
LOWER SEMICONTINUITY OF QUASI-CONVEXFUNCTIONALS WITH NON-STANDARD GROWTHM. FOCARDI AND E. MASCOLOAbstrat. We study the lower semiontinuity properties of autonomous vari-ational integrals whose energy densities are ontrolled by N-funtions.1. IntrodutionIn this paper we study the lower semiontinuity properties of a lass of quasi-onvex funtionals of the Calulus of Variations. Consider the integral funtionalF (u;
) = Z
 f (Du (x)) dx (1.1)where 
 � Rn is a bounded and open set, u : 
 ! RN is a measurable funtionsuÆiently regular, and f : RNn ! R is quasi-onvex in Morrey' sense, see [Mo℄,i.e., f is ontinuous and for every A 2 RNn and ' 2 C1 �
;RN � there holdsf (A)Ln (
) � Z
 f (A+D' (x)) dx; (1.2)denoting with Ln (
) the n dimensional Lebesgue's measure of 
:Assume that f satis�es the non-standard growth ondition� (1 + �1 (jAj)) � f (A) �  (1 + � (jAj)) ; (1.3)with  a positive onstant, �1 and � N-funtions (see Setion 2 for de�nitions) suhthat �1 grows slower than � at in�nity (see Remark 3.3).When in (1.3) �1 (t) = tp1 and � (t) = tp, with 1 < p1 < p or 1 = p1 � p, thefuntional F (�;
) in (1.1) was proven to be sequentially lower semiontinuous inthe weak topology of W 1;p by Aerbi and Fuso [AFu℄ and by Marellini [Ma1℄.If, moreover, f is non negative then the lower semiontinuity inequalitylim infr!+1 F (ur;
) � F (u;
) (1.4)has been established along sequenes (ur) 2 W 1;p onverging in the weak topologyof W 1;q for q � nn+1p by Marellini [Ma2℄ and reently for q � n�1n p by Fonseaand Mal�y [FoM℄ and Mal�y [M2℄. See also Kristensen [Kr℄ for a re�nement.Under further struture assumptions on f , Fonsea and Marellini [FoMa℄ provedthe ase q > p� 1 and then Mal�y [M2℄,[M3℄, re�ned the result to q � p� 1.In the polyonvex ase, i.e., f (A) = g (T (A)) where g is onvex and T (A)denotes the set of all minors of the matrix A 2 MN�n, Daorogna and Marellini[DMa℄ proved the lower semiontinuity inequality (1.4) for q > n � 1, while theborder ase q = n� 1 was stated by Aerbi and Dal Maso [ADM℄, Celada and Dal1991 Mathematis Subjet Classi�ation. 49J45.Key words and phrases. Quasi-onvexity, lower semiontinuity, Orliz-Sobolev spaes.1



2 M. FOCARDI AND E. MASCOLOMaso [CDM℄ and Dal Maso and Sbordone [DMS℄. An elementary approah wasfound by Fuso and Huthinson [FuH℄, see also Mal�y [M1℄ for related results.Notie that for funtionals F (�;
) de�ned as in (1.1) the weak sequential lowersemiontinuity in W 1;p, p > 1, an be rephrased as follows: for every sequene(ur) 2W 1;1 suh thatur ! u strongly L1lo and lim infr!+1 Z
 jDurjp dx < +1 (1.5)then lim infr!+1 F (ur;
) � F (u;
) :With the general growth ondition (1.3), the natural setting where to studylower semiontinuity properties for funtionals de�ned by (1.1) is provided by thefuntional spaes generated by N-funtions, alled Orliz spaes.Ball [B℄ was the �rst to set some variational problems in the framework of Orliz-Sobolev spaes. Reently, the �rst author has onsidered in [F℄ quasi-onvex inte-grals with the non-standard growth onditions (1.3) obtaining lower semiontinu-ity in the weak � topology of the Orliz-Sobolev spae W 1L� (see Setion 2 forreferenes) provided � satis�es a sub-homogeneity property at in�nity alled 42-ondition, i.e., there exist m > 1 and to � 0 suh that for every � > 1 and t � tothere holds � (�t) � �m� (t) :Those results are also applied to give existene theorems for Dirihlet's boundaryvalue problems (see [F℄).The struture and properties of Orliz spaes are lose to the standard Lp ase if� 2 42, while if � =2 42 the theory is quite di�erent. Indeed, let � be a N-funtion,set K� = �u : 
! RN measurable: Z
� (juj) dx < +1 � ,denote with L� the linear hull of K�, whih is a Banah spae if endowed with thegauge norm, then K� � L� if and only if � 2 42. This lak of linear struturehas onsequenes in the study of semiontinuity for funtionals like in (1.1) whoseintegrand satis�es the growth ondition (1.3).Indeed, if � =2 42 then F (�;
) is not �nite a priori on the whole W 1L�, unlike thease � 2 42, but just on the onvex setW 1;�;1 = �u 2 W 1;1 : Z
 � (jDuj) dx < +1 � ,whih is stritly ontained in W 1L�.However, assuming the analogue ondition of (1.5), i.e., (ur) 2W 1;1 suh thatur ! u strongly L1lo and lim infr!+1 Z
 � (jDurj) dx < +1 , (1.6)we are able to prove the lower semiontinuity of F (�;
) along suh sequenes.The main result of the paper is the following (see Setion 3 Theorem 3.2).Let 
 � Rn be a bounded and open set with Lipshitz boundary, let F (�;
) bede�ned as in (1.1) with f : RNn ! R a quasi-onvex funtion satisfying for every



