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Abstract

We provide a variational approximation, in the sense of De Giorgi’s Γ-convergence,
by finite-difference schemes of functionals of the type∫

Ω
ψ(∇u) dx+

∫
Ju

g
(
u+ − u−, νu

)
dH2

defined for u ∈ SBV (Ω; RN ), where Ω is an open set in R3, ψ and g are assigned.
More precisely, ψ is a quasi-convex function with p-growth, p > 1, and g satisfies
standard lower semicontinuity conditions. The approximating functionals are of the
form ∫

Tε∩Ω
ψε (∇u(x)) dx

where ψε is an interaction potential taking into account a separation of scales, Tε is

a suitable regular triangulation of R3 and u is affine on each element of the assigned

triangulation.
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1 Introduction

According to a recent trend of research, which deduce continuum theories starting
from an atomistic description of the media (see [19],[7],[8],[9],[1]), we provide a
variational approximation of energies of the type

E(u) =
∫

Ω

ψ (∇u) dx+
∫

Ju

g(u+ − u−)ϕ(νu) dH2, (1.1)

defined for u ∈ SBV (Ω; RN ), where Ω is an open bounded set of R3, ψ : RN×3 →
[0,+∞), g : RN → [0,+∞) and ϕ : S2 → [0,+∞) are assigned.

These models derive from the theory of brittle fracture for hyperelastic ma-
terials. For such materials the elastic deformation outside the fracture can be
modeled by an elastic energy density independent of the crack. The usual assump-
tions required on ψ are quasi-convexity and superlinear growth (see [4]). For what
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the surface term is corcerned, it is not completely clear which are the proper as-
sumptions consistent with finite elasticity; here we choose to follow the theory of
Griffith’s materials (see [16],[3]), i.e., the energy density is represented by a func-
tion g, depending on the jump of u, and by a convex function of the normal to the
crack site, ϕ. As already stated, the natural class of deformations to be considered
is the space SBV

(
Ω; RN

)
of special functions with bounded variation.

Our approximation relies on finite-differences discretization schemes, follow-
ing the approach proposed by De Giorgi to treat the Mumford-Shah problem in
Computer Vision (see [15]), and applied to Fracture Mechanics firstly by Braides,
Dal Maso and Garroni [7] and then by Braides and Gelli [8],[9] (see also [1],[19]).

While the previous results mainly study the scalar case, here we deal with
the vectorial one. In this paper we prove the Γ-convergence to energies of type
(1.1) of the family of approximating functionals defined as∫

Tε∩Ω

ψε (∇u(x)) dx (1.2)

where Tε is a regular triangulation of R3, ψε is a suitable non-convex interaction
potential and u : R3 → RN is continuous and affine on each element of Tε.

The main problem in the vectorial case is to give a definition of discrete
schemes that is coherent with the discrete method, i.e., find a suitable ’ε-discreti-
zation of the gradient’, Dεu, by finite-differences, and, simultaneously, find proper
potentials ψε, in order to obtain, by means of a separation of scales, the assigned
bulk density, ψ, and the corresponding surface one.

Since we are interested in non-isotropic bulk energy densities, a quite natural
choice for Dεu, in order to recover the global behaviour of the gradient matrix, is
the finite-differences matrix below

Dεu =
1
ε

(
〈u(α+ εe`)− u(α), ek〉

)
`=1,2,3

k=1,...,N

. (1.3)

Let us remark that the gradient∇u, in (1.2), coincides exactly with the matrixDεu
defined above, since we choose to identify a ’discrete function’ u (i.e., defined on the
nodes of the triangulation Tε) with its continuous piecewise affine interpolation,
still denoted by u.

Notice that the scalar models considered so far are based on discretizations,
D`

εu, accounting for increments only along given integer directions, i.e., Dεu in
(1.3) has to be replaced by

1
ε
(u(α+ εe`)− u(α)).

In addition, in the case of linear elasticity [1], Dεu is chosen to be the projection
along a fixed direction of the increment of u in the same direction, i.e.,

1
ε
〈u(α+ εe`)− u(α), e`〉.
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Both these approaches allow to get a complete characterization of the limit by
studying the asymptotic behaviour of one-dimensional functionals. On the other
hand, the only possible bulk energy densities obtained as limit are those determined
by summing up all the contribution on fixed directions.

We overcome this drawback defining ψε as ψ for values of Dεu smaller than
a given threshold and a suitable function taking into account the contributions of
Dεu along the coordinate directions otherwise (see (3.3)).

Thus we obtain as limit energies of type (1.1), with the surface term of the
form ∑

`=1,2,3

∫
Ju

g`

(
u+ − u−

)
|〈νu, e`〉| dH2

with g` : RN \ {0} → [0,+∞) subadditive, continuous functions, superlinear at 0
(for more details see Section 3).

Eventually, in Section 4 we consider the two-dimensional case for which we
exhibit two approximation results related to different definitions of ψε. The first one
is the two-dimensional formulation of the model introduced above and can be still
treated by an integral geometric reduction technique. The second model requires
more sophisticated tools (see Proposition 1.16 [5]), indeed, a new construction
must be performed in order to have an estimate along direction e2 − e1, that
is, a direction in which difference quotients are not involved. This difficulty can
be bypassed by considering the lattice generated by vectors e1, e2 − e1 and by
constructing a one-dimensional profiled function, affine on the slanted unitary cell
Pε (see Proposition 4.3). The result of this model yields an anisotropic surface
term that penalizes in different way crack sites, according to their orientation with
respect to the basis {e1, e2}.

The plan of the paper is the following: Section 2 is a short summary con-
cerning some results on (generalized) functions with bounded variation; Section
3 contains the main result in case n = 3; Section 4 is devoted to study the case
n = 2.

2 Notations and Preliminaries

If a, b ∈ R we write a ∧ b and a ∨ b for the minimum and maximum between a
and b, respectively. We denote by 〈·, ·〉 the scalar product in Rn and with | · | the
usual euclidean norm, without specifying the dimension n when there is no risk
of confusion. Moreover, let {e`}1≤`≤n be the canonical base of Rn, n = 2, 3. Since
we deal with vector-valued functions, in order to make no confusion arise, we will
always denote with RN the codomain and with {ek}1≤k≤N its canonical base.
For every x, y ∈ Rn, [x, y] denotes the segment between x and y.

If Ω is a bounded open subset of Rn, for every η > 0 set Ωη := {x ∈ Ω :
d(x, ∂Ω) > η}.

Let A(Ω) be the family of open subsets of Ω. If µ is a Borel measure and B
is a Borel set, then the measure µ B is defined as µ B(A) = µ(A ∩ B). We
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denote by Ln the Lebesgue measure in Rn and by Hk the k-dimensional Hausdorff
measure, k ≥ 0.

The notation a.e. stands for almost everywhere with respect to the Lebesgue
measure, unless otherwise specified. We use standard notations for Lebesgue and
Sobolev spaces.

2.1 BV functions

We recall some definitions and properties concerning functions with bounded vari-
ation. The main reference is the book [4] (see also [13]). Let Ω be a bounded open
set of Rn and let S = RN ∪ {∞} be the one point compactification of RN .

