LOWER SEMICONTINUITY OF QUASI-CONVEX
FUNCTIONALS WITH NON-STANDARD GROWTH

M. FOCARDI AND E. MASCOLO

ABSTRACT. We study the lower semicontinuity properties of autonomous vari-
ational integrals whose energy densities are controlled by N-functions.

1. INTRODUCTION

In this paper we study the lower semicontinuity properties of a class of quasi-
convex functionals of the Calculus of Variations. Consider the integral functional

F(u,Q) = /Qf(Du (2)) dz (1.1)

where © C R” is a bounded and open set, u : @ — RV is a measurable function
sufficiently regular, and f : R¥® — R is quasi-conver in Morrey’ sense, see [Mo],
i.e., f is continuous and for every A € RN™ and ¢ € O (Q, ]RN) there holds

(A L7 (9) < / f (A + D () d, (12)

denoting with £" (Q) the n dimensional Lebesgue’s measure of €.
Assume that f satisfies the non-standard growth condition

—c(1+ @ (|4])) < f(A) <c(1+2(J4]), (1.3)

with ¢ a positive constant, ®; and & N-functions (see Section 2 for definitions) such
that ®; grows slower than ® at infinity (see Remark 3.3).

When in (1.3) ®; (t) = t* and ® (t) = ¢P, with 1 < p; < por 1 =p; < p, the
functional F (-,Q) in (1.1) was proven to be sequentially lower semicontinuous in
the weak topology of W' by Acerbi and Fusco [AFu] and by Marcellini [Mal].

If, moreover, f is non negative then the lower semicontinuity inequality

liminf F' (u,, Q) > F (u, Q) (1.4)
has been established along sequences (u,) € W' converging in the weak topology
of W4 for ¢ > 1P by Marcellini [Ma2] and recently for ¢ > ”T_lp by Fonseca
and Maly [FoM] and Maly [M2]. See also Kristensen [Kr] for a refinement.

Under further structure assumptions on f, Fonseca and Marcellini [FoMa] proved
the case ¢ > p — 1 and then Maly [M2],[M3], refined the result to ¢ > p — 1.

In the polyconvex case, i.e., f(A) = ¢g(T (A)) where g is convex and T (A)
denotes the set of all minors of the matrix A € M~ *" Dacorogna and Marcellini
[DMa] proved the lower semicontinuity inequality (1.4) for ¢ > n — 1, while the
border case ¢ = n — 1 was stated by Acerbi and Dal Maso [ADM], Celada and Dal
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Maso [CDM] and Dal Maso and Sbordone [DMS]. An elementary approach was

found by Fusco and Hutchinson [FuH], see also Maly [M1] for related results.
Notice that for functionals F (-, Q) defined as in (1.1) the weak sequential lower

semicontinuity in W', p > 1, can be rephrased as follows: for every sequence

(ur) € W1 such that

u, — u strongly L}, . and lim inf/ |Du,|P dx < +o00 (1.5)
r— QO

+o00
then
liminf F (u,,Q) > F (u,Q).

r—+o00

With the general growth condition (1.3), the natural setting where to study
lower semicontinuity properties for functionals defined by (1.1) is provided by the
functional spaces generated by N-functions, called Orlicz spaces.

Ball [B] was the first to set some variational problems in the framework of Orlicz-
Sobolev spaces. Recently, the first author has considered in [F] quasi-convex inte-
grals with the non-standard growth conditions (1.3) obtaining lower semicontinu-
ity in the weak * topology of the Orlicz-Sobolev space W'L?® (see Section 2 for
references) provided ® satisfies a sub-homogeneity property at infinity called A,-
condition, i.e., there exist m > 1 and t, > 0 such that for every A > 1 and ¢t > ¢,
there holds

B (M) < A"B (1),

Those results are also applied to give existence theorems for Dirichlet’s boundary
value problems (see [F]).

The structure and properties of Orlicz spaces are close to the standard L? case if
® € Ao, while if & ¢ A, the theory is quite different. Indeed, let ® be a N-function,
set

K?® = {u : 0 — RY measurable: / ® (Ju|)dr < 400 } ,
Q

denote with L® the linear hull of K'®, which is a Banach space if endowed with the
gauge norm, then K® = L® if and only if ® € A,. This lack of linear structure
has consequences in the study of semicontinuity for functionals like in (1.1) whose
integrand satisfies the growth condition (1.3).

Indeed, if ® ¢ A, then F (-, Q) is not finite a priori on the whole W!L?®, unlike the
case ® € Ay, but just on the convex set

Wwhel — {u ewh!. / ® (|Dul) dz < +o0 },
Q

which is strictly contained in W'L®.
However, assuming the analogue condition of (1.5), i.e., (u,) € Wb such that

u, — u strongly L},, and lim inf/ ® (|Du,|)dz < +oo , (1.6)
r Q

+00
we are able to prove the lower semicontinuity of F (-, ) along such sequences.
The main result of the paper is the following (see Section 3 Theorem 3.2).

