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 ! RN , where 
 is a bounded open subset of Rn , whih isa solution of m = inf fF (u;
) : u = u0 on �
g ; (1.1)where F (u;
) = Z
 f (x; u(x); Du(x)) dx; (1.2)with f : 
�RN �RNn ! R a Carath�eodory's integrand. As usual, we study thisproblem by using the Diret Methods of the Calulus of Variations, therefore themain questions is to determine onditions on f ensuring oerivity and sequentiallower semiontinuity for F (�;
) with respet to the same topology.1



A suitable ondition on stored energy funtion f , termed quasi-onvexity, wasintrodued by Morrey in a fundamental paper in 1952: f is quasi-onvex in z inMorrey' sense if for every (x0; s0; z0) 2 
� RN � RNn and ' 2 C10 (
;RN ) thereholds f(x0; s0; z0)Ln(
) � Z
 f(x0; s0; z0 +D'(y))dy;denoting with Ln(
) the n dimensional Lebesgue's measure of 
. Morrey showedunder strong regularity assumptions on f , that F (�;
) is sequentially lower semi-ontinuous in the weak� topology ofW 1;1(
;RN ) if and only if f is quasi-onvex.In the last years a great interest has raised around quasi-onvex integrals oftype (1.2), satisfying the so alled (p; q) growth onditions, i.e.,0(jzjp � 1) � f(x; s; z) � 1(1 + jzjq) (1.3)with 1 � p � q. Indeed, in non-linear elastiity, onditions N = n = q and q > pplay a fundamental role in the study of avitation sine they allow disontinuousdeformations of the elasti body.When p = q, the ase of natural growth, Aerbi-Fuso [2℄ and Marellini [32℄proved the sequential weak lower semiontinuity of F (�;
) in the weak topologyof W 1;p(
;RN ).Many authors have studied the lower semiontinuity and relaxation proper-ties for funtionals satisfying (1.3) in the Sobolev spae setting obtaining sharponditions on the mutual dependene of p and q. When f = f(x; z) � 0, andimposing further struture onditions on f , the lower semiontinuity inequalitylim infr F (ur;
) � F (u;
) (1.4)has been established by Marellini [33℄ along sequenes (ur) in W 1;q(
;RN ) on-verging in the weak topology of W 1;p(
;RN ) for p > nn+1q. In the autonomousase f = f(z) the lower semiontinuity inequality (1.4) was proven to hold truefor p > q � 1 by Fonsea-Marellini [18℄, and for p > n�1n q by Fonsea-Mal�y [17℄.See also Mal�y [30℄ for related ounterexamples and others for re�nements (see[1℄,[5℄,[11℄,[22℄,[23℄,[27℄,[29℄,[31℄).However, this approah annot be diretly applied to establish existene re-sults fo Dirihlet' s boundary value problems sine the di�erent topologies withrespet to whom the funtionals are oerive and lower semiontinuous.Our aim is to study a partiular lass of integrands with (p; q) growth, thosefor whih the stored energy funtion is ontrolled in terms of suitable onvexfuntions. More preisely, we assume that f is a quasi-onvex funtion satisfyingthe non-standard growth onditions�1�1(jzj)� 2�2(jsj)� 3(x) � f(x; s; z) � g(x; s) f1 + �(jz))g ; (1.5)where 1,2 are positive onstants; 3 2 L1(
); �,�1 and �2 are N -funtionssuitably related; and g : 
� RN ! R is a positive Carath�eodory's funtion.2