Definition 2.1 Let B ⊂ Ω be a Borel set such that Ln (Bρ(x) ∩B) > 0 for every
ρ > 0 where Bρ(x) := {y ∈ Ω : |x−y| ≤ ρ}. We say that z ∈ S is the approximate
limit in x ∈ Ω of u ∈ L1

(
Ω; RN

)
in the domain B, and we write z = ap −

limy→x
y∈B

u(y), if for every neighbourhood U of z in S there holds

lim
ρ→0

Ln ({y ∈ Bρ(x) ∩B : u(y) /∈ U})
Ln (Bρ(x) ∩B)

= 0.

Denote by Su the complement of the set of points where the approximate limit
of u exists, it is well known that Ln (Su) = 0. Define the function ũ : Ω \ Su → S
by

ũ(x) = ap− lim
y→x
y∈Ω

u(y),

thus u is equal a.e. on Ω to ũ. Notice that ũ is allowed to take the value ∞ but
Ln ({ũ = ∞}) = 0.

Definition 2.2 We say that x ∈ Ω is a jump point of u, and we write x ∈ Ju, if
there exist a, b ∈ S, and a vector ν ∈ Sn−1 such that a 6= b and

a = ap− lim
y→x

y∈π−(x,ν)∩Ω

u(y), b = ap− lim
y→x

y∈π+(x,ν)∩Ω

u(y), (2.4)

where π± (x, ν) = {y ∈ Rn : ±〈y − x, ν〉 > 0}.
The triplet (a, b, ν), uniquely determined by (2.4) up to a permutation of (a, b)

and a change of sign of ν, will be denoted by (u+(x), u−(x), νu(x)).

Definition 2.3 We say that u is approximately differentiable at a point x ∈ Ω\Su

such that ũ(x) 6= ∞, if there exists a matrix L ∈ RN×n such that

ap− lim
y→x
y∈Ω

|u(y)− ũ(x)− L(y − x)|
|y − x|

= 0. (2.5)

If u is approximately differentiable at a point x, the matrix L uniquely determined
by (2.5), will be denoted by ∇u(x) and will be called the approximate gradient of
u at x.
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Definition 2.4 Let u ∈ L1
(
Ω; RN

)
, we say that u is a function of Bounded

Variation in Ω, we write u ∈ BV
(
Ω; RN

)
, if the distributional derivative Du of u

is representable by a N × n matrix valued Radon measure on Ω.

Let us consider the Lebesgue decomposition of Du with respect to Ln, i.e.,
Du = Dau + Dsu, where Dau is the absolutely continuous part and Dsu is the
singular one. The density of Dau with respect to Ln coincides a.e. with the ap-
proximate gradient ∇u of u. Define the jump part of Du, Dju, to be the restriction
of Dsu to Su, and the Cantor part, Dcu, to be the restriction of Dsu to Ω \ Su,
thus we have

Du = Dau+Dju+Dcu.

The set Ju turns out to be Hn−1 rectifiable; moreover, Hn−1(Su \ Ju) = 0. The
following representation formula holds true for the jump part of Du

Dju =
(
u+ − u−

)
⊗ νuHn−1 Ju,

where for a, b ∈ RN a⊗b denotes theN×nmatrix whose entries are aibj , 1 ≤ i ≤ N
and 1 ≤ j ≤ n. In the sequel we denote [u](x) = (u+ − u−) (x) for x ∈ Ju.

Definition 2.5 Given u ∈ BV (Ω; RN ), we say that u is a special function with
bounded variation in Ω, and we write u ∈ SBV (Ω; RN ), if Dcu = 0.

Functionals involved in free-discontinuity problems are often not coercive in
SBV , then it is useful to consider the following wider class (see [4]).

Definition 2.6 Given u ∈ L1(Ω), we say that u is a generalized special function
with bounded variation in Ω, and we write u ∈ GSBV (Ω), if ((−T ) ∨ u ∧ T ) ∈
SBV (Ω) for every T ∈ N.

Moreover, let u ∈ L1
(
Ω; RN

)
, u ∈ (GSBV (Ω))N if 〈u, ek〉 ∈ GSBV (Ω) for

every 1 ≤ k ≤ N .

Define for any p > 1

(GSBV p(Ω))N := {u ∈ (GSBV (Ω))N : ∇u ∈ Lp
(
Ω; RN×n

)
, Hn−1(Ju) < +∞}.

(2.6)

2.1.1 Lower semicontinuity in GSBV

In this subsection we state some semicontinuity results for variational integrals in
GSBV . The first one, proved by Kristensen in [17] in a more general version (see
also [4]), deals with the lower semicontinuity of volume energies. Let us first recall
the notion of quasi-convexity.

Definition 2.7 We say that a continuous integrand ψ : RN×n → [0,+∞) is
quasi-convex if

ψ (X)Ln (Ω) ≤
∫

Ω

ψ (X +Dϕ(x)) dx (2.7)

for every X ∈ RN×n and ϕ ∈ C1
c

(
Ω; RN

)
.
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Theorem 2.8 Let (uj) ⊂ (GSBV (Ω))N be satisfying

sup
j

{∫
Ω

|∇uj |p dx+
∫

Suj

θ
(∣∣u+

j − u−j
∣∣) dHn−1

}
< +∞, (2.8)

where θ : [0,+∞) → [0,+∞] is a concave function such that θ(t)
t → +∞ as

t→ 0+.
If uj → u in measure, then u ∈ (GSBV (Ω))N .
Moreover, for every quasi-convex integrand ψ : RN×n → [0,+∞) such that

|ψ (X)| ≤ C (1 + |X|p)

for every X ∈ RN×n with p > 1 and C a positive constant, there holds∫
Ω

ψ (∇u) dx ≤ lim inf
j

∫
Ω

ψ (∇uj) dx.

In order to state an analogous result for surface energies we need to introduce
the notion of subadditivity.

Definition 2.9 Let 4 := {(z, z) : z ∈ RN}. We say that a function ϑ : RN ×RN \
4 → [0,+∞] is subadditive if for all distinct zi ∈ RN , i = 1, 2, 3, we have

ϑ(z1, z2) ≤ ϑ(z1, z3) + ϑ(z3, z2).

We extend ϑ to the whole RN × RN setting ϑ ≡ 0 on 4. The following result is
an easy generalization to the vector-valued case of Theorem 4.3 of [6].

Theorem 2.10 Let Ω ⊂ R be a bounded open set, let ϑ : RN × RN → [0,+∞] be
a symmetric, subadditive and lower semicontinuous function.

Let (uj) ⊂ SBV
(
Ω; RN

)
be satisfying (2.8); if uj → u in measure then

u ∈ SBV
(
Ω; RN

)
and∫

Ju

ϑ
(
u+, u−

)
dH0 ≤ lim inf

j

∫
Juj

ϑ
(
u+

j , u
−
j

)
dH0.