Let Q C R™ be a bounded and open set with Lipschitz boundary, let F (-,Q) be
defined as in (1.1) with f : RN™ — R a quasi-convex function satisfying for every
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Ae RN
0< f(A) <c(1+2(]A]), (1.7)

with ¢ a positive constant and ® a N-function.
Then for every (u,) € Wh®!1 (Q,]RN) satisfying (1.6) there holds

liminf F (u,,Q) > F (u,Q).
r—0oQ

We remark that if ® ¢ A,, the integral boundedness condition in (1.6) is not
even implied by the norm convergence of W'L®, thus, unlike the case ® € A, it
is not equivalent to weak * convergence in W'L?® which is in turn implied by (1.6).
However, (1.6) turns out to be a natural condition when dealing with minimizing
sequences of coercive functionals in W'L®, i.e., with energy densities satisfying

a(®(A) -1 <f(A) <c(@(A)+1) (1.8)

for every A € RNV" and for some positive constants c;, c.
Moreover, in that case, take u, € W®! and consider the boundary value prob-
lem

inf {F (u, Q) u € u + W},

we prove that the infimum is attained as it happens in the W'L® setting when
® € A, (see [F] and Remark 3.8).

Eventually, it is possible to give explicit examples of non trivial applications
of previous results constructing quasi-convex functions verifying the non-standard
growth conditions (1.7), (1.8), in the latter case provided the dominating N-function
® satisfies a sort of sub-additivity condition at infinity (see Section 4).

The plan of the paper is the following: in Section 2 we recall some definitions
and prove some properties of N-functions and Orlicz spaces; in Section 3 we prove
the semicontinuity result Theorem 3.2; in Section 4 we give some examples of quasi-
convex functions with non-standard growth (1.7), (1.8).

2. N-FUNCTIONS AND ORLICZ SPACES.

In this section we recall some definitions and known properties of N-functions,
Orlicz, Orlicz-Sobolev spaces (see for references [Ad],[KR],[RR]).
A continuous and convex function ® : [0, +00) — [0, 4+00) is called N-function if
it satisfies
d(t b (t
@(0)20,@(t)>0t>0,t1im L:0, lim %:-I—oo, (2.1)

o0+ t—+o00

e.g. take ®, , (t) =tPlog*(1+¢t)forp>1landa >0orp=1and a > 0.
Actually, only the growth at infinity really matters in the definition of N-function.
Indeed, given a continuous and convex function @ : [0, +00) — [0, +00) satisfying

lim Q—(t) = +00
t—4+o0o0 ¢

there exist a N-function ® and ¢, > 0 such that for every t > ¢, there holds
e(t)=Q().

Such a function @ is called principal part of the N-function ®. Since this, we will
not distinguish any longer the two concepts, e.g. we will refer as N-functions to the
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functions T (t) = %, Tz (t) = exp (tﬁ) — 1, B > 0, which have not super-linear
growth in 0.

In the sequel we will often use the following convexity inequality: for every s,
t€]0,4o0c) and A > 1

B(s+t)<1d(As)+ (1—§)¢(A—§1t). (2.2)
Let ® be a N-function, let ¥ denote the Fenchel’s conjugate of @, i.e.,
U (t) =sup{st — ®(s) : s >0}, (2.3)

¥ is a N-function called the complementary N-function of ®. By the very definition
the pair @,V satisfies Young’s inequality, i.e., for every s, ¢ € [0, 4+00) there holds

st < ®(s) + U(¢).

A useful class of N-functions is provided by the following definition. We say that
® belongs to class A, denoted by ® € A, if there exist m > 1 and ¢, > 0 such
that for every A > 1, t > t, there holds

O (At) < AP (). (2.4)

Take for instance @, , (t) = tPlog® (1 +¢) forp>1landa >0orp=1and a > 0,

then ®,, € A,, while Ty (t) = ¢t ¢ A, and I'g (t) = exp (t°) — 1 ¢ A, for any
8 >0.

Let Q C R” be a bounded and open set, the Orlicz class K (Q, ]RN) is the set

of all (equivalence classes modulo equality £™ a.e. in Q of) measurable functions
u:Q — RV satisfying

/ & (Ju|) dz < +oo, (2.5)
Q

where |-| denotes the euclidean norm in RY.
The Orlicz space L® (Q, ]RN) is defined to be the linear hull of K'® (Q, ]RN), thus
it consists of all measurable functions u such that Au € K® (Q, ]RN) for some A > 0.
Moreover, the equality K* (Q,RY) = L® (2, RY) holds if and only if ® € A,.
Define the functional |ullg ¢ : L* (2, RY) — [0, +00) by

||u||q>’Q:inf{/\>0:/Q<I><%|> d:cgl}, (2.6)

it is a norm, called the gauge norm, and L® (Q, ]RN) is a Banach space if endowed
with it. In the sequel we will denote ||| o simply by |||, and the norm conver-

gence in L? (Q, ]RN) by s — L?® (Q, ]RN). It easily follows the continuous immersion
L® (Q, ]RN) - L1 (Q, ]RN) if both spaces are equipped with the gauge norm.
Notice that by the very definition of the norm for any v € L?® (Q, ]RN) we have

lullg <1+ /Q & (|ul) dz. (2.7)

Denote by E® (2, RY) the closure of C° (Q,RY) in s — L® (2, RY), the inclu-
sions
E? (Q,RY) C K® (Q,RY) C L (Q,RY)
are trivial with equalities holding if and only if & € A,.

A useful characterization of E® (€, RV) is given in the following lemma (see
Proposition 4 [RR, p.52]).
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Lemma 2.1. Let u € L® (Q,]RN), set k§ = sup{/\ >0: e K® (Q,]RN)}, de-
fine 1§ : [0, k%] — [0, 4+00] by

50 = [ # O\l da,
Q
then 1§ is continuous, increasing and
lim 1% (\) =12 (k%) < +o0.
A= (k3)”

Moreover, E® (Q,IRN) = {u e L?® (Q,IRN) tkg = +oo}.