With this general growth onditions Orliz-Sobolev spaes provides the nat-ural setting where to study the lower semiontinuity properties of funtionals in(1.2). Indeed we prove that F (�;
) is sequentially lower semiontinuous in theweak� topology of the Orliz-Sobolev spaeW 1L� �
;RN �, assuming that in (1.5)� satisfying a sub-homogeneity property at in�nity alled �2 property, and �1,�2 satisfying some asymptoti onditions with respet to �.Moreover, we estabilish an existene result for suh lass of integrands. Thus,we are able to study energy densities, depending on the full set of the variableswith (p; q) growth and osillating behaviour. Indeed, the oerivity and lower semi-ontinuity now holds in the Orliz-Sobolev spaes setting.Ball [4℄ was the �rst to set some variational problems in the framework ofOrliz-Sobolev spaes onsidering the poly-onvex ase. Reently, Foardi in [15℄has proved the lower semiontinuity properties for funtionals in (1.2) in Orliz-Sobolev spaes for the integrands f = f(z) satisfying the non-standard growthonditions (1.5) with � 2 �2. This result will be an ingredient to prove semion-tinuity Theorem 3.1 below.The ase ofN -funtions � not sharing the �2 property, orresponding roughlyto exponential growth, has been onsidered by Foardi-Masolo in [16℄ where asuitable semiontinuity property has been proved.The plan of the paper is the following:Setion 2 is devoted to all the preliminary results about Orliz-Sobolev spaesand the quasi-onvex envelope of a funtion; moreover we reall the statement of areent result of higher integrability for loal minimizers of integral funtionals withgeneral growth onditions proved by Cianhi-Fuso [7℄. In Setion 3 we prove asemiontinuity result, obtained by suitable modi�ations of the arguments used inthe natural growth ase by Marellini [32℄. The proof is based on an approximationproedure of the stored energy funtion by a non-dereasing sequene of quasi-onvex funtions. Eventually, Setion 4 is devoted to the proof of an existenetheorem and to some appliation to non trivial examples.2 Notations and PreliminariesWe denote by h�; �i the Eulidean salar produt in Rn and with j � j the usualEulidean norm. Throughout all the paper 
 denotes an open and bounded subsetof Rn with Lipshitz boundary. We denote by Ln the Lebesgue measure on Rnand the notation a:e: stands for almost everywhere with respet to Lebesgue mea-sure. We use standard notations for spaes of lassially di�erentiable funtions,Lebesgue and Sobolev spaes. Given any funtion u 2 L1(
) the symbol �R 
u dxstands for the average of u over 
, i.e., 1Ln(
) R
 u dx.
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2.1 N-funtions and Orliz SpaesFor ease of referene we reall some de�nitions and known properties of N-funtionsand Orliz spaes (see [26℄,[35℄).A onvex funtion � : [0;+1[! [0;+1[ is alled N-funtion if it satis�es thefollowing onditions: �(0) = 0, �(t) > 0 for t > 0, andlimt!0 �(t)t = 0; limt!+1 �(t)t = +1:Suh a funtion � has an integral representation of the form�(t) = Z t0 p(s)dsfor every t � 0, where p : [0;+1[! [0;+1[ is non-dereasing, right ontinuousand it satis�es the onditions: p(0) = 0, p(s) > 0 for s > 0, andlims!+1 p(s) = +1:The funtion p is alled the right derivative of �.The notion of N-funtion an be relaxed, in the sense that only the behavior atin�nity is important. Indeed, given any onvex funtion Q : [0;+1[! [0;+1[satisfying limt!+1 Q(t)t = +1;there exists a N-funtion � and t0 � 0 suh that Q(t) = �(t) for every t � t0.Suh a funtion Q is alled prinipal part of the N-funtion �, sine this we willnot distinguish the two onepts anylonger.The set of N-funtions an be endowed with a partial ordering, we say that�1 dominates �2, and we write �2 � �1, if there exist two onstants k; t0 > 0suh that for every t � t0 it holds�2(t) � �1(kt):If, moreover, �2 � �1 and �1 � �2 we say that �1 and �2 are equivalent, while if�1 dominates �2 but �1,�2 are not equivalent we say that �1 dominates stritly�2, and we write �2 �� �1. We remark that if �2 �� �1 there exists a N-funtion� suh that � Æ�2 � �1. For instane, � an be de�ned as the primitive ofq(s) = 8<: infn�1(��12 (t))t : t > so s � 1q(1)s 0 � s < 1. (2.6)Let � be a N-funtion, de�ne the funtione�(t) = maxs>0 fst��(s)g;4