Let us point out that the results stated in Theorem 2.10 heavily depend on the
one-dimensional setting. Indeed, being (uj) ⊂ SBV

(
Ω; RN

)
not equi-bounded in

L∞ a priori, by Theorem 2.8 we can only infer that u ∈ (GSBV (Ω))N . On the
other hand, the superlinearity and the monotonicity assumptions on the function
ϑ of (2.8) and the choice n = 1 imply u ∈ SBV

(
Ω; RN

)
.
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2.2 Γ-convergence

We recall the notion of Γ-convergence (see [12]). Let (X, d) be a metric space. A
family (Fε) of functionals Fε : X → [0,+∞] is said to Γ-converge to a functional
F : X → [0,+∞] at u ∈ X, and we write F (u) = Γ- limε→0+ Fε(u), if for every
sequence (εj) of positive numbers decreasing to 0 the following two conditions
hold:

(i) (lower semicontinuity inequality) for all sequences (uj) converging to u in
X we have F (u) ≤ lim infj Fεj

(uj);
(ii) (existence of a recovery sequence) there exists a sequence (uj) converging

to u in X such that F (u) ≥ lim supj Fεj
(uj).

We say that Fε Γ-converges to F if F (u) = Γ- limε→0+ Fε(u) at all points u ∈ X
and that F is the Γ-limit of Fε.

In the sequel we will denote by Γ(meas)-lim inf, Γ(meas)-lim sup and Γ(L1)-
lim inf, Γ(L1)-lim sup, the lower and upper Γ-limits on the space L1 endowed
with the metric of the L1 strong convergence and the convergence in measure,
respectively.

3 Main result

Let Q = [0, 1]3 and consider the triangulation given by the six congruent simplices
Tr, r = 1, . . . , 6, defined by

T1 = co{0, e1, e3, e2 + e3}, T4 = co{e1, e1 + e2, e2 + e3, e1 + e2 + e3},
T2 = co{e1, e3, e1 + e3, e2 + e3}, T5 = co{e1, e1 + e3, e2 + e3, e1 + e2 + e3},
T3 = co{0, e1, e2, e2 + e3}, T6 = co{e1, e2, e1 + e2, e2 + e3},

(see Figure 1 below).

Figure 1: the partition (Ti)r=1,...,6 of the unitary cube.

Let Ω ⊆ R3 be a bounded open set, for every subset A ⊆ Ω and for r =
1, . . . , 6 define the sets of tetrahedra

T r
ε (A) := {α+ εTr : α+ εTr ⊆ A, α ∈ εZ3},
T r

ε (A) := {α+ εTr : (α+ εTr) ∩A 6= ∅, α ∈ εZ3},

which identify the simplices properly contained in A and those intersecting A,
respectively. In case A = Ω we will drop the dependence on Ω in the definitions
above.

Moreover, denote by Aε

(
Ω; RN

)
the set of functions u : Ω → RN such that

u is continuous on Ω and affine on each simplex belonging to ∪6
r=1T

r
ε ⊇ Ω.

Let ψ : RN×3 → [0,+∞) and g` : RN \ {0} → [0,+∞), ` = 1, 2, 3, satisfy
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(h1) ψ is a quasi-convex function with superlinear growth, i.e., there exist p > 1
and C1, C2 > 0 such that for every X ∈ RN×3

C1 |X|p ≤ ψ (X) ≤ C2 (1 + |X|p) ; (3.1)

(h2) g` is a symmetric, subadditive, lower semicontinuous function such that
infRN\{0} g` > 0;

(h3) g` is an upper semicontinuous function bounded in a neighbourhood of z = 0.

Notice that the subadditivity and the local boundedness assumptions on g` imply
the existence of a positive constant c2 such that for every z ∈ RN \ {0} and for
` = 1, 2, 3 there holds

c1 ≤ g`(z) ≤ c2(1 + |z|), (3.2)

where c1 = min`{infRN\{0} g`}.
Let uT := ((−T ) ∧ 〈u, ek〉 ∨ T )1≤k≤N , and assume that

(h4) for every u ∈ (GSBV p(Ω))N there exists a sequence (Tj) ⊆ [0,+∞) with
Tj → +∞ such that

lim sup
j

∫
Ju

g`

([
uTj

])
|〈νu, e`〉| dH2 =

∫
Ju

g` ([u]) |〈νu, e`〉| dH2,

Notice that this technical condition is fulfilled in case all the g` are bounded on
RN \ {0}. We will make further comments on this assumption in Remark 3.2 and
Remark 3.6.

Let us introduce the approximating functionals. First, extend g` to RN setting
g`(0) = 0, thus preserving its lower semicontinuity property, then define ψg

ε :
RN×3 → [0,+∞) as

ψg
ε (X) :=


ψ (X) if |X| ≤ λε

1
ε

3∑
`=1

g` (εXe`) otherwise,
(3.3)

where (λε) ⊂ [0,+∞) is such that λε → +∞ as ε→ 0+ and supε>0 (ελp
ε) < +∞.

Consider the family of functionals Fg
ε : L1

(
Ω; RN

)
→ [0,+∞] given by

Fg
ε (u) :=


∫
∪6

r=1T r
ε

ψg
ε (∇u(x)) dx if u ∈ Aε

(
Ω; RN

)
+∞ otherwise.

Then the following result holds.
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Theorem 3.1 Let Ω ⊂ R3 be a bounded open set with Lipschitz boundary and
assume (h1)-(h4). Then, (Fg

ε ) Γ-converges with respect to both the convergence
in measure and strong L1

(
Ω; RN

)
to the functional Fg : L1

(
Ω; RN

)
→ [0,+∞]

defined by

Fg(u) :=


∫

Ω

ψ(∇u)dx+
∫

Ju

g
(
u+ − u−, νu

)
dH2 if u ∈ (GSBV p(Ω))N

+∞ otherwise,

where g : RN × S1 → [0,+∞) is defined by

g(z, ν) :=
3∑

`=1

g` (z) |〈ν, e`〉|.

Remark 3.2 For instance, if we assume that

h(|z|) ∨ c1 ≤ g`(z) ≤ c2 (1 + h(|z|)) (3.4)

with h : [0,+∞) → [0,+∞) an increasing function and c1, c2 positive constants,
then (h4) is satisfied.

In case h(t) = t the control from above in (3.4) is automatically satisfied
as noticed in (3.2). Moreover, the additional control from below implies that the
domain of the limit functional Fg is contained in (GSBV p(Ω))N ∩SBV

(
Ω; RN

)
.

3.1 Γ-liminf inequality

In this subsection we prove the lower bound inequality for Theorem 3.1. It will be
deduced by a more general result, proved in Proposition 3.3 below, holding true
in case the functions g`, used in the definition of the functionals Fg

ε , all satisfy the
following milder growth condition:

(h5) g`, ` = 1, 2, 3, is a lower semicontinuous, symmetric and subadditive function
such that for every z ∈ RN \ {0}

g`(z) ≥ γ(|z|), (3.5)

where γ : (0,+∞) → (0,+∞] is a lower semicontinuous, increasing and
subadditive function satisfying

lim
t→0+

γ(t)
t

= +∞. (3.6)

Notice that we recover (h2) choosing γ in (h5) to be constant.
Let us then prove a lower bound inequality in case the functions g` satisfy

(h5) instead of (h2).
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Proposition 3.3 Let Ω ⊂ R3 be a bounded open set, assume (h1) and (h5). Then,
for any u ∈ L1

(
Ω; RN

)
Γ(meas)- lim inf

ε→0
Fg

ε (u) ≥ Fg(u).

