju∩∂Br(z)

|〈ν⊥u (x), x〉|dH0(x),

∂u
∂ν

and ∂u
∂τ

being the projections of ∇u in the normal and tangential directions to ∂Br(z),

respectively.

In [16, Appendix A] we gave an alternative proof of Lemma 2.1 above, by exploiting

directly the Euler-Lagrange equation tested on special radial inner variations.

A simple iteration of Theorem 1.3 gives a density lower bound as in (5) with an explicit

constant θ0 (see [16, Corollary 1.2]).

Corollary 2.1 (De Lellis & Focardi [16]). If u ∈M(Ω), then H1(Su \ Ju) = 0 and

(8)
`z(r)

2r
≥ π

224
for all z ∈ Su and all r ∈ (0, dist(z, ∂Ω)).

Let us now skecth the proof of Theorem 1.3.

Sketch of the proof of Theorem 1.3. The proof is based upon a direct variational argu-

ment exploting the following geometrical fact: if `z(r) < r for some r ∈ (0, dist(z, ∂Ω)),

then

∃ ρ ∈ (0, r) such that H0(Su ∩ ∂Bρ(z)) = 0.

This argument has no direct analogue in dimension greater than 2 as simple examples

show. In spite of this, Bucur & Luckhaus [7], independently from us, were able to improve

remarkably this idea and carry on the proof without our dimensional limitation.

Testing the minimality of u with the harmonic competitor having the same boundary

value on ∂Bρ(z) and taking into account that mz(r) < 1, it is easy to infer that mz(ρ) < ρ.

To deduce this, we employ the monotonicity Lemma 2.1.

Actually, we need to propagate the estimates in a quantitative way: if

mz(r) ≤ (1− ε)r for some r ∈ (0, dist(z, ∂Ω)), ε ∈ (0, 1)
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then

mz(ρ) < (1− ε)ρ for some ρ ∈ (0, r).

An iteration of the previous argument gives that

θ1
∗(Su, z) := lim inf

ρ↓0+

`z(ρ)

ρ
≤ (1− ε)/2.

From this, it turns out that Ωu := {x ∈ Ω : mx(r) < r} is an open set satisfying

Ωu ∩ {x ∈ Su : θ1(Su, x) = 1} = ∅.

The latter equality implies the inclusion Su ⊆ Ω \ Ωu; actually by minimality of u it is

elementary to check that

Ω \ Ωu = Ju = Su,

and thus we are done. �

A natural question is the sharpness of the estimates (6) and (8). The analysis performed

by Bonnet [5] suggests that π/224 in (8) should be replaced by 1/2 and 1 in (6) by 2. Note

that the square root function u(r, θ) =
√

2
π
r · sin(θ/2) satisfies `0(r) = e0(r) = r for all

r > 0. Thus both the constants conjectured above would be sharp by [11, Section 62].

Unfortunately, we cannot prove any of them.

A similar result can be established for quasi-minimizers of the Mumford & Shah energy,

the most prominent examples being minimizers of the functional in equation (1). More

precisely, a quasi-minimizer is any function v in SBV (Ω) with MS(v) < +∞ and satisfying

for some ω ≥ 0 and α > 0 and for all balls Bρ(z) ⊂ Ω

MS(v,Bρ(z)) ≤ MS(w,Bρ(z)) + ω ρ1+α whenever {w 6= v} ⊂⊂ Bρ(z).

We can then prove the ensuing infinitesimal version of (6) (cp. with [16, Corollary 1.3]).

Corollary 2.2 (De Lellis & Focardi [16]). Let v be a quasi-minimizers of the Mumford

& Shah energy, then

(9) Su = Ju =

{
z ∈ Ω : lim inf

r↓0+

mz(r)

r
≥ 2

3

}
.
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The proof of this corollary, though, needs a blow-up analysis and a new SBV Poincaré-

Wirtinger type inequality of independent interest, obtained by improving upon some ideas

contained in [19] (cp. with [16, Theorem B.6]); it is, therefore, much more technical.