We stress the attention on the fact that if ® ¢ A, the values of k§ and I} (k%)
can be independently assigned, i.e., given any 0 < a, < 400 there exist u, v €

L? (Q,RY) with k¥ = k% = « such that I% (@) = 3 and 13 (o) = +oc (see [RR,
p.54]). This last remark gives a characterization of condition As.

Lemma 2.2. Let ® be a N-function, ® € As if and only if for every family
(ui);er € L® (Q,IRN) which is norm bounded there holds

sup/ D (|ug|) de < +oc.
iel JQ
Another consequence of the previous remark is that norm convergence does not

imply convergence of integrals in the case ® ¢ A,. Indeed, if u, — u s—L® (Q, ]RN)
the convexity of ® implies

1iminf/Q<I>(|ur|)d:U2/{2<I>(|u\)da:, (2.8)

r—+o00

with the possibility of strict inequality holding in (2.8). However, the integral
convergence holds for suitable sub-multiples of the limit.

Lemma 2.3. Let (u,), u € L® (Q,]RN) be such that up — u s — L% (Q,]RN), if
A €[0,k%) then

lim tI>(A|ur|)dx:/Q<I>()\|u\)d:c. (2.9)

r——+oc Q

Proof. Fix A € (0,k%), by (2.8) we have only to prove the inequality

limsup/ <I>()\\ur\)da:§/<1>()\\u|)dm,
Q

r—+oo 9]

the case A = 0 being trivial.
By the very definition of the norm and the convexity of ® it follows

luwlly <1 [ @ (ulds < ol
hence for any ¢ > 0 there exists r (o) such that for every r > r (o)
/ B (0 [uy — ul)dz < o ur —ully < 1. (2.10)
Q

Fix ¢ > 1 such that A < Ao < k¥, then by (2.2)

1 1
®Nuy)de <= [ &\ d  [— ® (2% |u, — ul) dz,
[auhar < [soatdrs (1-2) [ @ (25 ju - ul) do

(2.11)
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hence passing to the superior limit for » — +o00 in (2.11) we get by (2.10)

1
limsup/ S (A|uy|)de < —/ ® (Ao |u|) dz,
Q 7 Ja

r——+oco
and so Lemma 2.1 yields the conclusion by letting o — 17. O
The Orlicz-Sobolev space W'L® (Q, RV ) consists of all (equivalence classes mod-
ulo equality £™ a.e. in Q of ) measurable functions u € L® (Q, R ) whose first order

distributional derivatives belong to L* (Q,RY ). As in the case of ordinary Sobolev
spaces, it is a Banach space if endowed with the norm

[ully o = llulls +[[Dullg -

Denote by W} E® (€, R") the closure of C2° (€, R") in the norm topology of
WIL® (Q,RY), indicated by s — W'L® (2, R"Y). Let us state a generalization of
Rellich-Kondrakov’s compact embedding theorem ([Ad], Lemma 7.1 [EOP]).

Theorem 2.4. Let Q C R" be a open bounded set with Lipschitz boundary, let ®
be a N-function, then the embedding W' L® (Q,]RN) — L® (Q,]RN) s compact.

Let A > 0 and consider, similarly to Marcellini [M3], the convex functional sets
WA (O, RV) = {u e W (Q,RY) / ® (AN |Du|)dz < +oo} .
Q
The next lemma yields the set inclusion W' ®* (Q,]RN) C Wlloch) (Q,]RN) (see
Lemma 1 [BhL]).

Lemma 2.5. Let C C R" be a convez, bounded and open set, then for every A > 0
and u € WX (Q,RN) there holds

L y1-d
/ @ (4 lu—ucl) de < (g:(dc)) / ® (\|Dul) de,
c c
where uc = m;(o) fc udz, d = diamC, w, = L™ (3(0,1)) and B(o,1) 1s the unit ball
of R™.

The set inclusion Wh®* (Q,RY) C WIL® (Q,RY) is related to the regularity
of , it is a consequence of Lemma 2.7 below for which we need the following result
(see Lemma 1 [T]).

Lemma 2.6. Let Q) C R” be a bounded and open set with Lipschitz boundary, then
there exists a positive constant ¢ = ¢ (n,§)) such that for every u € W1! (Q, ]RN)

[Du(y)]
u(z)| <c <||u||L1(Q,RN) + o l=yl" T dy)
for L™ a.e. z € Q.

Lemma 2.7. Let Q@ C R be a bounded and open set with Lipschitz boundary,
then there exist positive constants ¢; = ¢; (n,Q), 1 < i < 2, such that for every
ue Wh®(Q,RY) and X > 1, there holds

Lot de <@ (2 lulpaen) £ @+ [ #(Duda.
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Proof. Let r > diam(2, consider the kernel J : B(g,) — [0, +0oc) defined by

_ [ Kl B \ {0}
@) = { 0 otherwise

where k is chosen such that ||J| ;s gny = 1.