Proof. Let (uj) ⊂ Aεj

(
Ω; RN

)
and u ∈ L1

(
Ω; RN

)
be such that uj → u in

measure. Moreover, assume that lim infj Fg
εj

(uj) = limj Fg
εj

(uj) < +∞. Consider
the sets N r

εj
⊆ T r

εj
defined by

N r
εj

:= {(α+ εjTr) ∈ T r
εj

: |∇uj ||(α+εjTr) > λεj
}; (3.7)

then, by taking into account the growth condition g` ≥ γ, ` = 1, 2, 3, the subaddi-
tivity and the monotonicity of γ we get

6∑
r=1

sup
j

(
ε2jγ

(
εjλεj

)
#N r

εj

)
< +∞. (3.8)

In order to prove the Γ-liminf inequality we will show that the sets N r
εj

in (3.7)
detect the jump set of u. Thus, we will divide Fg

εj
into two terms contributing

separately to the bulk and surface energies of the limit functional.
Step 1.(Bulk energy inequality) According to the scheme stated above we

construct a sequence (vj) ⊂ SBV
(
Ω; RN

)
such that vj → u in measure, (vj)

satisfies locally all the assumptions of Theorem 2.8 and, with fixed η > 0, we have∫
∪6

r=1(T r
εj
\N r

εj
)

ψg
εj

(∇u(x)) dx ≥
∫

Ωη

ψ(∇vj) dx+ o(1) (3.9)

for j sufficiently large. Indeed, let vj : Ω → RN be the function whose components
are piecewise affine, uniquely determined by

vj(x) :=


uj(x) x /∈ ∪6

r=1N r
εj

uj(α) x ∈ α+ εjTr,
(α+ εjTr) ∈ ∪6

r=1N r
εj

(3.10)

It is easy to check that vj → u in measure and there holds∫
∪6

r=1(T r
εj
\N r

εj
)

ψg
εj

(∇u(x)) dx =
∫
∪6

r=1T r
εj

ψ (∇vj) dx−
ε3j
6
ψ(0)#(∪6

r=1N r
εj

).

Since, for j sufficiently large Ωη ⊆ ∪6
r=1T r

εj
, by taking into account (3.8), the

superlinearity of γ in 0 and the choice of λεj
, we get (3.9).

Conditions (3.1) and (3.9) yield∫
Ωη

|∇vj |p dx ≤ cFg
εj

(uj), (3.11)
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for some positive constant c. Moreover, notice that

Jvj ⊆ ∪6
r=1 ∪N r

εj
∂(α+ εjTr)

and that
(
v+

j − v−j
)
|(α+εjTr) is a convex combination of the finite-differences com-

puted in the nodes of the tetrahedron (α+ εjTr) belonging to N r
εj

.
Therefore by using the subadditivity and the monotonicity of γ it is easy to

check that ∫
Ωη∩Jvj

γ (|[vj ]|) dH2 ≤ cFg
εj

(uj), (3.12)

for some positive constant c. Hence, the sequences (〈vj , ek〉), k = 1, . . . , N , satisfy
all the assumptions of Theorem 2.8 on Ωη, so that u ∈ (GSBV (Ω))N for every
η > 0 and there holds ∫

Ωη

|∇u|p dx ≤ lim inf
j

∫
Ωη

|∇vj |p dx,∫
Ωη∩Ju

γ (|[u]|) dH2 ≤ lim inf
j

∫
Ωη∩Jvj

γ (|[vj ]|) dH2.

The last two inequalities together with conditions (3.11) and (3.12) yield u ∈
(GSBV (Ω))N .

Eventually, by applying the lower semicontinuity result of Theorem 2.8 in
(3.9), and then by passing to the limit on η → 0+, we get

lim inf
j

∫
∪6

r=1(T r
εj
\N r

εj
)

ψg
εj

(∇u(x)) dx ≥
∫

Ω

ψ (∇u) dx. (3.13)

Step 2.(Surface energy inequality) With fixed ` = 1, 2, 3 we will prove the
following inequality

lim inf
j

1
εj

∫
∪6

r=1N r
εj

g` (εj∇u(x)e`) dx ≥
∫

Ju

g` ([u]) |〈νu, e`〉| dH2. (3.14)

To this aim, for any r = 1, . . . , 6, we construct a sequence (v`,r
j ) ⊂ SBV

(
Ω; RN

)
with one-dimensional profile along e`, which is locally pre-compact in SBV in this
given direction, but in general not globally in GSBV . More precisely, let p`,r be
the unique vertex in Tr such that p`,r + e` ∈ Tr and define

v`,r
j (x) :=



uj(α+ εjp`,r)
x ∈

(
α+ εj [0, 1)3

)
∩ Ω

(α+ εjTr) ∈ N r
εj

uj(α+ εjp`,r) +∇uj(x)e`〈x− α− εjp`,r, e`〉

x ∈
(
α+ εj [0, 1)3

)
∩ Ω

(α+ εjTr) /∈ N r
εj

,
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then (v`,r
j ) ⊂ SBV

(
Ω; RN

)
and v`,r

j → u in measure. Notice that, with fixed
η > 0, by (3.1) we get ∫

Ωη

∣∣∣∣∣∂v
`,r
j

∂e`

∣∣∣∣∣
p

dx ≤ cFg
εj

(uj), (3.15)

for some positive constant c. Moreover, since νv`,r
j

∈ {e1, e2, e3} H2 a.e. in Jv`,r
j

there holds

1
εj

∫
N r

εj

g` (εj∇uj(x)e`) dx ≥
1
6

∫
Ωη∩J

v
`,r
j

g`

([
v`,r

j

])
|〈νv`,r

j
, e`〉| dH2

=
1
6

∫
Πe`

dH2

∫
Ωη∩(J

v
`,r
j

)
e`
y

g`

([(
v`,r

j

)e`,y])
dH0, (3.16)

where the last equality follows by using the characterization of BV functions
through their one-dimensional sections (see Section 3.11 [4]) and the generalized
coarea formula for rectifiable sets (see Section 3.2.22 [14]). By passing to the limit
on j → +∞ in (3.16) and by applying Fatou’s lemma we have

lim inf
j

1
εj

∫
N r

εj

g` (εj∇uj(x)e`) dx

≥ 1
6

∫
Πe`

dH2 lim inf
j

∫
Ωη∩(J

v
`,r
j

)
e`
y

g`

([(
v`,r

j

)e`,y])
dH0,

hence we deduce that for H2 a.e. y ∈ Πe` there holds

lim inf
j

∫
Ωη∩(J

v
`,r
j

)
e`
y

g`

([(
v`,r

j

)e`,y])
dH0 < +∞. (3.17)

Thus, for H2 a.e. y ∈ Πe` , up to extracting subsequences depending on such a
fixed y, we may assume

(
v`,r

j

)e`,y

→ ue`,y in measure on (Ωη)e`

y , the inferior limit
in (3.17) to be a limit and, by taking into account (3.15), also that

sup
j

∫
(Ωη)

e`
y

∣∣∣(v̇i
j

)e`,y
∣∣∣p dt < +∞.