Let us finally remark that it is possible to improve slightly Theorem 1.3 by combining

the ideas of its proof hinted to above with the SBV Poincaré-Wirtinger type inequality

in [16, Theorem B.6], and show that actually

Ω \ Ju = {x ∈ Ω : mx(r) ≤ r for some r ∈ dist(x, ∂Ω)}

(see [16, Remark 2.3]).

3. The Higher Integrability Result

Following a classical path, the key ingredient to establish Theorem 1.8 is a reverse

Hölder inequality for the gradient, which we state independently (see [17, Theorem 1.3]).

Theorem 3.1 (De Lellis & Focardi [17]). For all q ∈ (1, 2) there exist ρ ∈ (0, 1) and

C > 0 such that

(10) ‖∇u‖L2(Bρ) ≤ C‖∇u‖Lq(B1) for any u ∈M(B1).

Using the obvious scaling invariance of (3), Theorem 3.1 yields a corresponding reverse

Hölder inequality for balls of arbitrary radius: Theorem 1.8 is then a consequence of

(by now) classical arguments (see for instance [20]). The exponent p could be explicitely

estimated in terms of q, C and ρ. However, since our argument for Theorem 3.1 is indirect,

we do not have any explicit estimate for C (ρ can instead be computed). Hence, combining

Theorem 1.8 with [2] we can only conclude that the dimension of the singular set of Ju

is strictly smaller than 1. This was already proved in [11] using different arguments and,

though not stated there, Guy David pointed out to us that the corresponding dimension

estimate could be made explicit. In fact, after discussing the present result, he suggested

to C. De Lellis that also the constant C in Theorem 3.1 might be estimated: a viable

strategy would combine the core argument of this paper with some ideas from [11] (the

proof of Theorem 3.1 given here makes already a fundamental use of the paper [11], but

depends only on the ε-regularity theorem for ”spiders” and ”segments”). However, the
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resulting estimate would give an extremely small number, whereas the proof would very

likely become much more complicated. Since we do not see any way to make further

progress, we have decided not to pursue this issue here.

In addition, our indirect proof has some interesting side results that we shall highligt

in what follows. Indeed, in this section we shall give a rapid sketch of the proof of Theo-

rem 3.1, and rather than discussing all the details we shall mainly focus on a compactness

result, Theorem 3.2 below, that is one of the most important ingredients to establish

Theorem 3.1, and on the related consequences. We strongly believe that Theorem 3.2 has

some interest in its own.

Sketch of the proof of Theorem 3.1. We fix an exponent q ∈ (1, 2) and a suitable radius ρ

(whose choice will be specified later) for which (10) is false, that is

(11) ‖∇uk‖L2(Bρ) ≥ k‖∇uk‖Lq(B1) for a sequence (uk)k∈N ∈M(B1).

Since the Mumford & Shah energy of any u ∈ M(B1) can be easily bounded apriori by

2π, we have ‖∇uk‖Lq(B1) → 0. A suitable competitor argument then shows that:

(a) The L2 energy of the gradients of uk converge to 0;

(b) The jump set Juk of uk converges in the local Hausdorff metric to a set J which is

a (locally finite) union of minimal connections.

Though this last statement is, intuitively, quite clear, it is technically demanding, be-

cause we do not have any apriori control of the norms ‖uk‖L1 , thus preventing the use of

Ambrosio’s (G)SBV compactness theorem. We can not even employ De Giorgi’s SBV

Poincaré-Wirtinger inequality, since it holds true in a regime of small jumps rather than

of small gradients as the current one.

A very similar issue is investigated in [2, Proposition 5.3, Theorem 5.4] under the

stronger assumption that ‖∇uk‖L2 converges to 0. Such results hinge upon the notion

of Almgren’s area minimizing sets, and thus need a delicate study of the behaviour of

the composition of SBV functions with Lipschitz deformations that are not necessarily

one-to-one, and some specifications on the regularity theory for those sets. Instead, in

[17, Proposition 5.1] (see Proposition 3.2 below) we set the analysis into the more natural

framework of Caccioppoli partitions. Because of this, as pointed out in item (a) above,
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the fact that the Dirichlet energy of uk is infinitesimal turns out to be a consequence of

(11) and of the energy upper bound for functions in M(B1).