LOWER SEMICONTINUITY OF QUASI-CONVEX... 3A 2 RNn 0 � f (A) �  (1 + � (jAj)) ; (1.7)with  a positive onstant and � a N-funtion.Then for every (ur) 2W 1;�;1 �
;RN � satisfying (1.6) there holdslim infr!1 F (ur;
) � F (u;
) :We remark that if � =2 42, the integral boundedness ondition in (1.6) is noteven implied by the norm onvergene of W 1L�, thus, unlike the ase � 2 42, itis not equivalent to weak � onvergene in W 1L� whih is in turn implied by (1.6).However, (1.6) turns out to be a natural ondition when dealing with minimizingsequenes of oerive funtionals in W 1L�, i.e., with energy densities satisfying1 (� (jAj)� 1) � f (A) �  (� (jAj) + 1) (1.8)for every A 2 RNn and for some positive onstants 1; .Moreover, in that ase, take uo 2 W 1;�;1 and onsider the boundary value prob-lem inf �F (u;
) : u 2 uo +W 1;1o 	 ,we prove that the in�mum is attained as it happens in the W 1L� setting when� 2 42 (see [F℄ and Remark 3.8).Eventually, it is possible to give expliit examples of non trivial appliationsof previous results onstruting quasi-onvex funtions verifying the non-standardgrowth onditions (1.7), (1.8), in the latter ase provided the dominating N-funtion� satis�es a sort of sub-additivity ondition at in�nity (see Setion 4).The plan of the paper is the following: in Setion 2 we reall some de�nitionsand prove some properties of N-funtions and Orliz spaes; in Setion 3 we provethe semiontinuity result Theorem 3.2; in Setion 4 we give some examples of quasi-onvex funtions with non-standard growth (1.7), (1.8).2. N-Funtions and Orliz spaes.In this setion we reall some de�nitions and known properties of N-funtions,Orliz, Orliz-Sobolev spaes (see for referenes [Ad℄,[KR℄,[RR℄).A ontinuous and onvex funtion � : [0;+1)! [0;+1) is alled N-funtion ifit satis�es � (0) = 0;� (t) > 0 t > 0; limt!0+ � (t)t = 0; limt!+1 � (t)t = +1; (2.1)e.g. take �p;� (t) = tp log� (1 + t) for p > 1 and � � 0 or p = 1 and � > 0.Atually, only the growth at in�nity really matters in the de�nition of N-funtion.Indeed, given a ontinuous and onvex funtion Q : [0;+1)! [0;+1) satisfyinglimt!+1 Q (t)t = +1there exist a N-funtion � and to > 0 suh that for every t � to there holds� (t) = Q (t) :Suh a funtion Q is alled prinipal part of the N-funtion �. Sine this, we willnot distinguish any longer the two onepts, e.g. we will refer as N-funtions to the



4 M. FOCARDI AND E. MASCOLOfuntions �0 (t) = tln t, �� (t) = exp �t�� � 1, � > 0, whih have not super-lineargrowth in 0.In the sequel we will often use the following onvexity inequality: for every s,t 2 [0;+1) and � > 1� (s+ t) � 1�� (�s) + �1� 1���� ���1 t� : (2.2)Let � be a N-funtion, let 	 denote the Fenhel's onjugate of �, i.e.,	 (t) = sup fst�� (s) : s � 0g , (2.3)	 is a N-funtion alled the omplementary N-funtion of �. By the very de�nitionthe pair �,	 satis�es Young's inequality, i.e., for every s; t 2 [0;+1) there holdsst � �(s) + 	(t):A useful lass of N-funtions is provided by the following de�nition. We say that� belongs to lass 42, denoted by � 2 42, if there exist m > 1 and to � 0 suhthat for every � > 1, t � to there holds� (�t) � �m� (t) : (2.4)Take for instane �p;� (t) = tp log� (1 + t) for p > 1 and � � 0 or p = 1 and � > 0,then �p;� 2 42, while �0 (t) = tln t =2 42 and �� (t) = exp �t�� � 1 =2 42 for any� > 0.Let 
 � Rn be a bounded and open set, the Orliz lass K� �
;RN � is the setof all (equivalene lasses modulo equality Ln a.e. in 
 of) measurable funtionsu : 
! RN satisfying Z
� (juj) dx < +1; (2.5)where j�j denotes the eulidean norm in RN .The Orliz spae L� �
;RN � is de�ned to be the linear hull of K� �
;RN �, thusit onsists of all measurable funtions u suh that �u 2 K� �
;RN � for some � > 0.Moreover, the equality K� �
;RN � � L� �
;RN � holds if and only if � 2 42.De�ne the funtional kuk�;
 : L� �
;RN �! [0;+1) bykuk�;
 = inf �� > 0 : Z
 �� juj� � dx � 1� ; (2.6)it is a norm, alled the gauge norm, and L� �
;RN � is a Banah spae if endowedwith it. In the sequel we will denote k�k�;
 simply by k�k�, and the norm onver-gene in L� �
;RN � by s�L� �
;RN �. It easily follows the ontinuous immersionL� �
;RN �! L1 �
;RN � if both spaes are equipped with the gauge norm.Notie that by the very de�nition of the norm for any u 2 L� �
;RN � we havekuk� � 1 + Z
 � (juj) dx: (2.7)Denote by E� �
;RN � the losure of C1 �
;RN � in s� L� �
;RN �, the inlu-sions E� �
;RN � � K� �
;RN � � L� �
;RN �are trivial with equalities holding if and only if � 2 42.A useful haraterization of E� �
;RN � is given in the following lemma (seeProposition 4 [RR, p.52℄).



LOWER SEMICONTINUITY OF QUASI-CONVEX... 5Lemma 2.1. Let u 2 L� �
;RN �, set ku� = sup�� � 0 : �u 2 K� �
;RN �	, de-�ne lu� : [0; ku�℄! [0;+1℄ by lu� (�) = Z
 � (� juj) dx;then lu� is ontinuous, inreasing andlim�!(ku�)� lu� (�) = lu� (ku�) � +1:Moreover, E� �
;RN � = �u 2 L� �
;RN � : ku� = +1	.We stress the attention on the fat that if � =2 42 the values of ku� and lu� (ku�)an be independently assigned, i.e., given any 0 < �; � < +1 there exist u, v 2L� �
;RN � with ku� = kv� = � suh that lu� (�) = � and lv� (�) = +1 (see [RR,p.54℄). This last remark gives a haraterization of ondition 42.Lemma 2.2. Let � be a N-funtion, � 2 42 if and only if for every family(ui)i2I � L� �
;RN � whih is norm bounded there holdssupi2I Z
� (juij) dx < +1:Another onsequene of the previous remark is that norm onvergene does notimply onvergene of integrals in the ase � =2 42. Indeed, if ur ! u s�L� �
;RN �the onvexity of � implieslim infr!+1 Z
� (jurj) dx � Z
 � (juj) dx; (2.8)with the possibility of strit inequality holding in (2.8). However, the integralonvergene holds for suitable sub-multiples of the limit.Lemma 2.3. Let (ur), u 2 L� �
;RN � be suh that ur ! u s � L� �
;RN �, if� 2 [0; ku�) then limr!+1Z
 � (� jurj) dx = Z
 � (� juj) dx: (2.9)Proof. Fix � 2 (0; ku�), by (2.8) we have only to prove the inequalitylim supr!+1 Z
� (� jurj) dx � Z
 � (� juj) dx;the ase � = 0 being trivial.By the very de�nition of the norm and the onvexity of � it followskwk� � 1) Z
� (jwj) dx � kwk� ;hene for any � > 0 there exists r (�) suh that for every r � r (�)Z
� (� jur � uj) dx � � kur � uk� � 1: (2.10)Fix � > 1 suh that � < �� < ku�, then by (2.2)Z
� (� jurj) dx � 1� Z
� (�� juj) dx+�1� 1��Z
�� ����1 jur � uj� dx;(2.11)