Hence, the slices
((
v`,r

j

)e`,y)
satisfy on (Ωη)e`

y all the assumptions of Theorem
2.8, so that, by Theorem 2.10, we have

lim inf
j

1
εj

∫
∪6

r=1N r
εj

g` (εj∇u(x)e`) dx

≥ 1
6

∫
Πe`

dH2 lim inf
j

∫
Ωη∩(J

v
`,r
j

)
e`
y

g`

([(
v`,r

j

)e`,y])
dH0
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≥ 1
6

∫
Πe`

dH2

∫
Ωη∩(Ju)

e`
y

g` ([ue`,y]) dH0

=
1
6

∫
Ωη∩Ju

g` ([u]) |〈νu, e`〉| dH2.

We deduce (3.14) passing to the limit on η → 0+ and using the subadditivity of
the inferior limit.

To conclude it suffices to collect (3.13) and (3.14).

Remark 3.4 We claim that, by proceeding as in Step 1 of the proof of Proposition
3.3, one can prove that the families of functions (uε) ⊆ Aε

(
Ω; RN

)
such that

sup
ε>0

{Fg
ε (uε) + ‖uε‖1,Ω} < +∞

are pre-compact in L1
(
Ω; RN

)
. Indeed, to get the result it suffices to apply the

GSBV Compactness theorem (see Theorem 2.2 [2]) to the family (vε) constructed
in (3.10).

3.2 Γ-limsup inequality

In this subsection we prove the upper bound inequality for Theorem 3.1.

Proposition 3.5 Let Ω ⊂ R3 be a bounded open set with Lipschitz boundary,
assume (h1)-(h4). Then, for any u ∈ L1

(
Ω; RN

)
,

Γ
(
L1

)
- lim sup

ε→0+
Fg

ε (u) ≤ Fg(u).

Proof. It suffices to prove the inequality above for u ∈ (GSBV p(Ω))N such that
Fg(u) < +∞. We will reduce ourselves to prove the inequality first for a class of
more regular functions.

Step 1. Let Ω′ be an open set such that Ω′ ⊃⊃ Ω and suppose u is such that

(i) Hn−1
(
Su \ Su

)
= 0;

(ii) there exists a finite number of polyhedral sets Kr such that

Su = Ω′ ∩ ∪M
h=1K

h,

and for every 1 ≤ h ≤ M the set Kh is contained in a hyperplane Πh with
normal νh and Πh 6= Πs for h 6= s;

(iii) u ∈W k,∞ (
Ω \ Su; RN

)
for every k ∈ N.
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Let us first fix some notations. With fixed m ∈ N \ {0}, let

Jm
u :=

{
x ∈ Ju :

∣∣u+(x)− u−(x)
∣∣ ≥ 1

m

}
,

{Jm
u } is an increasing family of sets such that Ju = ∪m∈N\{0}J

m
u and so

lim
m→+∞

H2(Jm
u ) = H2(Ju).

Moreover, let J := Ju and define the sets

J r
ε := ∪`=1,2,3

{
α+ εTr : α ∈ εZ3, α+ ε[p`,r, p`,r + e`] ∩ J 6= ∅

}
,

and

J r
m,ε := ∪`=1,2,3

{
α+ εTr : α ∈ εZ3, α+ ε[p`,r, p`,r + e`] ∩ Jm

u 6= ∅
}
,

for m ∈ N\{0}, where the points p`,r hsve been defined in the proof of Proposition
3.3. Up to infinitesimal traslations we may assume that J∩εZ3 = ∅ for every ε > 0,
then let uε be the continuous piecewise affine interpolation of the values u(α) with
α ∈ εZ3 ∩ Ω′. Notice that uε ∈ Aε

(
Ω; RN

)
and uε → u strongly in L1

(
Ω; RN

)
.

Denote as usual

N r
ε :=

{
(α+ εTr) ∈ T r

ε : |∇uε||(α+εTr) > λε

}
.

By taking into account the BV “slicing theorem” (see Section 3.11 [4]) we have
for ` = 1, 2, 3 and for x ∈ (α+ εTr)

ε∇uε(x)e` = u(α+ εp`,r + εe`)− u(α+ εp`,r) (3.18)

=
∫ ε

0

∇u (α+ εp`,r + te`) e` dt+
∑

y∈Ju∩(α+ε[p`,r,p`,r+e`))

[u](y)sgn (〈νu(y), e`〉) .

Thus, if (α+ εTr) ∈ T r
ε \ J r

ε , for any x ∈ (α+ εTr), we have

ε∇uε(x)e` =
∫ ε

0

∇u (α+ εp`,r + te`) e` dt, (3.19)

for ` = 1, 2, 3, from which it follows |∇uε||(α+εTr) ≤ ‖∇u‖∞,Ω′ . Define the vector
fields Wε : Ω → RN×3 by

Wε(x) :=
(

1
ε

∫ ε

0

∇u (α+ εp`,r + te`) e` dt

)
`=1,2,3

,

for x ∈ ∪6
r=1T

r
ε ⊇ Ω. Then, Wε → ∇u strongly in Lp

(
Ω; RN×3

)
and by (3.19) it

follows

lim sup
ε→0+

∫
∪6

r=1(T r
ε \J r

ε )

ψg
ε (∇uε(x)) dx = lim sup

ε→0+

∫
∪6

r=1(T r
ε \J r

ε )

ψ (Wε(x)) dx

≤ lim
ε→0+

∫
Ω

ψ (Wε(x)) dx =
∫

Ω

ψ (∇u(x)) dx, (3.20)
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the last equality holding by the growth condition (3.1).
Consider the decomposition J r

ε = (J r
ε ∩N r

ε ) ∪ (J r
ε \ N r

ε ), then it follows∫
∪6

r=1J r
ε

ψg
ε (∇uε(x)) dx =

3∑
`=1

1
ε

∫
∪6

r=1(J r
ε ∩N r

ε )

g` (ε∇uε(x)e`) dx

+
∫
∪6

r=1(J r
ε \N r

ε )

ψ (∇uε(x)) dx. (3.21)

Let us estimate separately the two terms in (3.21) above.
Let B := B(0,‖∇u‖∞,Ω+2M‖u‖∞,Ω), then, since supB g` < +∞, for every m ∈

N \ {0} it follows

3∑
`=1

1
ε

∫
∪6

r=1((J r
ε \J r

m,ε)∩N r
ε )

g` (ε∇uε(x)e`) dx (3.22)

≤ c
1
ε
L3

(
{x : dist (x, J \ Jm

u ) ≤
√

3ε}
)
≤ cH2

(
Ju \ Jm

u

)
+ o(1),

the last term being infinitesimal as m→ +∞.
Moreover, let ωm : [0,+∞) → [0,+∞) be the maximum of the moduli of

continuity of g`, ` = 1, 2, 3, on the compact set B \B(0, 1
m ), then for ε small enough

we get by (3.18)

1
ε

∫
∪6

r=1(J r
m,ε∩N r

ε )

g` (ε∇uε(x)e`) dx

≤ 1
ε

6∑
r=1

∑
J r

m,ε

∫
α+εTr

 ∑
y∈Ju∩(α+ε[p`,r,p`,r+e`))

g` ([u] (y))

 dx

+ωm (ε‖∇u‖∞,Ω′)
ε2

6
#

(
∪6

r=1J r
m,ε

)
, (3.23)

the last inequality holding by the subadditivity and the symmetry of g`, ` = 1, 2, 3.
It can be proved that, by the regularity assumptions (i)-(iii) on u and the continuity
of g` on RN \ {0}, we have

lim sup
ε→0+

1
ε

∫
J r

m,ε

 ∑
y∈Ju∩(α+ε[p`,r,p`,r+e`))

g` ([u] (y))

 dx

≤ 1
6

∫
J

g` ([u]) |〈νu, e`〉| dH2. (3.24)

Hence, by (3.23) and (3.24) we infer

lim sup
ε→0+

3∑
`=1

1
ε

∫
∪6

r=1(J r
m,ε∩N r

ε )

g` (ε∇uε(x)e`) dx ≤
∫

Ju

g ([u] , νu) dH2.