Having established (a) and (b), an elementary argument shows the existence of a uni-

versal constant ρ such that the intersection of J with B2ρ is:

(i) either empty;

(ii) or a straight segment;

(iii) or a spider, i.e. three segments meeting at a common point with equal angles.

We use then the regularity theory developed by David (see [11]) to conclude that, if k

is large enough, Juk ∩ B2ρ is diffeomorphic to (and a small perturbation of) one of these

three cases. Finally a variational argument (based on a simple ”Fubini and competitor”

trick) shows the existence of a constant C (independent of k) with the property that

(12) ‖∇uk‖L2(Bρ) ≤ C‖∇uk‖Lq(B1)

which contradicts (11). �

To state the compactness result we need to introduce the notion of Caccioppoli parti-

tion.

Definition 3.1. A Caccioppoli partition of Ω is a countable partition E = {Ei}∞i=1 of Ω

in sets of (positive Lebesgue measure and) finite perimeter with
∑∞

i=1 Per(Ei,Ω) <∞.

For each Caccioppoli partition E we set JE :=
⋃
i ∂
∗Ei. The partition E is said to be

minimal if

H1(JE ) ≤ H1(JF )

for all Caccioppoli partitions F for which there exists an open subset Ω′ ⊂⊂ Ω with∑∞
i=1 L2 ((Fi4Ei) ∩ (Ω \ Ω′)) = 0.

There is an important correspondance between Caccioppoli partitions and the subspace

of “piecewise constant” SBV functions, in literature indicated as SBV0 (see [4, Theorems

4.23, 4.25 and 4.39]), in such a way that minimizing the Mumford & Shah energy over

SBV0 corresponds exactly to the minimal area problem for Caccioppoli partitions.

We state Theorem 3.2 only in the 2-dimensional case of interest here. In spite of this, the

analogous result in any dimension can be obtained only with straightforward notational
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changes in the statement below (and also in the corresponding proof). Nevertheless,

dimension 2 enters dramatically in the proof of Theorem 3.1 as the structure of minimal

Caccioppoli partitions in R2 can be described precisely via minimal connections as done

in item (b) above (cp. with [17, Proposition 3.2]).

Theorem 3.2 (De Lellis & Focardi [17]). Let (uk)k∈N ⊂M(B1) be such that

(13) lim
k
‖∇uk‖L1(B1) = 0.

Then, (up to the extraction of a subsequence not relabeled for convenience) there exists

a minimal Caccioppoli partition E = {Ei}i∈N such that (Juk)k∈N converges locally in the

Hausdorff distance to JE and

(14) lim
k

MS(uk, A) = lim
k
H1(Juk ∩ A) = H1(JE ∩ A) for all open sets A ⊂ B1.

Let us finally discuss some interesting consequences of Theorem 3.2:

(i) Blow-up limits on singular points of a minimizer in the regime of small gradients,

i.e. points x ∈ Σ1, are minimal Caccioppoli partitions (in any dimension!).

In particular, thanks to the structure of minimal Caccioppoli partitions in 2-

dimensions mentioned above, (locally) they are triple junctions. Finally, The-

orem 3.2 provides an indirect proof of the local minimality of triple junctions

alternative to that in [1];

(ii) A more elementary proof of the estimate (and of its analogue in any dimension!)

dimHΣ1 = 0 (recall that Σ1 = {x ∈ Σ : lim
ρ↓0

D(x, ρ) = 0}),

follows from Theorem 3.2, the regularity theory for minimal Caccioppoli partitions

by Massari & Tamanini [22], and standard blow-up arguments (see [18]).

No use of Almgren’s area minimazing sets and of the corresponding regularity

theory is then needed.

References
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233. Birkhäuser Verlag, Basel, 2005. xiv+581 pp. ISBN: 978-3-7643-7182-1; 3-7643-7182-X
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