e� is a N-funtion alled the omplementary N-funtion of �. By the very de�nitionof e�, the pair �, e� satis�es Young's inequality, i.e.,st � �(s) + e�(t);for every s; t � 0, with equality holding if t = p(s) or s = ep(t), where ep is the rightderivative of e�.In the sequel we will onsider a speial lass of N-funtions.De�nition 2.1 We say that a N-funtion � satis�es the �2 ondition, and wewrite � 2 �2, if there exist two onstants k > 1 and t0 � 0 suh that for everyt � t0 there holds �(2t) � k�(t):By taking into aount Proposition 2.1 of [10℄ we infer the following result.Proposition 2.2 Let � be a N-funtion, the following onditions are equivalent(i) � 2 �2;(ii) there exists r > 1 and t0 � 0 suh that for every t � t0 there holdstp(t) � r�(t);(iii) there exists r > 1 and t0 � 0 suh that for every t � t0 and � > 1 there holds�(�t) � �r�(t):Conditions (ii); (iii) above hold true with the same r > 1, hene we write � 2 �r2.It is easy to hek that �(t) = tr belongs to �r2, r > 1, and that �(t) = trlog�(1+t),for r � 1 and � > 0, is a N-funtion of lass �r+"2 for every " > 0. Moreover,the funtions �(t) = trlog(1+t) , with r � 32 , and �(t) = ta+b sin(sin(log(t))), witha > 1 + bp2, are N-funtions of lass �2. The funtion �(t) = et � t � 1 is aN-funtion whih is not in lass �2 (for further properties of N-funtions of lass�2 see [3℄,[26℄,[28℄,[35℄).Let 
 be an open bounded set of Rn , the Orliz lass K�(
;RN ) is theset of all (equivalene lasses modulo equality a.e. in 
 of) measurable funtionsu : 
! RN satisfying Z
 �(juj)dx < +1:The Orliz spae L� �
;RN � is de�ned to be the linear hull of K�(
;RN ). Thefuntional k � k�;
 : L�(
;RN )! R, de�ned bykuk�;
 = inf �� > 0 : Z
 �� juj� � dx � 1� ;5



is a norm, alled Luxemburg norm, and L�(
;RN ) is a Banah spae if endowedwith it. In the sequel we will denote by s � L� �
;RN � the norm onvergene inL� �
;RN �.The losure of C10 (
;RN ) in the norm topology of L� �
;RN � is denotedby E�(
;RN ), the inlusions E�(
;RN ) � K�(
;RN ) � L� �
;RN � are trivialwith equalities holding if and only if � 2 �2.The following result on the integral onvergene in Orliz spaes has beenproved in [16℄.Proposition 2.3 Let u 2 E� �
;RN �, then for every (ur)! u in s�L� �
;RN �and for every � > 0 there holdslimr Z
�(�jurj)dx = Z
�(�juj)dx:The partial ordering introdued in the set of N-funtions indues topologialembeddings among Orliz spaes.Proposition 2.4 Let �1,�2 be two N-funtions suh that �2 � �1, then theembedding L�1 �
;RN � ,! L�2 �
;RN �is ontinuous. Moreover, if �2 �� �1 thenL�1 �
;RN � ,! E�2 �
;RN � :The Orliz-Sobolev spae W 1L� �
;RN � is de�ned to be the set of all fun-tions in L� �
;RN � whose �rst order distributional derivatives are in L� �
;RN �.It is a Banah spae if endowed with the normkuk1;�;
 = kuk�;
 + kruk�;
:As in the ase of ordinary Sobolev spaesW 10E� �
;RN � is taken to be the losureof C10 (
;RN ) in the norm of W 1L� �
;RN �.Let � be a given N-funtion, we may suppose thatZ 10 ��1(s)s1+ 1n ds < +1;replaing, if neessary � by an equivalent N-funtion. Assume, moreover, thatZ +11 ��1(s)s1+ 1n ds = +1; (2.7)then we de�ne the Sobolev's onjugate funtion �� of � by(��)�1(t) = Z t0 ��1(s)s1+ 1n ds;for every t � 0. The following ompat embedding theorem generalizes to Orliz-Sobolev spaes Rellih-Kondrakov's one (see h. VII of [3℄,[6℄ and set. 7.4 of [28℄).6



Theorem 2.5 Let � be a N-funtion.(i) If (2.7) holds, the embeddingW 1L� �
;RN � ,! L��(
;RN )is ontinuous. Moreover, the embeddingW 1L� �
;RN � ,! L�1(
;RN )is ompat for every N-funtion �1 �� ��.(ii) If (2.7) does not hold, the embeddingW 1L� �
;RN � ,! C0(
;RN )is ompat.We now introdue the weak� onvergene in L� �
;RN �, denoted by �w �L� �
;RN �. Sine the Orliz spae L� �
;RN � is isometrially isomorphi to thedual spae of Ee� �
;RN �, a sequene ur ! u �w �L� �
;RN � if and only if forevery v 2 Ee� �
;RN � there holdslimr Z
hur; vidx = Z
hu; vidx:Thus, by means of the Hahn-Banah theorem, we are able to haraterize theweak� onvergene in W 1L� �
;RN �, denoted by �w �W 1L� �
;RN �, that is:ur ! u � w �W 1L� �
;RN � if and only if (ur) and (Diur), 1 � i � n, onvergeto u and Diu � w � L� �
;RN �, respetively.Following the notations of [13℄,[25℄,[36℄W 10L� �
;RN � denotes the weak� lo-sure of W 10E� �
;RN � in W 1L� �
;RN �, hene the inlusion W 10E� �
;RN � �W 10L� �
;RN � is trivial. By taking into aount Corollary 1.10 of [25℄, the interse-tion of W 10L� �
;RN � with Qn+1i=1 E�(
;RN ) is exatly W 10E� �
;RN �, thereforewe an infer, when � 2 �2, the equality W 10E� �
;RN � =W 10L� �
;RN �.2.2 Quasi-onvex EnvelopeIn this setion we state the main properties of the quasi-onvex envelope of agiven measurable funtion satisfying non-standard growth onditions. The ase ofnatural growth has been established by Daorogna [8℄ (see also [24℄). The genera-lization to the non-standard ase is not diÆult, we report only the statements ofthe results without the arguments of their proofs.Let h : RNn ! R+ be a measurable funtion, de�ne
(z) = inf ��Z 
h(z +D'(y))dy : ' 2 C10 (
;RN )� ;7