(3.25)

15



By collecting (3.22), (3.25) and since H2
(
Ju \ Ju

)
= 0 by passing to the limit on

m→ +∞ we get

lim sup
ε→0+

3∑
`=1

1
ε

∫
∪6

r=1(J r
ε ∩N r

ε )

g` (ε∇uε(x)e`) dx ≤
∫

Ju

g ([u] , νu) dH2. (3.26)

In order to estimate the second term in (3.21), notice that by (3.1) there
holds ∫

∪6
r=1(J r

ε \N r
ε )

ψ (∇uε(x)) dx ≤ C2
ε3

6
(1 + λp

ε) # (J r
ε \ N r

ε ) ,

and the term on the right hand side above is infinitesimal as ε→ 0+. Indeed, with
fixed m ∈ N \ {0}, arguing as in (3.22) we deduce

lim sup
ε→0+

ε2# (J r
ε \ N r

ε ) ≤ lim sup
ε→0+

ε2#
(
J r

ε \ J r
m,ε

)
≤ cH2

(
Ju \ Jm

u

)
. (3.27)

Hence, by assumption supε>0 (ελp
ε) < +∞, (3.27) and by letting m → +∞, we

have that
lim sup
ε→0+

∫
∪6

r=1(J r
ε \N r

ε )

ψ (∇uε(x)) dx = 0 (3.28)

Eventually, by collecting (3.20), (3.26) and (3.28) we get the conclusion, i.e.,

lim sup
ε→0+

Fg
ε (uε) ≤

∫
Ω

ψ (∇u(x)) dx+
∫

Ju

g ([u] , νu) dH2.

Step 2. Assume u ∈ (GSBV p(Ω))N∩L∞
(
Ω; RN

)
. By taking into account the

SBV Extension Theorem (see Lemma 4.11 [5]), with fixed an open and bounded
set Ω′ ⊃⊃ Ω, there exists a function ũ ∈ SBV ∩ L∞

(
Ω′; RN

)
such that ũ|Ω ≡ u,

∇ũ ∈ Lp
(
Ω′; RN×2

)
, H2 (Jũ) < +∞ and H2 (∂Ω ∩ Jũ) = 0.

By Theorem 3.1 [11] there exists a sequence (uj) satisfying condition (i)-(iii)
of Step 1 such that uj → u in L1

(
Ω; RN

)
, and, since the continuity and local

boundedness of g, there holds

lim
j→+∞

∫
Ω∩Juj

g
(
[uj ] , νuj

)
dH2 =

∫
Ju

g ([u] , νu) dH2.

Hence, by Step 1 and the lower semicontinuity of the upper Γ-limit we conclude.
Step 3. Let u ∈ (GSBV p(Ω))N , recall that uT = ((−T ) ∧ 〈u, ek〉 ∨ T )k=1,...,N

for any T > 0. Then, uT ∈ (GSBV p(Ω))N ∩L∞
(
Ω; RN

)
and JuT

⊆ Ju; moreover,
by Theorem 4.40 [4] there holds

H2
({
x ∈ Ju : |u±(x)| = +∞

})
= 0.

Hence, limT→+∞ g` ([uT ] (x)) = g` ([u] (x)) for H2 a.e. x ∈ Ju, ` = 1, 2, 3. Then
by assumption (h4) we may apply the Dominated Convergence Theorem and con-
clude.
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Remark 3.6 Let us point out that the assumption (h4) is technical and needed
only to recover the limsup estimate on (GSBV p(Ω))N \ SBV

(
Ω; RN

)
. Indeed,

assume u ∈ SBV
(
Ω; RN

)
to be such that Fg(u) < +∞, by following the notations

of Step 3 in Proposition 3.5 above and by taking into account (3.2) we get

c1 ≤ g ([uT ] , νuT
) ≤ 2c2 (1 + |[u]|) .

Moreover, since u ∈ SBV
(
Ω; RN

)
implies |[u]| ∈ L1

(
Ju;H2

)
we have

lim
T→+∞

∫
Ju

g ([uT ] , νuT
) dH2 =

∫
Ju

g ([u] , νu) dH2.

Hence, in this case (h4) is automatically satisfied.

4 Discrete approximations in dimension 2

In this section we treat the two dimensional case. We provide two different approxi-
mation results. The first one is the transposition of Theorem 3.1 in dimension n = 2
for a fixed regular partition of the square [0, 1]2. The proof works using the same
techniques of Theorem 3.1. Actually, the result is independent on the choice of the
regular triangulation, in the sense that one may assign on each square α+ ε[0, 1]2,
α ∈ εZ2, one among the two possible partitions (see Figure 2 below).

Figure 2: a random triangulation of R2

The second result is a slight variant of Theorem 3.1, but the surface term
depends heavily on the assigned triangulation (for simplicity we choose the one in
Figure 3).

Figure 3: regular partition of the square

The anisotropy induced by the model can be computed by means of the
function ϕ of Lemma 4.4. To deal with this model more sophisticated tools need
to be used.

Let S1 = co{0, e1, e2}, S2 = co{e1, e2, e1 + e2} and define for r = 1, 2

T r
ε (A) := {α+ εSr : α+ εSr ⊆ A, α ∈ εZ2},

for A ∈ A(Ω) and Ω a bounded open subset of R2. In case A = Ω we will drop the
dependence on Ω in the definition above.
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In the following we will use the same notations and assumptions (h1)-(h4) of
Section 3 suitably changed according to the two dimensional setting.

Consider the family of functionals Fg
ε : L1

(
Ω; RN

)
→ [0,+∞] given by

Fg
ε (u) :=


∫
T 1

ε ∪T 2
ε

ψg
ε (∇u(x)) dx if u ∈ Aε

(
Ω; RN

)
+∞ otherwise

.

Then the following result holds.

Theorem 4.1 Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary and
assume (h1)-(h4). Then (Fg

ε ) Γ-converges with respect to both the convergence
in measure and strong L1

(
Ω; RN

)
to the functional Fg : L1

(
Ω; RN

)
→ [0,+∞]

defined by

Fg(u) :=


∫

Ω

ψ(∇u)dx+
∫

Ju

g
(
u+ − u−, νu

)
dH1 if u ∈ (GSBV p(Ω))N

+∞ otherwise,

where g : RN × S1 → [0,+∞) is defined by

g(z, ν) :=
2∑

`=1

g` (z) |〈ν, e`〉|.