Define v to be the zero extension of |Du| to R, then applying Lemma 2.6 and
(2.2) for L™ a.e. z € Q we have

® (& u@)) < @ (5L lullamm) + 0 [

thus by a suitable version of Jensen’s inequality, i.e.,

o ([ 1w-opwa) s [ To-Deww)d

and integrating over Q we get

/Q ® (% lul) dz

<8 (sl am) " @+ [ do [ T2 0 )dy

n

Ty —2)v() dy)

< (s lullys@am) £ (@) + [ @ (Dute))da,

and so we are done setting ¢; (n,Q) = £ and ¢3 (n,Q) = ccy. O

Let Wh®A (Q,RN) = Wht nWh®X (Q,RY); for any bounded set Q the inclu-
sion WA (Q,RY) C WIL? (Q,RY) holds by using the following lemma which
generalizes to the vectorial case Lemma 3.2 [Ma3] (see [Mi]).

Lemma 2.8. Let Q C R"™ be a bounded and open set, let d = diam$) and X > 0, if
u € WhHeA (Q,RY) then

/Q(I)(]%—)‘d\und:cg/s)@(/\\Du\)dx.

As a consequence of Lemma 2.8 we deduce that the L® norm of the gradient
and the W!'L® norm are equivalent on W5 ®?* (Q,]RN). More precisely if v €
WEheA (Q,RN) then

lulle < 5 [[Dully - (2.12)

Next lemma states a density result in W} ®* (Q,RY) (see [Go2],[Mi] for related
results).

Lemma 2.9. Let Q C R” be a bounded and open set, let u € WH®A (Q,IRN) be
such that sptu CC ), then there exists a sequence (u,) C C° (Q, ]RN) such that
(1) up > us—WH(QRY);
(2) fou ® (ur]) dz = fo, @ (Ju]) da;
(3) Jo @ (|Du,|) dx — [, ® (|Dul) de.
Proof. Let .J. be a mollifier, let u,, = J1 % u, then standard convolution results
yield u, € C2° (Q,RY) if r is suitable and assertion (1) hence follows.
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To prove (2) note that by Jensen’s inequality for L™ a.e. x €
0< @ (Juy (2)]) < (1 @ (ul)) (&),
moreover, since
Jux®(jul) = @ (Ju]) s—L'(Q) and L™ ae. z € 9,

(2) holds by the continuity of ® and Lebesgue’s Dominated Convergence theorem.
To prove (3) observe that since sptu CC Q, if % < d (sptu, Q) then

D; (J% * u) (z) = (J% * Diu) (x)

for L™ a.e. x € Q and for every 1 <i < n, so that we can conclude analogously to
(2). O

We now introduce the weak * convergence in L® (Q, ]RN), which we will denote
by *w — L® (Q, ]RN). Since the Orlicz space L® (Q, ]RN) is isometrically isomorphic
to the dual space of E¥ (Q, ]RN) a sequence u, — u *w — L® (Q, ]RN) if and only if
for every v € E¥ (Q, ]RN) there holds

lim urvdx:/uvdx.
Q Q

r—+00
By means of the Hahn-Banach theorem we have that u, — u xw—W'L® (Q,RV)
if and only if (u;), (Dsu,), 1 < i < n, converge to u, D;u respectively. As a
consequence of the previous statements we deduce that L* (Q,RY) is reflexive if
and only if both ® and ¥ belong to class A,.
Eventually, W} E® (Q,RY) is «w — W'L?® (Q, RY) closed if and only if ® € A,
(see [Do],[Gol]), in the sequel we denote by W2L?® (Q,RY) its weak * closure.

3. SEMICONTINUITY.

Let f be quasi-convex, i.e., f is continuous and satisfies inequality (1.2), then
f is separately convex in each variable (see [D]) and thus for every 6 € [0, 1] and
z € RN" we get

FE < > Nk —o)f Y fap(4), (3.1)
0<k<Nn lal=k

where « is a multi-index of components o; € {1,...,Nn} and length |a| = a3 +
...+ anp, considering two multi-indices equal up to permutations, and where 7} :
RN — RN is the projection on the k-plane

HQ:{yE]RN" "Ya; = Yas = -+ = Yau :O},
with the convention that 7750"“ 0 = Idpwn and g, .. o) = RN™ if k = 0.
Lemma 3.1. Let ® be an N-function and f : R¥™ — R be quasi-convex and satis-
fying
fA) <e(l+2(]4]), (3-2)

then there exists a positive constant ¢, = c¢; (Nn) such that for every 6 € [0,1] and
AeRN"

F(8A) <ON"F(A) + e (1-6) (1+2(JA]). (3-3)
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Proof. Since ® is increasing, by (3.2) for every a and k we get
[ (A) e+ (i (A)]) <c(1+(JA),

then (3.3) follows by (3.1) setting c1 = ¢ 31 crc (N". O

Let us recall our main result.

Theorem 3.2. Let Q C R” be a bounded and open set with Lipschitz boundary, let
F (-,Q) be defined as in (1.1) with f : RN™ = R a quasi-convex function satisfying
for every A € RN

0<f(A) <c(+2(4]), (3.4)
with ¢ a positive constant and ® a N-function.

Then for every (u,) € Wh®!1 (Q,]RN) satisfying (1.6) there holds
liminf F (u,,Q) > F (u,Q).
T—00

Remark 3.1. By the sequential lower semicontinuity of the map v — [, ® (Jv]) dz
in the w — L1 (Q,]RN) convergence and by (1.6) it follows u € W ®:! (Q,]RN).
Remark 3.2. The quasi-convezity inequality (1.2) can be extended also for test
functions in W2 (Q,RN) under growth conditions (1.7).