by taking into aount Proposition 5.3 of [24℄ we have that if 
1 and 
2 arebounded open sets of Rn then 
1 � 
2 � 
, so that we an drop the dependeneon 
 in the de�nition of 
 and denote it just by .Moreover, assume that(i) there exists a N-funtion � 2 �2 suh that for every z 2 RNn0�(jzj) � h(z) � 1(1 + �(jzj)); (2.8)(ii) there exists w 2 C0(R+ ;R+ ), with w(0) = 0, suh thatjh(z)� h(w)j � (1 + �(jzj+ jwj+ 1))w(jz � wj): (2.9)By taking into aount the growth ondition (2.8) and the ontinuity assumption(2.9) it is easy to hek that(z) = inf ��Z 
h(z +D'(y))dy : ' 2 W 10E� �
;RN �� :Moreover, the same assumptions imply that  is a ontinuous funtion.De�ne Qh, the quasi-onvex envelope of h, to beQh = sup f� : � � h quasi-onvexg;then, arguing as in the ase of natural growth we an prove the following hara-terization of Qh.Theorem 2.6 Let h : RNn ! R+ be satisfying (2.8) and (2.9), then  � Qh.2.3 A Regularity ResultIn the proof of Theorem 3.1 we will need a regularity result for loal minimizersof funtionals with non-standard growth. In partiular, we will make use of higherintegrability properties reently proved by Cianhi-Fuso [7℄.Let h : RNn ! R be a ontinuous funtion suh that there exists a N-funtion� 2 �2 for whih 0�(jzj) � h(z) � 1 (1 + �(jzj))for every z 2 RNn .We say that u is a quasi-minimum, or equivalently Q-minimum, for the fun-tional H :W 1L� �
;RN �! R de�ned byH(v;
) = Z
 h(Dv(x))dx;if there exists a onstant Q suh that for every open set 
0 �� 
 there holdZ
0 �(jDuj)dx < +1;8



and H(u;
0) � QH(u+  ;
0);for every weakly di�erentiable funtion  : 
0 ! RN with ompat support andsuh that R
0 �(jD j)dx < +1.The following result holds true (see Theorem 1.1 of [7℄).Theorem 2.7 Let u be a Q-minimum of H with h as above, then for every opensubset 
0 �� 
 there exists Æ > 0 depending on n, �, 
0, dist(
0; �
) andR
0 �(jDuj)dx suh thatZ
0 �(jDuj)��(jDuj)jDuj �Ædx < +1: (2.10)We remark that by using the same arguments of [7℄, it is possible to provethat given a sequene (uk) of Q-minima for H(�;
) suh thatsupk Z
0 �(jDukj)dx < +1;with �xed 
0 �� 
, there exist a positive onstant Æ independent from k suhthat supk Z
0 �(jDukj)��(jDukj)jDukj �Ædx < +1:3 A Semiontinuity ResultLet f : 
 � RN � RNn ! R be a Carath�eodory's funtion, i.e., f is measurablewith respet to x for every (s; z) 2 RN �RNn and ontinuous with respet to (s; z)a.e. in 
, satisfying the growth ondition�1�1(jzj)� 2�2(jsj)� 3(x) � f(x; s; z) � g(x; s) (1 + �(jzj)) ; (3.11)where 1; 2 are positive onstants, 3 2 L1(
), � is a N-funtion of lass �r2, �1and �2 are N-funtions suh that �1 �� � and either �2 �� �� if (2:7) holds or�2 is arbitrarily hosen otherwise and g : 
�RN ! R is a positive Carath�eodory'sfuntion.Assume that f is quasi-onvex with respet to z, i.e., for every (x0; s0; z0) 2
� RN � RNn and ' 2 C10 (
;RN ) there holdsf(x0; s0; z0) � �Z 
f(x0; s0; z0 +D'(y))dy: (3.12)The following semiontinuity theorem holds true.9