Let us consider now the function ψβ
ε : RN×2 → [0,+∞) defined by

ψβ
ε (X) :=


ψ (X) if |X| ≤ λε

1
εβ otherwise,

where β is a positive constant. Note that even in case g1 = g2 = β
2 the functions

ψg
ε , ψβ

ε are different, since ψg
ε takes into account the values Xe1, Xe2 separately. If

in the definition of the family Fg
ε , ψg

ε is substituted by ψβ
ε , we prove the following

result for the corresponding family of functionals (Fβ
ε ).

Theorem 4.2 Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary and as-
sume (h1). Then (Fβ

ε ) Γ-converges with respect to both the convergence in measure
and strong L1

(
Ω; RN

)
to the functional Fβ : L1

(
Ω; RN

)
→ [0,+∞] defined by

Fβ(u) :=


∫

Ω

ψ(∇u)dx+ β

∫
Ju

ϕ(νu) dH1 if u ∈ (GSBV p(Ω))N

+∞ otherwise

, (4.1)

where ϕ : S1 → [0,+∞) is given by

ϕ(ν) :=

 |〈ν, e1〉| ∨ |〈ν, e2〉| if 〈ν, e1〉〈ν, e2〉 ≥ 0

|〈ν, e1〉|+ |〈ν, e2〉| if 〈ν, e1〉〈ν, e2〉 < 0
. (4.2)
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We now prove the lower semicontinuity inequality for the family of functionals(
Fβ

ε

)
. To this aim we need to ‘localize’ the functionals Fβ

ε . For every A ∈ A(Ω)
and u ∈ Aε

(
Ω; RN

)
let

Fβ
ε (u,A) :=


∫
T 1

ε (A)∪T 2
ε (A)

ψβ
ε (∇u(x)) dx if u ∈ Aε

(
Ω; RN

)
+∞ otherwise

.

We obtain separate estimates on the bulk and on the surface terms which we
’glue’ together by means of Proposition 1.16 [5]. Besides using the same techniques
applied in the proof of Proposition 3.3 in the two dimensional case, we will perform
an additional construction with profile along the diagonal direction e2 − e1.

Proposition 4.3 Let Ω ⊂ R2 be a bounded open set, assume (h1). Then, for any
u ∈ L1

(
Ω; RN

)
,

Γ(meas)- lim inf
ε→0

Fβ
ε (u) ≥ Fβ(u).

Proof. Let (uj) ⊂ Aεj

(
Ω; RN

)
and u ∈ L1

(
Ω; RN

)
be such that uj → u in

measure. By using analogous arguments of those of Proposition 3.3 it is possible
to show that for every A ∈ A(Ω) the following inequalities hold true:

lim inf
j

∫
∪2

r=1(T r
ε (A)\N r

εj
)

ψβ
ε (∇u(x)) dx ≥

∫
A

ψ(∇u(x)) dx (4.3)

lim inf
j

βεj#
(
T r

ε (A) ∩N r
εj

)
≥ β

∫
A∩Ju

|〈νu, e`〉| dH1, (4.4)

for r, ` = 1, 2. Thus to conclude it suffices to show that there holds for r = 1, 2

lim inf
j

βεj#
(
T r

ε (A) ∩N r
εj

)
≥ β

∫
A∩Ju

|〈νu, e2 − e1〉| dH1. (4.5)

Indeed, for ` = 1, 2, let
(
δ`
h

)
h

= Q ∩ [0, 1], δ1h + δ2h ≤ 1, then by using Proposition
1.16 [5] with,

µ(A) := lim infj Fβ
εj

(uj , A),

λ := L2 (Ω \ Ju) +H1 Ju,

φh(x) :=


ψ(∇u) on Ω \ Ju

β
(
δ1h|〈νu, e1〉|+ δ2h|〈νu, e2〉|

+
(
1− δ1h − δ2h

)
|〈νu, e2 − e1〉|

)
on Ju

,

the statement follows by noticing that if x ∈ Ju is such that 〈νu(x), e1〉〈νu(x), e2〉 ≥
0, then

|〈νu(x), e2 − e1〉| ≤ |〈νu, e1〉| ∨ |〈νu, e2〉|,

19



and if x ∈ Ju is such that 〈νu(x), e1〉〈νu(x), e2〉 < 0, then

|〈νu(x), e2 − e1〉| = |〈νu(x), e1〉|+ |〈νu(x), e2〉| ≥ |〈νu, e1〉| ∨ |〈νu, e2〉|.

To prove inequality (4.5) we will construct, for r = 1, 2, a sequence (wr
j ) ⊂

SBV
(
Ω; RN

)
with one-dimensional profile in e2 − e1 which is locally pre-compact

in SBV in this given direction, but not in general globally in GSBV . Suppose
lim infj Fβ

εj
(uj) = limj Fβ

εj
(uj) < +∞, consider the sets of triangles N r

εj
:= {(α+

εjSr) ∈ T r
εj

: |∇uj ||(α+εjSr) > λεj}, for r = 1, 2, then we get

sup
j
εj#

(
N 1

εj
∪N 2

εj

)
< +∞. (4.6)

Let
Pεj := εj

{
x ∈ R2 : x = λ(−e1) + µ(e2 − e1), λ, µ ∈ [0, 1)

}
,

and define for r = 1, 2 the sequence

wr
j (x) :=



uj(α)
x ∈

(
α+ Pεj

)
∩ Ω

(α+ εjSr) ∈ N r
εj

uj(α) + 1√
2
∇uj(x)(e2 − e1)〈x− α, e2 − e1〉

x ∈
(
α+ Pεj

)
∩ Ω

(α+ εjSr) /∈ N r
εj

.

Notice the analogy with the construction of v`,r
j in Proposition 3.3: in this case

the cubic cell εj [0, 1)2 is replaced by the slanted one Pεj
.

We have that (wr
j ) ⊂ SBV

(
Ω; RN

)
, wr

j → u in measure and, for every η > 0 and
A ∈ A(Ω), by the growth condition of ψ∫

Aη

∣∣∣∣ ∂wr
j

∂(e2 − e1)

∣∣∣∣p dx ≤ cFβ
εj

(uj , A), (4.7)

for some positive constant c. Moreover, since νwr
j
∈ {e2, e1 +e2} H1 a.e. in Jwr

j
we

have ∫
Aη∩Jwr

j

∣∣∣〈νwr
j
, e2 − e1〉

∣∣∣ dH1 ≤ εj#
(
T r

εj
(A) ∩N r

εj

)
. (4.8)

Notice that (4.6) together with (4.7), (4.8) for A = Ω assure that for H1 a.e. y ∈
Πe2−e1 , up to subsequences depending on such a fixed y, the slices

((
wr

j

)e2−e1,y
)

satisfy on (Ωη)e2−e1
y assumption (2.8) of Theorem 2.8. Thus, by taking into account

Fatou’s lemma and Theorem 2.10, by passing to the inferior limit on j → +∞ in
(4.8), we get

β

2
lim inf

j
εj#

(
T r

εj
(A) ∩N r

εj

)
≥ β

2

∫
Aη∩Ju

|〈νu, e2 − e1〉| dH1. (4.9)
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The following result will be used in the proof of the limsup inequality. Notice
that the ideas and strategy used in the proof are strongly related to the regularity
assumptions on the set J .