Indeed, given p € W51 (Q, IRN) first assume that spty CC Q and consider the

sequence (p,) C C° (Q, IRN) provided by Lemma 2.9. We may further suppose that
Dy, — Dp L™ a.e. in Q, hence by Lebesgue’s Dominated Convergence theorem

FA) L (@) < lim /Qf(A+D<pr (w))dw=/9f(A+D<p(w))dw-

r—+o00

If p € Wht (Q,]RN) is any, let ¥ be a bounded and open set such that ¥ DD
Q, define p, to be the zero extension of ¢ to ¥, then ¢, € Wh¥! (Z,IRN) and
spty, CC X, thus by previous step, (1.2) holds for ¢, on X, i.e.,

fA) LM (X) < / f(A+ Dy, (z)) do = / f(A+De(z))dz + f(A) L™ (E\Q),
b Q
and so (1.2) holds for ¢ on Q.
Remark 3.3. The statement of Theorem 3.2 holds more generally if the growth
condition (1.7) is substituted by (1.3), i.e., for every A € RN
—c(1+ @1 (J4]) < f(4) <c(1+2(|A4])
provided ®1 is a N-function such that for every A > 0
. D (t)
1
15400 By (M)
Indeed, under assumption (3.5), if (u,) € Wh® (QRN) satisfies the integral
boundedness condition (1.6), the sequence (®1 (|Du,|)) is equi-absolutely integrable

by De la Vallée Poissin’s criterion (see [KR, p.95]), then arguing like Kristensen
(Theorem 3.1 Stepl [Kr]) we reduce to the case f > 0.

Y

= +o00. (3.5)

Remark 3.4. Following Marcellini [Mal] (see also [F]) one can prove that quasi-
convezity and (3.4) yield for every A, B € RV

fa-p)se(1+ ZELA LI 4y
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This kind of control on f is no longer utilizable in our setting when ® is a N-function
not in class Ns.

First we prove a special case.

Lemma 3.3. If in the statement of Theorem 3.2 the limit u is affine, i.e., Du (z) =
A, for some A, € RN™ and L™ a.e. x € Q, then

liminf F (u,,Q) > F (u,Q).

r—00
Proof. Step 1. Suppose u,, u have the same boundary values, i.e., (u—u,) €
W1 (Q,RY) for every r, then the result easily follows by quasi-convexity and

Remark 3.2.
Step 2: Suppose that (u,) € Wh®A (Q,]RN) for some A > 1 and that

sup/ & (A | Duy|) da < +oo. (3.6)
T Q

Proceeding as Marcellini [Mal],[Ma2] we change the boundary value of u, in a
suitable way. Let 2, CC ) be an open set, fix k = %dist (Q_o 89) and h € N, then
for 1 <i < h define the open sets

Q; = {z € Q:dist (z,00) ’k}
and consider a family of cut-off functions ¢; € C2° (Q) such that
0<pi<1l, p;=1onQ_q1, p; =00n 2\ Q;, |Dy;| < %

For every r let v, = u, — u, notice that v, — 0 s — L}, (€, RY), then define the
functions

Vir = PiUr,

thus v;, € W1 (Q,RY) for every i provided r is big enough. Indeed, v;, €
Wt (Q,RY) by the very definition, moreover applying twice (2.2) and by the
choice of ¢; we get

/(I>(|Dvi’r\)dx§/<I>(/\\Dur|)da:
Q Q

n h+1 VX
)@+ [ @ (5o o) do.
The assertion follows from (3.6) and Theorem 2.4, since the compactness of the

embedding W!L® (Q, ]RN) - L® (Q, ]RN) implies v, — 0 s — L% (Q, ]RN) and thus
by Lemma 2.3 for every o > 0 there holds

+2 (s

lim (o |v.|)dx =0.
r—+00 [q

By Step 1 we deduce

F(u,Q) <F(u+wv;,,Q) = / f(Ao+ Dv; ) dx
Q

:/Qi 1f(D“’")d“/Q.\Ql 1f(Ao+Dvi,r)da:+/ f(A,)dz

Q\Q

g/f(Dur)d:hL/ £ (Ao + Dvin)de +  (Ag) L7 (\Q) . (3.7)
Q Qi \ Qi1
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Choosing 1 < 8 < A, by (3.6) and (2.2) we have

sup/ ® (0| Dv,|) dx
rJa

< sup/ ® (\|Duy|)dz + (/\’\—i; \Ao\) L () < e < 400,
r Ja
therefore there exists 1 < j < h such that

sup

/ ® (0 |Dv,|)dz < 2. (3.8)
T JQ\Q h

Now we estimate the integrals in (3.7) for such j. By applying (2.2) and by (3.8)
we get
/ f (A, + Dvj ;) dx
Q3\Q5-1

SC/ (L+ @ (|4o] + [¢;]|Dvr| + [Dejl |vr|)) dx
Q\Qj-1

n C3 h+4+1 [
< eLl™ (O\Q,) + 5 T /Q P (—k i |v,|) dz.
So by (3.9), (3.7) becomes

(3.9)

s h+1 _ 6 n
F (u, ) SF(ur,Q)+z+C4/ @ (B ot forl) do + es £7 (@\0).

Q
the assertion then follows passing to the limit for r — +oo, L™ (Q\Q,) — 0 and
h — +oc.

Step 3: Let us remove assumption (3.6). Given (u,) € Wh®! (Q,RV) satisfying
(1.6) consider a subsequence, not relabelled for convenience, such that
lim ® (|Du,|)dz = liminf | @ (|Du,|) dz.
r—+400 Q r—400
Fix A > 1, then define

(3.10)
Q

Up ) = %ur and uy = %u.