Theorem 3.1 Let f : 
 � RN � RNn ! R be as above, then the funtionalF :W 1L� �
;RN �! R de�ned byF (u;
) = Z
 f(x; u(x); Du(x))dxis sequentially lower semiontinuous with respet to �w �W 1L� �
;RN �.The proof of the Theorem 3.1 is based on the following approximation result.Theorem 3.2 Let f : 
 � RN � RNn ! R be as above, assume that (3.11) issubstituted by 0�(jzj) � f(x; s; z) � g(x; s)(1 + �(jzj)) (3.13)where 0 is a positive onstant.Then there exists a sequene (fk) of Carath�eodory's funtions quasi-onvexwith respet to z suh that fk : 
� RN � RNn ! R satis�es0�(jzj) � fk(x; s; z) � k(1 + �(jzj)) (3.14)fk(x; s; z) = 0�(jzj) jsj � k; jzj � k (3.15)fk � fk+1 supk fk = f (3.16)Proof. In the �rst part of the proof the arguments are similar to those of Theorem1.2 of [32℄. However, for the sake of ompletness we outline the main ideas.First we perform a trunation with respet to variables (x; s). For i 2 N, let�i : R ! R be a ontinuous funtion suh that�i(t) = 1 0 � t � i� 1; �i(t) = 0 t � i;set �i(x; s) = ( �i(jsj) g(x; s) � ii�i(jsj)g(x;s) g(x; s) > iand de�ne gi(x; s; z) = �i(x; s)f(x; s; z) + (1� �i(x; s))0�(jzj):The funtions gi are Carath�eodory's funtions quasi-onvex with respet to z suhthat 0�(jzj) � gi(x; s; z) � (i+ 0)(1 + �(jzj));gi(x; s; z) = 0�(jzj) jsj � i;gi(x; s; z) = f(x; s; z) i > g(x; s) + jsj+ 1;limi gi(x; u; z) = supi gi(x; s; z) = f(x; s; z): (3.17)10



Now, we perform a trunation with respet to z. De�ne the Carath�eodory'sfuntion gim(x; s; z) = �m(jzj)gi(x; s; z) + (1� �m(jzj))0�(jzj): (3.18)The funtions gim are not quasi-onvex with respet to z, therefore we onsidertheir quasi-onvex envelopesGim. Hene, the quasi-onvexity of Gim and ondition(3.17)1 imply 0�(jzj) � Gim(x; s; z) � (i+ 0)(1 + �(jzj)); (3.19)moreover, (3.17)2 yields Gim(x; s; z) = 0�(jzj) (3.20)for jzj � m, jsj � i. By taking into aount (3.19) and (3.20), we may applyTheorem 2.6 and �nd the following integral representation formula for GimGim(x; s; z) = inf ��Z 
gim(x; s; z +D'(y))dy : ' 2W 10E� �
;RN �� : (3.21)The more signi�ant and tehnially diÆult part of the proof is worked out inLemma 3.3 below in whih we prove that (Gim)m2N onverges to gi pointwise on
. Assuming Lemma 3.3 to hold true, we an onlude the proof of Theorem 3.2.Indeed, for k � 2 + 0 de�nefk(x; s; z) = maxfGim(x; s; z) : i+m � kg;then fk satis�es (3.14), (3.15) and (3.16).Lemma 3.3 For every i 2 N the sequene (Gim)m2N onverges to gi pointwise on
.Proof. With �xed i 2 N let (x0; s0; z0) 2 
 � RN � RNn . First notie that(Gim(x0; s0; z0))m2N is a non dereasing sequene and that for every m 2 N in-equality Gim(x0; s0; z0) � gi(x0; s0; z0) is trivial by the very de�nition of Gim (see(3.18) and (3.21)).By the representation formula (3.21), for �xed m 2 N there exists wm 2W 10E� �
;RN � suh that�Z 
gim(x0; s0; z0 +Dwm)dy � Gim(x0; s0; z0) + 1m:Consider the funtionalv 2W 1;10 (
;RN )! �Z 
gim(x0; s0; z0 +Dv)dy;by taking into aount Ekeland's Variational Priniple (see [14℄,[24℄) there existsum 2 W 1;10 (
;RN ) suh that�Z 
gim(x0; s0; z0 +Dum)dy � Gim(x0; s0; z0) + 1m; (3.22)11