Lemma 4.4 Let ξ = (ξ1, ξ2) ∈ R2 \ {0} and denote by ξ⊥ := (−ξ2, ξ1). Let ν ∈ S1

and let J ⊆ Πν be a closed set with H1(J) < +∞. Define

Jξ,r
ε :=

{
α+ εSξ

r : α ∈ εZ2,
(
α+ εSξ

r

)
∩ J 6= ∅

}
,

where Sξ
1 := co{0, ξ, ξ⊥} and Sξ

2 := co{ξ, ξ⊥, ξ + ξ⊥}. Then, for r = 1, 2, we get

lim sup
ε→0+

L2
(
Jξ,r

ε

)
ε

≤ 1
2

∫
J

ϕ (ν) dH1,

where ϕ : S1 → [0,+∞) is defined as in (4.2).

Proof. Let Jη := {x ∈ Πν : d(x, J) < η}, then there exists a sequence (ηj) ⊆ (0, 1)
such that ηj → 0+ and H1(Jηj ) = H1

(
Jηj

)
→ H1(J). It suffices then to prove the

assertion for an open set A ⊆ Πν essentially closed, i.e., H1(A) = H1
(
A

)
< +∞.

Let A = ∪s≥1As, where As are the connected components of A in Πν ; since
for every M ∈ N

L2
(
Aξ,r

ε

)
≤

M∑
s=1

L2
(
(As)ξ,r

ε

)
+ L2

(
(∪s≥MAs)

ξ,r
ε

)
, (4.10)

we have that

lim sup
ε→0+

L2
(
Aξ,r

ε

)
ε

≤
M∑

s=1

lim sup
ε→0+

L2
(
(As)ξ,r

ε

)
ε

+ 2
√

2|ξ|H1
(
∪s≥MAs

)
, (4.11)

being the estimate on the second term in (4.10) due to a Minkowski’s content
argument (see [4]). Since A is supposed to be essentially closed there follows

H1 (∪s≥MAs) = H1
(
∪s≥MAs

)
.

Hence,
sup
s≥M

H1
(
∪s≥MAs

)
= 0,

and, by passing to the supremum on M in (4.11), we get

lim sup
ε→0+

L2
(
Aξ,r

ε

)
ε

≤
∑
s≥1

lim sup
ε→0+

L2
(
(As)ξ,r

ε

)
ε

.
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Thus, we may assume A to be an open interval in Πν and, without loss of generality,
we may also assume ξ = e1. For ` = 1, 2 let us define

J `,r
ε (A) :=

{
α+ εSξ

r : α ∈ εZ2, α+ ε[p`,r, p`,r + e`] ∩A 6= ∅
}
,

where the points p`,r are defined as in the proof of Proposition 3.3. Notice that in
case n = 2 p`,1 = 0 for ` = 1, 2, p1,2 = e2 and p2,2 = e1.

Then it can be easily proved that (see Figure 3 (i),(ii))

ε#J `,r
ε (A) ≤ H1(A)|〈ν, e⊥` 〉|+ 2ε. (4.12)

Figure 4: (i) case 〈ν, e1〉〈ν, e2〉 ≤ 0 (ii) case 〈ν, e1〉〈ν, e2〉 > 0

Note that if 〈ν, e1〉〈ν, e2〉 ≤ 0, then J 1,r
ε ∩ J 2,r

ε = ∅, while if 〈ν, e1〉〈ν, e2〉 > 0,
then either J 1,r

ε ⊆ J 2,r
ε or J 2,r

ε ⊆ J 1,r
ε , according to the cases |〈ν, e2〉| ≥ |〈ν, e1〉|,

|〈ν, e1〉| ≥ |〈ν, e2〉|.
Hence, we will treat separately the two cases. Assume first that 〈ν, e1〉〈ν, e2〉 ≤

0, then by (4.12)

L2 (Ae1,r
ε )
ε

=
ε

2
(
#J 1,r(A) + #J 2,r

ε (A)
)
≤ 1

2
H1(A)ϕ(ν) + o(1)

and the thesis follows.
If, instead, 〈ν, e1〉〈ν, e2〉 > 0 and |〈ν, e2〉| ≥ |〈ν, e1〉|, then J 1,r

ε ⊆ J 2,r
ε and by

(4.12)
L2 (Ae1,r

ε )
ε

=
ε

2
#J 2,r(A) ≤ 1

2
H1(A)ϕ(ν) + o(1)

and the thesis follows. Analogously, we infer the thesis in case 〈ν, e1〉〈ν, e2〉 > 0
and |〈ν, e1〉| ≥ |〈ν, e2〉|.

Proposition 4.5 Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary,
assume (h1). Then, for any u ∈ L1

(
Ω; RN

)
,

Γ
(
L1

)
- lim sup

ε→0+
Fβ

ε (u) ≤ Fβ(u).

Proof. Let u ∈ (GSBV p(Ω))N be such that Fβ(u) < +∞. Let us first prove the
inequality for regular functions. Let Ω′ be an open set such that Ω′ ⊃⊃ Ω and
suppose u regular as in Step 1 of Proposition 3.5. By using analogous notation,
the set J r

ε now equals to

∪`=1,2

{
α+ εSr : α ∈ εZ2, α+ ε[p`,r, p`,r + e`] ∩ J 6= ∅

}
,
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and the points p`,r, in this case satisfy p`,1 = 0 for ` = 1, 2, p1,2 = e2 and p2,2 = e1.
Hence, we get

lim sup
ε→0+

∫
∪2

r=1(T r
ε \J r

ε )

ψβ
ε (∇uε(x)) dx

= lim sup
ε→0+

∫
∪2

r=1(T r
ε \J r

ε )

ψβ
ε (Wε(x)) dx

≤ lim
ε→0+

∫
Ω

ψ (Wε(x)) dx =
∫

Ω

ψ (∇u(x)) dx. (4.13)

By the very definition of ψβ
ε and N r

ε we have∫
∪2

r=1(J r
ε ∩N r

ε )

ψβ
ε (∇uε(x)) dx

= β
ε

2
(
#

(
J 1

ε ∩N 1
ε

)
+ #

(
J 2

ε ∩N 2
ε

))
≤ β

ε

(
L2

((
Ω ∩ Ju

)e1,1

ε

)
+ L2

((
Ω ∩ Ju

)e1,2

ε

))
,

and then by Lemma 4.4

lim sup
ε→0+

∫
∪2

r=1(J r
ε ∩N r

ε )

ψβ
ε (∇uε(x)) dx ≤ β

∫
Ω∩Ju

ϕ(νu) dH1. (4.14)

Moreover, by taking into account (3.1), we get∫
∪2

r=1(J r
ε \N r

ε )

ψβ
ε (∇uε(x)) dx ≤ C2

ε2

2
(1 + λp

ε) #
(
∪2

r=1(J r
ε \ N r

ε )
)
, (4.15)

the term on the right hand side above being infinitesimal as proved in (3.27) of
Proposition 3.5. Eventually, by collecting (4.13), (4.14) and (4.15) we get

lim sup
ε→0+

Fβ
ε (uε) ≤

∫
Ω

ψ (∇u) dx+ β

∫
Ju

ϕ(νu) dH1.

To infer the result for every u ∈ L1
(
Ω; RN

)
it suffices to argue like in Step 2

and Step 3 of the proof of Proposition 3.5.
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