6 M. FOCARDI AND E. MASCOLOhene passing to the superior limit for r ! +1 in (2.11) we get by (2.10)lim supr!+1 Z
 � (� jurj) dx � 1� Z
 � (�� juj) dx;and so Lemma 2.1 yields the onlusion by letting � ! 1+. �The Orliz-Sobolev spae W 1L� �
;RN � onsists of all (equivalene lasses mod-ulo equality Ln a.e. in 
 of) measurable funtions u 2 L� �
;RN � whose �rst orderdistributional derivatives belong to L� �
;RN �. As in the ase of ordinary Sobolevspaes, it is a Banah spae if endowed with the normkuk1;� = kuk� + kDuk� :Denote by W 1oE� �
;RN � the losure of C1 �
;RN � in the norm topology ofW 1L� �
;RN �, indiated by s �W 1L� �
;RN �. Let us state a generalization ofRellih-Kondrakov's ompat embedding theorem ([Ad℄, Lemma 7.1 [EOP℄).Theorem 2.4. Let 
 � Rn be a open bounded set with Lipshitz boundary, let �be a N-funtion, then the embedding W 1L� �
;RN �! L� �
;RN � is ompat.Let � > 0 and onsider, similarly to Marellini [M3℄, the onvex funtional setsW 1;�;� �
;RN � = �u 2 W 1;1 �
;RN � : Z
� (� jDuj) dx < +1� :The next lemma yields the set inlusion W 1;�;� �
;RN � � W 1loL� �
;RN � (seeLemma 1 [BhL℄).Lemma 2.5. Let C � Rn be a onvex, bounded and open set, then for every � > 0and u 2 W 1;�;� �
;RN � there holdsZC � ��d ju� uC j� dx � � !ndnLn(C)�1� 1n ZC � (� jDuj) dx;where uC = 1Ln(C) RC udx, d = diamC, !n = Ln �B(0;1)� and B(0;1) is the unit ballof Rn .The set inlusion W 1;�;� �
;RN � � W 1L� �
;RN � is related to the regularityof 
, it is a onsequene of Lemma 2.7 below for whih we need the following result(see Lemma 1 [T℄).Lemma 2.6. Let 
 � Rn be a bounded and open set with Lipshitz boundary, thenthere exists a positive onstant  =  (n;
) suh that for every u 2W 1;1 �
;RN �ju (x)j � �kukL1(
;RN) + Z
 jDu(y)jjx�yjn�1 dy�for Ln a.e. x 2 
.Lemma 2.7. Let 
 � Rn be a bounded and open set with Lipshitz boundary,then there exist positive onstants i = i (n;
), 1 � i � 2, suh that for everyu 2 W 1;�;1 �
;RN � and � > 1, there holdsZ
� � 1� juj� dx � �� 2��1 kukL1(
;RN)�Ln (
) + Z
 � (jDuj) dx:



LOWER SEMICONTINUITY OF QUASI-CONVEX... 7Proof. Let r > diam
, onsider the kernel J : B(0;r) ! [0;+1) de�ned byJ(x) = � k jxj1�n B(0;r) n f0g0 otherwisewhere k is hosen suh that kJkL1(Rn) = 1.De�ne v to be the zero extension of jDuj to Rn , then applying Lemma 2.6 and(2.2) for Ln a.e. x 2 
 we have� � k� ju (x)j� � �� k��1 kukL1(
;RN)�+��ZRn J (y � x) v (y) dy�thus by a suitable version of Jensen's inequality, i.e.,��ZRn J (y � x) v (y) dy� � ZRn J (y � x) � (v (y)) dy;and integrating over 
 we getZ
 � � k� juj� dx� �� k��1 kukL1(
;RN)�Ln (
) + Z
 dx ZRn J (y � x) � (v (y)) dy� �� k��1 kukL1(
;RN)�Ln (
) + Z
� (jDu (x)j) dx;and so we are done setting 1 (n;
) = k and 2 (n;
) = 1. �Let W 1;�;�o �
;RN � =W 1;1o \W 1;�;� �
;RN �; for any bounded set 
 the inlu-sion W 1;�;�o �
;RN � � W 1L� �
;RN � holds by using the following lemma whihgeneralizes to the vetorial ase Lemma 3.2 [Ma3℄ (see [Mi℄).Lemma 2.8. Let 
 � Rn be a bounded and open set, let d = diam
 and � > 0, ifu 2 W 1;�;�o �
;RN � thenZ
 � � 2�Nd juj� dx � Z
� (� jDuj) dx:As a onsequene of Lemma 2.8 we dedue that the L� norm of the gradientand the W 1L� norm are equivalent on W 1;�;�o �
;RN �. More preisely if u 2W 1;�;�o �
;RN � then kuk� � Nd2 kDuk� : (2.12)Next lemma states a density result in W 1;�;�o �
;RN � (see [Go2℄,[Mi℄ for relatedresults).Lemma 2.9. Let 
 � Rn be a bounded and open set, let u 2 W 1;�;�o �
;RN � besuh that sptu �� 
, then there exists a sequene (ur) � C1 �
;RN � suh that(1) ur ! u s�W 1;1 �
;RN �;(2) R
� (jurj) dx! R
� (juj) dx;(3) R
� (jDurj) dx! R
� (jDuj) dx.Proof. Let J" be a molli�er, let ur = J 1r � u, then standard onvolution resultsyield ur 2 C1 �
;RN � if r is suitable and assertion (1) hene follows.