and suh that for every ' 2W 1;10 (
;RN ) there holds�Z 
gim(x0; s0; z0 +Dum)dy� �Z 
gim(x0; s0; z0 +D')dy + 1m Z
 jDum �D'jdy: (3.23)Let us prove that (um) is a sequene of Q-minima, with Q independent on m, ofthe funtional v 2 W 10E� �
;RN �! Z
(1 + �(jDvj))dy;i.e., there exists Q suh that for every ' 2 W 10E� �
;RN �, denoted � = supp('�um), there holds Z� (1 + �(jDumj)) dy � Q Z� (1 + �(jD'j)) dy: (3.24)First notie that formulas (3.17)1,(3.19) and (3.23) yield for m suÆiently large0 Z� �(jz0 +Dumj)dy� (i+ 0) Z� (1 + �(jz0 +D'j)) dy + Z� jDum �D'jdy: (3.25)Without loss of generality we may assume 0 � 1, hene Young's inequality yieldsjDum �D'j � 02r�(jDumj) + 02r�(jD'j) + e��2r0� ; (3.26)then ombining (3.25),(3.26) and assumption � 2 �r2 we getZ��(jDumj)dy� � i0 + 2�Z� �(jD'j)dy + 4r ��(jz0j) + e��2r0�+ io + 1�Ln(
);whih implies (3.24) with Q = Q(0; r; i;�(jz0j)).Let 
0 �� 
 be �xed, formulas (3.19) and (3.22) give0 �Z 
�(jz0 +Dumj)dy � (i+ 0) (1 + �(jz0j)) ;hene, setting 
m = fy 2 
0 : jz0 +Dum(y)j > m� 1g, we get�(m� 1)Ln(
m) � � i0 + 1� (1 + �(jz0j))Ln(
);12



and then Ln(
m)! 0 for m! +1.Moreover, by (3.19) and (3.22) it followssupm Z
�(jDumj)dy < +1; (3.27)hene by taking into aount the regularity result of Theorem 2.7, we have thatthere exists Æ > 0, independent on m, suh thatsupm Z
0 �(jDumj)��(jDumj)jDumj �Ædy < +1: (3.28)De�ne �Æ(t) = �(t)h�(t)t iÆ and let �Æ(s) = �Æ(��1(s)), the funtion	Æ(t) = Z t0 �Æ(s)s dsis a N-funtion of lass �2 suh that 	Æ(t) � �Æ(t) for every t 2 [0;+1). Hene,by taking into aount Young's inequality we getZ
m �(jDumj)dy � k�(jDumj)kL	Æ (
m)k1
mkLe	Æ (
m):Notie that k1
mkLe	Æ (
m) = Ln(
m)	Æ�1� 1Ln(
m)� ;and thus we infer k1
mkLe	Æ (
m) ! 0 for m! +1. Moreover, the very de�nitionof the Orliz norm yieldsk�(jDumj)kL	Æ (
m) � 1 + Z
m �Æ(�(jDumj))dy;and therefore by (3.28) we an onludelimm Z
m �(jDumj)dy = 0: (3.29)By the generalization of Poinar�e inequality to N-funtions (see Lemma 5.7of [24℄) and (3.27) the sequene (um) � W 10E� �
;RN � has equibounded normsin W 1L� �
;RN �. Therefore, there exists a subsequene, still denoted by (um),onverging to a funtion u 2 W 10E� �
;RN � in �w �W 1L� �
;RN �.Consider inequality (3.22), then the hoie of 
m and formulas (3.17)1, (3.18)yieldGim(x0; s0; z0) + 1m � 1Ln(
) Z
0n
m gi(x0; s0; z0 +Dum)dy (3.30)� 1Ln(
) Z
0 gi(x0; s0; z0 +Dum)dy � i+ 0Ln(
) Z
m (1 + �(jz0 +Dumj)) dy:13