Notice that (u,,)), ux € WH®X (L, RY), u,n = ux s — L. (Q,RY) and (Du,,))
satisfies condition (3.6), hence by Step2 we get

F (uy, Q) <liminf F (u,», Q)
r—+00

(3.11)
Since by (3.3) of Lemma 3.1 for every r and for £™ a.e. x € Q there holds

f (Dur (@) < 53 f (Dur (2) + ¢ (1= 533) (1+ @ (| Duy (2))))

(3.12)
integrating the inequality above and setting k = sup,. [, ® (|Du,|) dz, with k < +o00
by (3.10), we get

F @) < sheF (@) e (1- she) (4 £7(Q). (313)
Then, by passing to the inferior limit in (3.13), we get by (3.11)
F(U,\,Q) < !

—= )\Nn

lim inf F (u,, () te(l-s) (k+ L ().

(3.14)
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Eventually, since uy — u s — W!'L® (Q, ]RN) and since F' (-, ) is sequentially lower
semicontinuous in that convergence by a simple application of Fatou’s lemma, there
holds

F(u,Q) <liminf F (uy, Q) < liminf F (u,, Q)

A—1t r—+o00

passing to the inferior limit for A — 17 on both sides of (3.14). O

The proof of Theorem 3.2 now follows using the Fonseca-Miiller’s blow-up tech-
nique [FoMu] (see also [FoMa],[FoM]).

3

Proof.(Theorem 3.2) Given (u,) € WH1L? (Q, RY) satisfying condition (1.6) we
get

liminf F' (u,, Q) < +o0.

r——+oo

Moreover, condition (1.6), Theorem 2.4 and Theorem 2.7 assure that u, — u s —
L® (Q,]RN), and by extracting subsequences, not relabelled for convenience, we
have that

liminf F' (u,,Q) = lim F (u,, ).

r——+oo r—-+oo

Moreover, we can assume the existence of u, v positive and finite Radon measures
such that

pw= lim £"|f(Du,),v= lim L"|®(|Du,|), (3.15)

r—+00 r—+00

where, given any mesurable function g : Q@ — [0, +00) the measure L™ |g is defined
on Borel sets of Q2 by

(C"|g) (E) = /E g (x) dx,

and the limits in (3.15) are to be intended in the sense of measures, i.e., for every
¢ € C2 (Q,RY) there holds

T‘ETDO ; of (Du,)dzx = /Qcpd,u; TETDO/Q@@ (|Du,|) dx = /Qcpdu.
We are going to show that for L™ a.e. x € ) there holds

dp o (B
qrn () = 51_1)%1+ m > f(Du(z)). (3.16)

Indeed, if (3.16) holds, we have that for any ¢ € C? (2, RY) such that 0 < ¢ <1

lim F (u,,Q) > lim of (Dur)dx:/goduz/apf (Du) dz,
Q Q Q

r——+00 r—+00

thus the lower semicontinuity inequality follows letting ¢ increase to 1 and applying
Levi’s theorem.
To prove (3.16) we recall that there exists a set 0, C Q such that £™ (Q\Q,) = 0,
and that if z € Q, the quantities
du dv
acr ) acn

(z) are finite (3.17)
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and
1
lim —/ u (y) — u (2) — Du () (y — 2)| dy = 0. (3.18)
e—0+ entl Bia.o)

Let z, € Q, and let £, — 0 be such that u (63(%’%)) =0,v (63(%’%)) = 0 for
every k, then, setting B = B(g1) and w, = L" (B), we get

B
lim M: lim  lim f (Du,) dz
k—+4o00 L (B(zo,sk)) k—+4o00 r—+oc Blosar)
1
= lim lim —/f(DuT’k)dx,
k—+occr—+o00 Wy JB

where for every y € B
1
urk (y) = - (r (o + exy) —u (o).

Notice that (u,;) € Wh®1 (B,RY) and (® (|Du,x|)) is L' (B, RY) norm bounded.
Indeed, by the choice of z, we have

lim  lim ® (|Duy i) dz

k—+oor—+oc /g

. . 1 dv
= Jim_lim /B( | @ (|Duy ) de = wn = (20) < +oo. (319)
To,Ep

By taking into account the convergence u, — u s — L® (,RY) and (3.18) for
x = z, and setting u,(z) = Du (z,) z, we get

kBToo rly-l{loo ||Ur,k B uOHLl(B:RN) =0.
Thus (u,;) has a subsequence vy = uy, j which is s — L' (B,RY) converging to
the affine function u,. Eventually, since by (3.19) (vy) satisfies (1.6), by Lemma
3.3 inequality (3.16) follows, i.e.,

du 1
)= lim —

/Bf (Dvg)dz > f(Du(z,)). O

The previous theorem can be applied to solve Dirichlet’s boundary value prob-
lems.

Corollary 3.4. Let Q C R" be a bounded and open set, let f : RN* — R be a
quasi-conves function satisfying for every A € RN®
c(®(JA) 1) < f(A) <c(1+2(4]), (3.20)
with ¢ a positive constant and ® a N-function. Let F (-,Q) be defined as in (1.1),
u, € WhHe! (Q,]RN), set V. =wu, +WhH! (Q,]RN), then the minimum problem
m = ir‘}fF Q) (3.21)

has solution.