8 M. FOCARDI AND E. MASCOLOTo prove (2) note that by Jensen's inequality for Ln a.e. x 2 
0 � � (jur (x)j) � �J 1r �� (juj)� (x) ;moreover, sineJ 1r �� (juj)! � (juj) s� L1 (
) and Ln a.e. x 2 
;(2) holds by the ontinuity of � and Lebesgue's Dominated Convergene theorem.To prove (3) observe that sine sptu �� 
, if 1r < d (sptu; �
) thenDi �J 1r � u� (x) = �J 1r �Diu� (x)for Ln a.e. x 2 
 and for every 1 � i � n, so that we an onlude analogously to(2). �We now introdue the weak � onvergene in L� �
;RN �, whih we will denoteby �w�L� �
;RN �. Sine the Orliz spae L� �
;RN � is isometrially isomorphito the dual spae of E	 �
;RN � a sequene ur ! u �w�L� �
;RN � if and only iffor every v 2 E	 �
;RN � there holdslimr!+1 Z
 urvdx = Z
 uvdx:By means of the Hahn-Banah theorem we have that ur ! u �w�W 1L� �
;RN �if and only if (ur), (Diur), 1 � i � n, onverge to u, Diu respetively. As aonsequene of the previous statements we dedue that L� �
;RN � is reexive ifand only if both � and 	 belong to lass 42.Eventually, W 1oE� �
;RN � is �w �W 1L� �
;RN � losed if and only if � 2 42(see [Do℄,[Go1℄), in the sequel we denote by W 1oL� �
;RN � its weak � losure.3. Semiontinuity.Let f be quasi-onvex, i.e., f is ontinuous and satis�es inequality (1.2), thenf is separately onvex in eah variable (see [D℄) and thus for every � 2 [0; 1℄ andz 2 RNn we get f (�A) � X0�k�Nn �Nn�k (1� �)k Xj�j=k f (��k (A)) ; (3.1)where � is a multi-index of omponents �i 2 f1; : : : ; Nng and length j�j = �1 +: : :+ �Nn, onsidering two multi-indies equal up to permutations, and where ��k :RNn ! RNn is the projetion on the k-plane�� = �y 2 RNn : y�1 = y�2 = : : : = y�k = 0	 ;with the onvention that �(0;::: ;0)0 = IdRNn and �(0;::: ;0) = RNn if k = 0.Lemma 3.1. Let � be an N-funtion and f : RNn ! R be quasi-onvex and satis-fying f (A) �  (1 + � (jAj)) ; (3.2)then there exists a positive onstant 1 = 1 (Nn) suh that for every � 2 [0; 1℄ andA 2 RNn f (�A) � �Nnf (A) + 1 (1� �) (1 + � (jAj)) : (3.3)



LOWER SEMICONTINUITY OF QUASI-CONVEX... 9Proof. Sine � is inreasing, by (3.2) for every � and k we getf (��k (A)) �  (1 + � (j��k (A)j)) �  (1 + � (jAj)) ;then (3.3) follows by (3.1) setting 1 =  P1�k�Nn �Nnk �. �Let us reall our main result.Theorem 3.2. Let 
 � Rn be a bounded and open set with Lipshitz boundary, letF (�;
) be de�ned as in (1.1) with f : RNn ! R a quasi-onvex funtion satisfyingfor every A 2 RNn 0 � f (A) �  (1 + � (jAj)) ; (3.4)with  a positive onstant and � a N-funtion.Then for every (ur) 2W 1;�;1 �
;RN � satisfying (1.6) there holdslim infr!1 F (ur;
) � F (u;
) :Remark 3.1. By the sequential lower semiontinuity of the map v ! R
� (jvj) dxin the w � L1 �
;RN � onvergene and by (1.6) it follows u 2 W 1;�;1 �
;RN �.Remark 3.2. The quasi-onvexity inequality (1.2) an be extended also for testfuntions in W 1;�;1o �
;RN � under growth onditions (1.7).Indeed, given ' 2 W 1;�;1o �
;RN � �rst assume that spt' �� 
 and onsider thesequene ('r) � C1 �
;RN � provided by Lemma 2.9. We may further suppose thatD'r ! D' Ln a.e. in 
, hene by Lebesgue's Dominated Convergene theoremf (A)Ln (
) � limr!+1 Z
 f (A+D'r (x)) dx = Z
 f (A+D' (x)) dx:If ' 2 W 1;�;1o �
;RN � is any, let � be a bounded and open set suh that � ��
, de�ne 'o to be the zero extension of ' to �, then 'o 2 W 1;�;1o ��;RN � andspt'o �� �, thus by previous step, (1.2) holds for 'o on �, i.e.,f (A)Ln (�) � Z� f (A+D'o (x)) dx = Z
 f (A+D' (x)) dx+ f (A)Ln (� n
) ;and so (1.2) holds for ' on 
:Remark 3.3. The statement of Theorem 3.2 holds more generally if the growthondition (1.7) is substituted by (1.3), i.e., for every A 2 RNn� (1 + �1 (jAj)) � f (A) �  (1 + � (jAj)) ;provided �1 is a N-funtion suh that for every � > 0limt!+1 � (t)�1 (�t) = +1: (3.5)Indeed, under assumption (3.5), if (ur) 2 W 1;�;1 �
;RN � satis�es the integralboundedness ondition (1.6), the sequene (�1 (jDurj)) is equi-absolutely integrableby De la Vall�ee Poissin's riterion (see [KR, p.95℄), then arguing like Kristensen(Theorem 3.1 Step1 [Kr℄) we redue to the ase f � 0.Remark 3.4. Following Marellini [Ma1℄ (see also [F℄) one an prove that quasi-onvexity and (3.4) yield for every A, B 2 RNnjf (A)� f (B)j � �1 + � (2 (1 + jAj+ jBj))1 + jAj+ jBj � jA�Bj :