Hene, by taking into aount the lower semiontinuity result in the autonomousase f = f(z) (see Theorem 3.1 of [15℄) and formula (3.29), passing to the limit in(3.30) we havelimm Gim(x0; s0; z0)� �Z 
gi(x0; s0; z0 +Du)dy � 1Ln(
) Z
n
0 gi(x0; s0; z0 +Du)dy� gi(x0; s0; z0)� 1Ln(
) Z
n
0 gi(x0; s0; z0 +Du)dy; (3.31)where the last inequality follows by the quasi-onvexity of gi. Indeed, ondition(3.17)1 assures the ontinuity of the funtionalv 2W 1L� �
;RN �! Z
 gi(x; v;Dv)dxin the strong topology of W 1L� �
;RN �, thus quasi-onvexity inequality for gian be extended also to test funtions in W 10E� �
;RN �.Eventually, by letting Ln(
 n
0)! 0 in (3.31) we getlimm Gim(x0; s0; z0) � gi(x0; s0; z0);whih onludes the proof of the lemma.We an now prove Theorem 3.1.Proof of Theorem 3.1 With �xed " > 0, de�nef"(x; s; z) = f(x; s; z) + 2�2(jsj) + 3(x) + "�(jzj) + ";where " > 0 is hosen suh thatf"(x; s; z) � "2�(jzj);for every (x; s; z) 2 
�RN �RNn . The existene of suh " follows by the growthonditions (3.11) of f and the assumption �1 �� �.Let (f";k)k be the sequene of quasi-onvex funtions provided by Theorem3.2, then arguing like in Lemma 4.3 of [32℄ the funtionals F k" :W 1L� �
;RN �! Rde�ned by F k" (u;
) = Z
 f";k (x; u;Du) dxare sequentially lower semiontinuous in �w�W 1L� �
;RN �. Moreover, onsiderthe funtional F" : W 1L� �
;RN �! R de�ned byF"(u;
) = Z
 f" (x; u;Du) dx;14



sine F"(�;
) = supk F k" (�;
) we infer the lower semiontinuity of F"(�;
) in �w�W 1L� �
;RN �.Let (ur) be a sequene weakly� onverging to u in W 1L� �
;RN �, sine thehoie of �2, Proposition 2.4 and the embedding Theorem 2.5 yield the onvergeneof (ur) to u in the norm topology of L�2(
;RN ) and u 2 E�2(
;RN ). Hene, byapplying Proposition 2.3 we inferlimr Z
�2(jurj)dx = Z
�2(juj)dx;and sine the �w �W 1L� �
;RN � onvergene of (ur) to u yieldssupr Z
 �(jDurj)dx �M;we getlim infr Z
 f(x; ur; Dur)dx� lim infr Z
 f"(x; ur; Dur)dx� Z
 (2�2(juj) + 3(x) + ") dx � "M� Z
 f"(x; u;Du)dx� Z
 (2�2(juj) + 3(x) + ") dx� "M� Z
 f(x; u;Du)dx� "M;whih onludes the proof as "! 0.4 Existene and AppliationsLet us �rst reall few fats about trae operator in Orliz-Sobolev spaes. Let 
be suh that �
 is Lipshitz regular, in this ase one an de�ne a trae operatorfromW 1E� �
;RN � to E� ��
;RN � whose kernel is exatlyW 10E� �
;RN �. Notethat in ase � 2 �2 we have W 1L� �
;RN � � W 1E� �
;RN �, L� ��
;RN � �E� ��
;RN � and W 10E� �
;RN � is �w �W 1L� �
;RN � losed (see [20℄,[28℄).The last statement enable us to onsider Dirihlet's boundary values problemsin Orliz-Sobolev spaes in ase � 2 �2.In the vetorial setting, as pointed out in [24℄, the most natural growth on-ditions to impose on the stored energy densities f are the ones given below, i.e.,�1�1(jzj)�b(x)�2(jsj)�3(x) � f(x; s; z) � 2�(jzj)+b(x)�2(jsj)+3(x); (4.32)f(x; s; z) � ef(z)� b(x)�2(jsj)� 3(x) (4.33)15



where in (4.32) i > 0 for i = 1; 2, 3 2 L1(
), �, �1 and �2 are N-funtionssuh that � 2 �2 and �i �� � for i = 1; 2. Moreover in (4.33) b 2 Ee�(
) with �de�ned by (2.6) is suh that �Æ�2 � � and ef : RNn ! R is a stritly quasi-onvexfuntion in z = 0, i.e., ef is a ontinuous funtion suh that4 Z
 �(jD'j)dx + ef(0)Ln(
) � Z
 ef(D')dx (4.34)for every ' 2 W 10E� �
;RN � with 4 > 0. Without loss of generality we may alsoassume ef(0) = 0.Let us state and prove the following existene result (for related results inthe poly-onvex ase see [4℄).Theorem 4.1 Let f : 
 � RN � RNn ! [0;+1) be a Carath�eodory's funtion,quasi-onvex with respet to z satisfying (4.32),(4.33).Let u0 2W 1L� �
;RN �, onsider the Dirihlet's lassV0 = u0 +W 10E� �
;RN � ;then the variational problem inffF (u;
) : u 2 V0ghas solution.Proof. Let u 2 V0 and set ' = (u � u0), then assumption � 2 �2 and formulas(4.33),(4.34) yieldZ
�(jDuj)dx �  Z
�(jD'j)dx +  Z
 �(jDu0j)dx (4.35)�  Z
 ef(D')dx +  Z
 �(jDu0j)dx�  Z
 f(x; u;D')dx+  Z
 (b(x)�2(juj) + 3(x) + �(jDu0j)) dx;denoting with  a generi onstant whih may varies from line to line. By takinginto aount Proposition 3.2 of [15℄ we haveZ
 f(x; u;D')dx (4.36)= Z
 (f(x; u;D')� f(x; u;Du)) dx+ Z
 f(x; u;Du)dx�  Z
�p(j�j) + p(jDuj) + p(jDu0j)�jDu0jdx+ Z
 f(x; u;Du)dx;16