Proof. Assumption u, € WH®1 (Q,RY) and the growth condition (3.20) assure
that —oco < m < 4o00. Let (v,) C V be a minimizing sequence for F' (-,Q) on V,
i.e.,

lim F (v, Q) =m,

r—+o00
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then (3.20) implies

sup/ O (|Dvy|) dz < +o00. (3.22)
r Ja
Let u, = v, — o, then by (2.2), (3.22) implies u, € Wo'™? (2, RY) and

sup/@(%|Dur\)daz§/@(\Duo\)daz—}—sup/ ® (|Dv,|) da.
rJa Q rJa (3.23)

Poincaré inequality yields

sup ||t ||y 1,1 (g ray < 400,
r

thus, (3.23), Dunford-Pettis’ theorem and Rellich-Kondrakov’s theorem imply the
existence of u € W1! (Q, ]RN) and a subsequence of (u,), not relabelled for conve-
nience, such that u, — u w — W1H! (Q,]RN) and s — L! (Q,]RN) .

Then u € W) (Q,RY), and (u, +u) € VAW (Q,RY) since by (3.22)

/<I>(|D(uo+u)|)d:n§ lim /‘I>(|Dvr\)da:<+oo.
Q r—+o00 Jq

Eventually, by applying Theorem 3.2, (u, + ©) is a minimizer for F (-,Q) on V. O

Remark 3.5. The assumption u, € WhH®! (Q,]RN) is mecessary for the problem
to be well posed if we want u, itself to be in the competing class V and the functional
F (-,Q) to be finite a priori in at least one point.

Remark 3.6. We point out that since the convergence introduced in (1.6) implies
sw— WI'LP (Q, ]R{N) convergence, and minimizing sequences for problem (3.24) be-
low satisfy (1.6) because of (3.20), Theorem 3.2 applies also to solve

inf {F(-,Q) 1u€u,+W,L* (Q,RY)}. (3.24)
Remark 3.7. In our general setting we avoid to consider the minimum problem

inf {F (-, Q) :u € u, + Wp ' (Q,RY)} (3.25)

3

since, if ® ¢ Ao, condition (1.6) is not sufficient to ensure the weak * closure of
Whet (Q,]RN). Indeed, from the proof of Corollary 3.4 we can only deduce that

1
the minimizers belong to the class u, + Wol’q)’2 (Q,]RN).
Anyhow, we emphasize that the set where we consider the minimum problem is
the domain of the functional.

Remark 3.8. In case ® € Ay all the minimum problems (3.21), (3.24), (3.25)
reduce to the same since in that case xw— W1'L?® (Q, ]RN) convergence s equivalent
to the convergence introduced in (1.6), cfr. Lemma 2.2, and W11 (Q,]RN) =
WIL® (Q,RY) = WIE® (Q,RY) (see [Fog],[Go3]).

4, QUASI-CONVEX FUNCTIONS WITH NON-STANDARD GROWTH.

In this section we exhibit some quasi-convex functions satisfying conditions (1.7),
(1.8) with the N-function ® not necessarily belonging to A». Actually, concerning
condition (1.8), we are not able to deal with the general case but we produce
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such quasi-convex functions if the dominating N-function ® satisfies a sort of sub-
additivity condition at infinity, i.e., there exists r, > 0 such that
. S (t+r,)
Cs (r,) = liriljgop 5@ T () < +o0. (4.1)
When (4.1) holds, it is easy to prove that Cg(r) < 4o0c for every r > 0 and that the
map Cg : [0, +00) = [0, 4+00) is non-decreasing and lower bounded by Cg(0) = 1.

Notice that by (2.2) and (2.4) ® € A, implies Cg(r) = 1, but A, N-functions
are not the only ones satisfying (4.1). Indeed, consider the N-functions I'g (¢) = t'"?
and T(t) = exp (t?) — 1, 0 < 8 < 1, then ['g,T'5 ¢ A, but an easy computation
yields Cr,(r) =1, Cr,(r) = 1,0 < < 1, and Cr, (1) = exp(r).

Moreover, we remark that (4.1) is not fulfilled if the exponential growth is too
fast, e.g. Cr, (r) = +oo for any § > 1.

We now construct a N-function satisfying (4.1) with polynomial growth and not
belonging to class A,. A first example of this kind was produced by Krasnosel’skij
and Rutickii (see [KR, p.29],[RR, p.27]).

Fix a > 1 and 1 < ¢ < p, define the function ¢, : [0, +00) = [0, +00) as

gsi7! 0<s<1
@op(s) =1 psP! 1<s<a (4.2)
o s € [ai, aiy1]
where a; and a; are defined recursively by: ag = a and for ¢ > 0

a; = paf_1 = qaltll. (4.3)

Then define @, , : [0, +00) — [0, +00) by

By, (1) = / Gap (5) ds, (4.4)

we claim that ®,, is a N-function satisfying the desired properties.

a;
Q-1

By their very definition the sequences (a;), (o;) and are increasingly

diverging to +o00. Moreover, by direct computation if i is large enough we have

®,, (2a;) > (1 n ijl) 3, (a;). (4.5)
Indeed, since 2a; < a;4; for i sufficiently large, by definition (4.4) we get
<I>q7p (2&1) = (I)q’p (al) + a;q, (46)

so that (4.5) holds if and only if

ﬁ@mp (al) S a;. (47)

i

Notice that since («;) is increasing and diverging to +oc, from (4.2) there follows
Dyp (ai) < Pgp(a0) + aim1 (a; — ao) (4.8)

and thus (4.7) follows for i sufficiently large.
A similar computation holds true for the complementary N-function ¥, , of ®,,,
so that neither &, , nor ¥, , belong to class As.