10 M. FOCARDI AND E. MASCOLOThis kind of ontrol on f is no longer utilizable in our setting when � is a N-funtionnot in lass 42.First we prove a speial ase.Lemma 3.3. If in the statement of Theorem 3.2 the limit u is aÆne, i.e., Du (x) �Ao for some Ao 2 RNn and Ln a.e. x 2 
, thenlim infr!1 F (ur;
) � F (u;
) :Proof. Step 1: Suppose ur, u have the same boundary values, i.e., (u� ur) 2W 1;�;1o �
;RN � for every r, then the result easily follows by quasi-onvexity andRemark 3.2.Step 2: Suppose that (ur) 2W 1;�;� �
;RN � for some � > 1 and thatsupr Z
� (� jDurj) dx < +1: (3.6)Proeeding as Marellini [Ma1℄,[Ma2℄ we hange the boundary value of ur in asuitable way. Let 
o �� 
 be an open set, �x k = 12dist �
o; �
� and h 2 N, thenfor 1 � i � h de�ne the open sets
i = �x 2 
 : dist (x; �
) < ihk	and onsider a family of ut-o� funtions 'i 2 C1 (
) suh that0 � 'i � 1; 'i � 1 on 
i�1; 'i � 0 on 
 n
i; jD'ij � h+1k :For every r let vr = ur � u, notie that vr ! 0 s � L1lo �
;RN �, then de�ne thefuntions vi;r = 'ivr;thus vi;r 2 W 1;�;1o �
;RN � for every i provided r is big enough. Indeed, vi;r 2W 1;1o �
;RN � by the very de�nition, moreover applying twie (2.2) and by thehoie of 'i we getZ
� (jDvi;r j) dx � Z
 � (� jDurj) dx+�� �p��1 jAoj�Ln (
) + Z
��h+1k p�p��1 jvrj� dx:The assertion follows from (3.6) and Theorem 2.4, sine the ompatness of theembedding W 1L� �
;RN �! L� �
;RN � implies vr ! 0 s�L� �
;RN � and thusby Lemma 2.3 for every � > 0 there holdslimr!+1Z
� (� jvrj) dx = 0:By Step 1 we dedueF (u;
) � F (u+ vi;r ;
) = Z
 f (Ao +Dvi;r) dx= Z
i�1 f (Dur) dx+ Z
in
i�1 f (Ao +Dvi;r) dx+ Z
n
i f (Ao) dx� Z
 f (Dur) dx+ Z
in
i�1 f (Ao +Dvi;r) dx+ f (Ao)Ln (
n
o) : (3.7)



LOWER SEMICONTINUITY OF QUASI-CONVEX... 11Choosing 1 < � < �, by (3.6) and (2.2) we havesupr Z
� (� jDvrj) dx� supr Z
 � (� jDurj) dx+�� ����� jAoj�Ln (
) � 1 < +1;therefore there exists 1 � j � h suh thatsupr Z
jn
j�1 � (� jDvrj) dx � 1h : (3.8)Now we estimate the integrals in (3.7) for suh j. By applying (2.2) and by (3.8)we get Z
jn
j�1 f (Ao +Dvj;r) dx�  Z
jn
j�1 (1 + � (jAoj+ j'j j jDvr j+ jD'j j jvrj)) dx� 2Ln (
n
o) + 3h + 4 Z
��h+1k �p��1 jvrj� dx: (3.9)So by (3.9), (3.7) beomesF (u;
) � F (ur;
) + 3h + 4 Z
��h+1k �p��1 jvrj� dx+ 5Ln (
n
o) ;the assertion then follows passing to the limit for r ! +1, Ln (
n
o) ! 0 andh! +1:Step 3: Let us remove assumption (3.6). Given (ur) 2W 1;�;1 �
;RN � satisfying(1.6) onsider a subsequene, not relabelled for onveniene, suh thatlimr!+1 Z
 � (jDurj) dx = lim infr!+1 Z
� (jDurj) dx: (3.10)Fix � > 1, then de�ne ur;� = 1�ur and u� = 1�u:Notie that (ur;�), u� 2 W 1;�;� �
;RN �, ur;� ! u� s � L1lo �
;RN � and (Dur;�)satis�es ondition (3.6), hene by Step2 we getF (u�;
) � lim infr!+1 F (ur;�;
) : (3.11)Sine by (3.3) of Lemma 3.1 for every r and for Ln a.e. x 2 
 there holdsf (Dur;� (x)) � 1�Nn f (Dur (x)) +  �1� 1�Nn � (1 + � (jDur (x)j)) ; (3.12)integrating the inequality above and setting k = supr R
� (jDurj) dx, with k < +1by (3.10), we getF (ur;�;
) � 1�NnF (ur;
) +  �1� 1�Nn � (k + Ln (
)) : (3.13)Then, by passing to the inferior limit in (3.13), we get by (3.11)F (u�;
) � 1�Nn lim infr!+1 F (ur;
) +  �1� 1�Nn � (k + Ln (
)) : (3.14)



12 M. FOCARDI AND E. MASCOLOEventually, sine u� ! u s�W 1L� �
;RN � and sine F (�;
) is sequentially lowersemiontinuous in that onvergene by a simple appliation of Fatou's lemma, thereholds F (u;
) � lim inf�!1+ F (u�;
) � lim infr!+1 F (ur;
)passing to the inferior limit for �! 1+ on both sides of (3.14). �The proof of Theorem 3.2 now follows using the Fonsea-M�uller's blow-up teh-nique [FoMu℄ (see also [FoMa℄,[FoM℄).Proof.(Theorem 3.2) Given (ur) 2W 1;�;1L� �
;RN � satisfying ondition (1.6) weget lim infr!+1 F (ur;
) < +1:Moreover, ondition (1.6), Theorem 2.4 and Theorem 2.7 assure that ur ! u s �L� �
;RN �, and by extrating subsequenes, not relabelled for onveniene, wehave that lim infr!+1 F (ur;
) = limr!+1F (ur;
) :Moreover, we an assume the existene of �, � positive and �nite Radon measuressuh that � = limr!+1Lnbf (Dur) ; � = limr!+1Lnb� (jDurj) ; (3.15)where, given any mesurable funtion g : 
! [0;+1) the measure Lnbg is de�nedon Borel sets of 
 by (Lnbg) (E) = ZE g (x) dx;and the limits in (3.15) are to be intended in the sense of measures, i.e., for every' 2 C0 �
;RN � there holdslimr!+1 Z
 'f (Dur) dx = Z
 'd�; limr!+1Z
 '� (jDurj) dx = Z
 'd�:We are going to show that for Ln a.e. x 2 
 there holdsd�dLn (x) = lim"!0+ � �B(x;")�Ln �B(x;")� � f (Du (x)) : (3.16)Indeed, if (3.16) holds, we have that for any ' 2 C0 �
;RN � suh that 0 � ' � 1limr!+1F (ur;
) � limr!+1Z
 'f (Dur) dx = Z
 'd� � Z
 'f (Du) dx;thus the lower semiontinuity inequality follows letting ' inrease to 1 and applyingLevi's theorem.To prove (3.16) we reall that there exists a set 
o � 
 suh that Ln (
n
o) = 0,and that if x 2 
o the quantitiesd�dLn (x) ; d�dLn (x) are �nite (3.17)