where �(x) = ��1�3(x) + b(x)�2(ju(x)j)� and reall that p is the right derivativeof �. Notie that sine b 2 Ee�(
) then by Young's inequalityZ
 b(x)�2(juj)dx � Z
 e�(1" jb(x)j)dx + " Z
 �(juj)dx; (4.37)Whih implies that � 2 L� �
;RN �. Moreover, by taking into aount assumption� 2 �2, (4.37), Young's inequality and Poinar�e's inequality for N-funtions itfollowsZ
�p(j�j) + p(jDuj) + p(jDu0j)�jDu0jdx (4.38)�  Z
�3(x) + �(jDu0j) + e�("jb(x)j)�dx+ " Z
 (�(juj) + �(jDuj)) dx�  Z
�3(x) + �(ju0j) + �(jDu0j) + e�("jb(x)j)�dx+ 2" Z
 �(jDuj)dx:Hene, olleting (4.35),(4.36) and (4.38) we getZ
�(jDuj)dx �  Z
 f(x; u;Du)dx+ Z
�3(x) + �(ju0j) + �(jDu0j) + e�("jb(x)j)�dx;whih yields the oerivity of F (�;
) on V0.Eventually, by applying Theorem 3.1, the Diret Methods yields the existeneof a minimizer for F (�;
) on V0.We now give some appliations of our result.Zhang in [37℄ developed a method to onstrut non trivial, i.e., non onvex,quasi-onvex funtions gp = gp(z) with polynomial growth p � 1 at in�nity. Underadditional assumptions the resulting funtions gp are not even poly-onvex.In [15℄,[16℄ a suitable modi�ation of Zhang's method, i.e., using N-funtionsinstead of powers, enabled the onstrution of quasi-onvex funtions g� = g�(z)satisfying the non-standard growth onditions0(�(jzj)� 1) � g�(z) � 1(�(jzj) + 1)with 0; 1 > 0. Therefore, given a funtion a 2 L1(
 � RN ) suh that a(x; s) �2 > 0 a.e., the funtion f�(x; s; z) = a(x; s)g�(z) satis�es onditions (4.32),(4.33)of the existene Theorem 4.1. Hene, we may apply the result above to solveDirihlet's boundary values problems for the integral funtionalsF�(u;
) = Z
 f�(x; u;Du)dx: (4.39)17



We remark that in the ase of variational integrals whose integrands f have(p; q) growth (p < q) and depend on the full set of variables, weak lower semi-ontinuity results in W 1;p(
;RN ) are available only under additional ontinuityassumptions on the dependene of f on (x; s) (see Remark 4.3 of [17℄). Moreover,there is a restrition on the mutual dependene of p and q. Our approah bypassesthese limitations for funtionals whose energy densities are ontrolled in terms ofN-funtions of lass �2.Let, for instane, �(t) = t2log(1+t) , then the orresponding f� has (p; q) growthwith p = 2� " and q = 2 for every " > 0. The known results in ordinary Sobolevspaes implies the sequential lower semiontinuity of F�(�;
) in the weak topologyof W 1;2(
;RN ), but the funtional is oerive only on W 1;2�"(
;RN ). Thus, theSobolev spaes setting does not allow the use of the Diret Methods to solveDirihlet's boundary value problems unless one is able to exhibit a minimizingsequene possessing higher integrability properties.Eventually, let �(t) = ta+b sin(sin(log(t))) with a > 1 + bp2, and let f� =f�(x; z). Notie that f� has (p; q) growth with p = a � b and q = a + b, thusthe results of Marellini [33℄ ensures the weak lower semiontinuity of F�(�;
) inW 1;a�b(
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