Notice that ®, , has g, p growth, i.e., there exist ¢; > 0, 1 < ¢ < 4, such that

1t — ey < 8y (1) < c3t? + 4.
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Moreover, these are the best powers to estimate ®, ,, i.e., if r € (g, p) then

P t )] t
lim inf L() =0, limsup tl’p( ) = 400
t—+oo tr s too r
Indeed, by (4.8) there follows
P P )
0 < liminf L(t) < liminf M
t—4oc tr i—+oo a;‘
@ i7 i - . . —
< lim inf < q’pr(a(]) + & (ar a0)> = gliminfa!™" = 0.
i—+00 a; ar oo

Now let b; = ﬁai, then b; € (ai,aH_l) and

(t) (b:)

) )
lim sup —£2-2 > lim sup %
t—+o00 tr i—+o00 bl

I 1y -
> 7/ Yqp (8)ds = ”("7+)1 limsupa?™" = +o0.
bi a; i—4o00

Eventually, an easy computation shows that choosing 1 < ¢ < p < gqg+1, ®,,
satisfies also (4.1).

In the sequel, given f : RV — R we denote by @ f the quasi-convex envelope of
f, i.e., the greatest quasi-convex function less or equal to f, which turns out to be
defined by

Qf =sup{g < f: q quasi-convex}.

Following Zhang [Z], assume we are given a quasi-convex function f for which the
sub-level set

Ko =f{Ae MV f(4) < a)

is compact and non convex for some a € R, then in Theorem 1.1 of the same
paper it is proven that the quasi-convex envelope of the distance function from K,
Qd (-, K,), satisfies

Qd(A,K,)=0& A€ K,.
Therefore, the function f, : MN*" — [0, 4+00) defined by
fa (4) = max {[d (4, coK,)|", Qd (4, K.)}
where coK,, is the convex hull of K, is quasi-convex, non convex and satisfies

A" = < fi(A) < s |A|" + 4

Y

for some positive constants ¢;, 1 < i < 4, and for every A € MN*",
We want to generalize that construction using N-functions as well as powers.
First notice that given any N-function ®, the function

ga (A) = @ (Qd (4, Ko)) (4.9)

is quasi-convex, non convex and it satisfies (1.7) provided 0 € K,,.

Thus, as we will see in the sequel, assumption (4.1) on @ plays a crucial role if we
want to construct a quasi-convex function satisfying the more restrictive condition
(1.8). Now let ® be a N-function satisfying (4.1) and define

fo (A) = max {® (d (4, coK,));Qd (A, Kq)} (4.10)

3
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then fg turns out to be quasi-convex and non convex since fg (A) < 0 if and only
if Ae K,.

Let us prove that there exist positive constants ¢;, 1 < i < 4, such that for every
A € MN*" there holds

a®(A]) —c2 < fo (A) < e3P (J4]) + 4. (4.11)
Notice that (4.11) is equivalent to proving

.. fa(A) . fa (A)
0 < liminf < limsu
[Al—+00 @ (JA]) — \AH+£; @ (JA))

Let B (0,R) D K4, then, by the very definition of fs, we get

< +o0. (4.12)

.. . fa(A4) .. . ®(d(A, co0K,))
lim inf > liminf —————%~
|A]=400 ® (|A]) T |A|5+o0 D (|A)
.. . ®(max{|4] — R;0}) 1
> 1 f = .
S X (P Ca® "

Finally, to prove (4.12) notice that since K, is bounded for every 4 € M~ X" there
holds

Qd(A,K,) —diamK, < d(A4,coK,) < Qd(A, K,),
so that for | A| sufficiently large we have
fao (A) = @ (d(A, coKy)) .
Thus, since the map d (-, coK,) is Lipschitz continuous with Lipschitz constant 1,
we get by condition (4.1)
. fo(A)
S B A

< lim sup 2UAI+ (0, c0Ko))
|Al=+o00 ® (|A])

In order to provide an explicit example of such a construction consider A, B €
MN*" such that rank (A — B) > 2 and set K = {A, B}. Then K is compact and
not convex. Moreover, it is well known (see [Z]) that there exists a non negative
function with sub-quadratic growth whose zero set is K.

In the sequel we will construct quasi-convex functions with such a choice of K
following the previous scheme. Let g4, be defined by (4.9), where ®,, is defined
by (4.2) with 1 < ¢ < p, then g, is a quasi-convex, non convex function.

Consider the functional

Gy (1,9) = /Q dup (Du (x)) dz,

then Theorem 3.2 assures the lower semicontinuity of G, (-, ) in a different topol-
ogy with respect to all the results provided by classical Sobolev spaces (see all the
references in the Introduction).

Now let fr, be defined by (4.10), where I's () = exp (tB) —1forany 0 < 8 <
1, thus fr, is quasi-convex and non convex but we do not know whether it is
polyconvex or not. Consider the functional

Fp(u,Q) = /erﬂ (Du (z)) dz,

= Cg (d(0,c0K,)) < +00.
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then Theorem 3.2 assures its lower semicontinuity with respect to convergence in-
troduced in (1.6) and Corollary 3.4 applies to finding minimizers for an exponential
growth type Dirichlet’s boundary value problem.
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