LOWER SEMICONTINUITY OF QUASI-CONVEX... 13and lim"!0+ 1"n+1 ZB(x;") ju (y)� u (x)�Du (x) (y � x)j dy = 0: (3.18)Let xo 2 
o and let "k ! 0+ be suh that � ��B(xo;"k)� = 0, � ��B(xo;"k)� = 0 forevery k, then, setting B = B(0;1) and !n = Ln (B), we getlimk!+1 � �B(xo;"k)�Ln �B(xo;"k)� = limk!+1 limr!+1 ZB(xo;"k) f (Dur) dx= limk!+1 limr!+1 1!n ZB f (Dur;k) dx,where for every y 2 Bur;k (y) = 1"k (ur (xo + "ky)� u (xo)) :Notie that (ur;k) 2 W 1;�;1 �B;RN � and (� (jDur;kj)) is L1 �B;RN � norm bounded.Indeed, by the hoie of xo we havelimk!+1 limr!+1ZB � (jDur;kj) dx= limk!+1 limr!+1 1"nk ZB(xo;"k) � (jDurj) dx = !n d�dLn (xo) < +1: (3.19)By taking into aount the onvergene ur ! u s � L� �
;RN � and (3.18) forx = xo and setting uo(x) = Du (xo)x, we getlimk!+1 limr!+1 kur;k � uokL1(B;RN) = 0:Thus (ur;k) has a subsequene vk = urk;k whih is s � L1 �B;RN � onverging tothe aÆne funtion uo. Eventually, sine by (3.19) (vk) satis�es (1.6), by Lemma3.3 inequality (3.16) follows, i.e.,d�dLn (xo) = limk!+1 1!n ZB f (Dvk) dx � f (Du (xo)) : �The previous theorem an be applied to solve Dirihlet's boundary value prob-lems.Corollary 3.4. Let 
 � Rn be a bounded and open set, let f : RNn ! R be aquasi-onvex funtion satisfying for every A 2 RNn (� (jAj)� 1) � f (A) �  (1 + � (jAj)) ; (3.20)with  a positive onstant and � a N-funtion. Let F (�;
) be de�ned as in (1.1),uo 2 W 1;�;1 �
;RN �, set V = uo +W 1;1o �
;RN �, then the minimum problemm = infV F (�;
) (3.21)has solution.Proof. Assumption uo 2 W 1;�;1 �
;RN � and the growth ondition (3.20) assurethat �1 < m < +1. Let (vr) � V be a minimizing sequene for F (�;
) on V ,i.e., limr!+1F (vr;
) = m;



14 M. FOCARDI AND E. MASCOLOthen (3.20) implies supr Z
� (jDvrj) dx < +1: (3.22)Let ur = vr � uo, then by (2.2), (3.22) implies ur 2W 1;�; 12o �
;RN � andsupr Z
 � �12 jDurj� dx � Z
� (jDuoj) dx+ supr Z
 � (jDvrj) dx: (3.23)Poinar�e inequality yields supr kurkW 1;1(
;RN) < +1;thus, (3.23), Dunford-Pettis' theorem and Rellih-Kondrakov's theorem imply theexistene of u 2 W 1;1 �
;RN � and a subsequene of (ur), not relabelled for onve-niene, suh that ur ! u w �W 1;1 �
;RN � and s� L1 �
;RN � :Then u 2W 1;1o �
;RN �, and (uo + u) 2 V \W 1;�;1 �
;RN � sine by (3.22)Z
 � (jD (uo + u)j) dx � limr!+1 Z
� (jDvrj) dx < +1:Eventually, by applying Theorem 3.2, (uo + u) is a minimizer for F (�;
) on V . �Remark 3.5. The assumption uo 2 W 1;�;1 �
;RN � is neessary for the problemto be well posed if we want uo itself to be in the ompeting lass V and the funtionalF (�;
) to be �nite a priori in at least one point.Remark 3.6. We point out that sine the onvergene introdued in (1.6) implies�w� W 1L� �
;RN � onvergene, and minimizing sequenes for problem (3.24) be-low satisfy (1.6) beause of (3.20), Theorem 3.2 applies also to solveinf �F (�;
) : u 2 uo +W 1oL� �
;RN �	 : (3.24)Remark 3.7. In our general setting we avoid to onsider the minimum probleminf �F (�;
) : u 2 uo +W 1;�;1o �
;RN �	 ; (3.25)sine, if � =2 42, ondition (1.6) is not suÆient to ensure the weak � losure ofW 1;�;1o �
;RN �. Indeed, from the proof of Corollary 3.4 we an only dedue thatthe minimizers belong to the lass uo +W 1;�; 12o �
;RN �.Anyhow, we emphasize that the set where we onsider the minimum problem isthe domain of the funtional.Remark 3.8. In ase � 2 42 all the minimum problems (3.21), (3.24), (3.25)redue to the same sine in that ase �w� W 1L� �
;RN � onvergene is equivalentto the onvergene introdued in (1.6), fr. Lemma 2.2, and W 1;�;1o �
;RN � �W 1oL� �
;RN � �W 1oE� �
;RN � (see [Fog℄,[Go3℄).4. Quasi-onvex funtions with non-standard growth.In this setion we exhibit some quasi-onvex funtions satisfying onditions (1.7),(1.8) with the N-funtion � not neessarily belonging to 42: Atually, onerningondition (1.8), we are not able to deal with the general ase but we produe



LOWER SEMICONTINUITY OF QUASI-CONVEX... 15suh quasi-onvex funtions if the dominating N-funtion � satis�es a sort of sub-additivity ondition at in�nity, i.e., there exists ro > 0 suh thatC� (ro) = lim supt!+1 � (t+ ro)� (t) + � (ro) < +1: (4.1)When (4.1) holds, it is easy to prove that C�(r) < +1 for every r > 0 and that themap C� : [0;+1)! [0;+1) is non-dereasing and lower bounded by C�(0) = 1.Notie that by (2.2) and (2.4) � 2 42 implies C�(r) � 1, but 42 N-funtionsare not the only ones satisfying (4.1). Indeed, onsider the N-funtions �0 (t) = tln tand ��(t) = exp �t�� � 1, 0 < � � 1, then �0,�� =2 42, but an easy omputationyields C�0(r) � 1, C�� (r) � 1, 0 < � < 1, and C�1 (r) = exp(r).Moreover, we remark that (4.1) is not ful�lled if the exponential growth is toofast, e.g. C�� (r) � +1 for any � > 1:We now onstrut a N-funtion satisfying (4.1) with polynomial growth and notbelonging to lass 42: A �rst example of this kind was produed by Krasnosel'skijand Rutikii (see [KR, p.29℄,[RR, p.27℄).Fix a > 1 and 1 < q < p, de�ne the funtion 'q;p : [0;+1)! [0;+1) as'q;p (s) = 8<: qsq�1 0 � s � 1psp�1 1 � s � a�i s 2 [ai; ai+1℄ (4.2)where �i and ai are de�ned reursively by: a0 = a and for i � 0�i = pap�1i = qaq�1i+1 : (4.3)Then de�ne �q;p : [0;+1)! [0;+1) by�q;p (t) = Z t0 'q;p (s) ds; (4.4)we laim that �q;p is a N-funtion satisfying the desired properties.By their very de�nition the sequenes (ai), (�i) and � �i�i�1� are inreasinglydiverging to +1. Moreover, by diret omputation if i is large enough we have�q;p (2ai) � �1 + �i�i�1 ��q;p (ai) : (4.5)Indeed, sine 2ai � ai+1 for i suÆiently large, by de�nition (4.4) we get�q;p (2ai) = �q;p (ai) + ai�i; (4.6)so that (4.5) holds if and only if 1�i�1�q;p (ai) � ai: (4.7)Notie that sine (�i) is inreasing and diverging to +1, from (4.2) there follows�q;p (ai) � �q;p (a0) + �i�1 (ai � a0) ; (4.8)and thus (4.7) follows for i suÆiently large.A similar omputation holds true for the omplementary N-funtion 	q;p of �q;p,so that neither �q;p nor 	q;p belong to lass 42.Notie that �q;p has q; p growth, i.e., there exist i > 0, 1 � i � 4, suh that1tq � 2 � �q;p (t) � 3tp + 4:



16 M. FOCARDI AND E. MASCOLOMoreover, these are the best powers to estimate �q;p, i.e., if r 2 (q; p) thenlim inft!+1 �q;p (t)tr = 0; lim supt!+1 �q;p (t)tr = +1:Indeed, by (4.8) there follows0 � lim inft!+1 �q;p (t)tr � lim infi!+1 �q;p (ai)ari� lim infi!+1 ��q;p (a0)ari + �i�1 (ai � a0)ari � = q lim infi!+1 aq�ri = 0:Now let bi = rr�1ai, then bi 2 (ai; ai+1) andlim supt!+1 �q;p (t)tr � lim supi!+1 �q;p (bi)bri� 1bri Z biai 'q;p (s) ds = p(r�1)r�1rr lim supi!+1 ap�ri = +1:Eventually, an easy omputation shows that hoosing 1 < q < p � q + 1, �q;psatis�es also (4.1).In the sequel, given f : RNn ! R we denote by Qf the quasi-onvex envelope off , i.e., the greatest quasi-onvex funtion less or equal to f , whih turns out to bede�ned by Qf = sup fg � f : q quasi-onvexg :Following Zhang [Z℄, assume we are given a quasi-onvex funtion f for whih thesub-level set K� = �A 2 MN�n : f (A) � �	is ompat and non onvex for some � 2 R, then in Theorem 1.1 of the samepaper it is proven that the quasi-onvex envelope of the distane funtion from K�,Qd (�;K�), satis�es Qd (A;K�) = 0, A 2 K�:Therefore, the funtion fq :MN�n ! [0;+1) de�ned byfq (A) = max f[d (A; oK�)℄q ; Qd (A;K�)g ;where oK� is the onvex hull of K�, is quasi-onvex, non onvex and satis�es1 jAjq � 2 � fq (A) � 3 jAjq + 4for some positive onstants i, 1 � i � 4, and for every A 2MN�n:We want to generalize that onstrution using N-funtions as well as powers.First notie that given any N-funtion �, the funtiong� (A) = � (Qd (A;K�)) (4.9)is quasi-onvex, non onvex and it satis�es (1.7) provided 0 2 K�.Thus, as we will see in the sequel, assumption (4.1) on � plays a ruial role if wewant to onstrut a quasi-onvex funtion satisfying the more restritive ondition(1.8). Now let � be a N-funtion satisfying (4.1) and de�nef� (A) = max f� (d (A; oK�)) ;Qd (A;K�)g ; (4.10)



LOWER SEMICONTINUITY OF QUASI-CONVEX... 17then f� turns out to be quasi-onvex and non onvex sine f� (A) � 0 if and onlyif A 2 K�.Let us prove that there exist positive onstants i, 1 � i � 4, suh that for everyA 2MN�n there holds1� (jAj)� 2 � f� (A) � 3� (jAj) + 4: (4.11)Notie that (4.11) is equivalent to proving0 < lim infjAj!+1 f�(A)� (jAj) � lim supjAj!+1 f� (A)� (jAj) < +1: (4.12)Let B (0; R) � K�, then, by the very de�nition of f�, we getlim infjAj!+1 f�(A)� (jAj) � lim infjAj!+1 � (d (A; oK�))� (jAj)� lim infjAj!+1 � (max fjAj �R; 0g)� (jAj) = 1C� (R) > 0:Finally, to prove (4.12) notie that sine K� is bounded for every A 2MN�n thereholds Qd (A;K�)� diamK� � d (A; oK�) � Qd (A;K�) ;so that for jAj suÆiently large we havef� (A) = � (d (A; oK�)) :Thus, sine the map d (�; oK�) is Lipshitz ontinuous with Lipshitz onstant 1,we get by ondition (4.1)lim supjAj!+1 f�(A)� (jAj)� lim supjAj!+1 � (jAj+ d (0; oK�))� (jAj) = C� (d (0; oK�)) < +1:In order to provide an expliit example of suh a onstrution onsider A;B 2MN�n suh that rank (A�B) � 2 and set K = fA;Bg. Then K is ompat andnot onvex. Moreover, it is well known (see [Z℄) that there exists a non negativefuntion with sub-quadrati growth whose zero set is K.In the sequel we will onstrut quasi-onvex funtions with suh a hoie of Kfollowing the previous sheme. Let gq;p be de�ned by (4.9), where �q;p is de�nedby (4.2) with 1 < q < p, then gq;p is a quasi-onvex, non onvex funtion.Consider the funtionalGq;p (u;
) = Z
 gq;p (Du (x)) dx;then Theorem 3.2 assures the lower semiontinuity of Gq;p (�;
) in a di�erent topol-ogy with respet to all the results provided by lassial Sobolev spaes (see all thereferenes in the Introdution).Now let f�� be de�ned by (4.10), where �� (t) = exp �t�� � 1 for any 0 < � �1, thus f�� is quasi-onvex and non onvex but we do not know whether it ispolyonvex or not. Consider the funtionalF� (u;
) = Z
 f�� (Du (x)) dx;



18 M. FOCARDI AND E. MASCOLOthen Theorem 3.2 assures its lower semiontinuity with respet to onvergene in-trodued in (1.6) and Corollary 3.4 applies to �nding minimizers for an exponentialgrowth type Dirihlet's boundary value problem.Referenes[ADM℄ E. Aerbi and G. Dal Maso New lower semiontinuity results for polyonvex integralsase. Cal. Var., 2 (1994), pp. 329-372.[AFu℄ E. Aerbi and N. Fuso Semiontinuity problems in the alulus of variations. Arh.Rat. Meh. Anal., 86 (1984), pp. 125-145.[Ad℄ R.A. Adams Sobolev Spaes. Aademi Press, New York, 1975.[B℄ J.M. Ball Convexity onditions and existene theorems in nonlinear elastiity. Arh.Rat. Meh. Anal., 63 (1977), pp. 337-403.[CDM℄ P. Celada and G. Dal Maso Further remarks on the lower semiontinuity of polyonvexintegrals. Ann. Inst. H. Poinar�e (Anal. non Lin�eaire), 11 (1995), pp. 661-691.[BhL℄ T. Bhattaharya and F. Leonetti A new Poinar�e inequality and its appliations to theregularity of minimizers of integrals funtionals with non-standard growth. NonlinearAnal., 17 (1991), pp. 833-839.[D℄ B. Daorogna Diret methods in the alulus of variations. Appl. Math Si., 78 SpringerVerlag, Heidelberg and New York, 1989.[DMa℄ B. Daorogna and P. Marellini Semiontinuit�e pour des int�egrandes polyonvexes sansontinuit�e des d�eterminants. C.R. Aad. Si. Paris, 311 S�erie I (1990), pp. 393-396.[DAMP℄ A. Dall'Aglio and E. Masolo and G. Papi Regularity for loal minima of funtionals withnon-standard growth onditions. Rend. Mat., 18 Serie VII Roma (1998), pp. 305-326.[DMS℄ G. Dal Maso and C. Sbordone Weak lower semiontinuity of polyonvex integrals: aborderline ase. Math. Z., 218 (1995), pp. 603-609.[DG℄ E. De Giorgi Teoremi di semiontinuit�a nel alolo delle variazioni. INdAM, Roma,1968-69.[Do℄ T.K. Donaldson Nonlinear ellipti boundary value problems in Orliz-Sobolev spaes. J.Di�erential Equations, 10 (1971), pp. 507-528.[DoT℄ T.K. Donaldson and N.S. Trudinger Orliz-Sobolev spaes and embedding theorems. J.Funt. Anal., 8 (1971), pp. 42-75.[EOP℄ D.E. Edmunds and B. Opi and L. Pik Poinar�e and Frederihs inequalities in abstratSobolev spaes. Math. Pro. Camb. Phil. So., 113 (1993), pp. 355-379.[F℄ M. Foardi Semiontinuity of vetorial funtionals in Orliz-Sobolev spaes. Rend. Ist.Mat. Univ. Trieste, vol. XXIX (1997), pp. 141-161.[FoM℄ I. Fonsea and J. Mal�y Relaxation of multiple integrals in Sobolev spaes below thegrowth exponent for the energy density. Ann. Inst. H. Poinar�e (Analyse non Lin�eaire),14 (1997), pp. 309-338.[FoMa℄ I. Fonsea and P. Marellini Relaxation of multiple integrals in subritial Sobolev spaes.J. Geom Anal., 7 (1997), pp. 57-81.[FoMu℄ I. Fonsea and S. M�uller Quasi-onvex integrands and lower semiontinuity in L1. SIAMJ. Math. Anal., 23 (1992), pp. 1081-98.[Fog℄ A. Foug�eres Th�eor�emes de trae et de prolongement dans les espaes de Sobolev et deSobolev-Orliz. C.R. Aad. Si. Paris, 274 S�erie A (1972), pp. 181-184.[Fu℄ N. Fuso Quasi-onvessit�a e semiontinuit�a per integrali multipli di ordine superiore.Rierhe di Mat., 29 (1980), pp. 307-323.[FuH℄ N. Fuso and J.E. Huthinson A diret proof of lower semiontinuity for polyonvexfuntionals. Manusripta Mat., 87 (1995), pp. 35-50.[GT℄ D. Gilbarg and N.S. Trudinger Ellipti partial di�erential equations of seond order. 2ndedition. Springer Verlag, New York, 1983[Gi℄ E. Giusti Metodi diretti nel alolo delle variazioni. U.M.I., Bologna 1994.[Go1℄ J.P. Gossez Nonlinear ellipti problems for equations with rapidly (or slowly) inreasingoeÆients. Trans. Amer. Math So., 55 (1974), pp. 163-205.[Go2℄ J.P. Gossez Some approximation properties in Orliz-Sobolev spaes. Studia Mat., 74(1982), pp. 17-24.[Go3℄ J.P. Gossez A remark on strongly nonlinear ellipti bondary value problems. Bol. So.Brasil. Mat., 8 (1977), pp. 53-63.
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