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Abstract

We study the lower semicontinuity properties of non-autonomous vari-
ational integrals whose energy densities satisfy general growth conditions.
We apply these results to solve Dirichlet’s boundary value problems for such
functionals.
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1 Introduction

In this paper we consider the variational approach to prove the existence of equi-
librium solution in non-linear elasticity. We take into account only elastic materials
possessing stored energy functions, for such materials the problem consists in find-
ing a vector field u : Q@ — RN, where Q is a bounded open subset of R”, which is
a solution of

m = inf {F(u, Q) : u = ug on 00}, (1.1)

where

F(u,Q) = /Q £ (2, u(x), Du(z)) dz, (1.2)

with f: Q x RN x RV — R a Carathéodory’s integrand. As usual, we study this
problem by using the Direct Methods of the Calculus of Variations, therefore the
main questions is to determine conditions on f ensuring coercivity and sequential
lower semicontinuity for F(-,€Q) with respect to the same topology.



A suitable condition on stored energy function f, termed quasi-convezity, was
introduced by Morrey in a fundamental paper in 1952: f is quasi-convex in z in
Morrey’ sense if for every (o, 59,20) € 2 x RN x RN™ and ¢ € C5°(Q, RY) there
holds

f(x(h SOazo)ﬁn(Q) < /(;f(x(]: 50,20 + D(p(y))dya

denoting with £™(2) the n dimensional Lebesgue’s measure of Q. Morrey showed
under strong regularity assumptions on f, that F(-,Q) is sequentially lower semi-
continuous in the weakx topology of W>°(Q, RV) if and only if f is quasi-convex.

In the last years a great interest has raised around quasi-convex integrals of
type (1.2), satisfying the so called (p, q) growth conditions, i.e.,

o2’ = 1) < flz,5,2) < er(1 + |2]7) (1.3)

with 1 < p < ¢. Indeed, in non-linear elasticity, conditions N =n = q and ¢ > p
play a fundamental role in the study of cavitation since they allow discontinuous
deformations of the elastic body.

When p = ¢, the case of natural growth, Acerbi-Fusco [2] and Marcellini [32]
proved the sequential weak lower semicontinuity of F'(-,Q) in the weak topology
of WLP(Q,RY).

Many authors have studied the lower semicontinuity and relaxation proper-
ties for functionals satisfying (1.3) in the Sobolev space setting obtaining sharp
conditions on the mutual dependence of p and q. When f = f(z,2) > 0, and
imposing further structure conditions on f, the lower semicontinuity inequality

liminf F(u,, Q) > F(u,) (1.4)

has been established by Marcellini [33] along sequences (u,) in W14 (Q, RY) con-
verging in the weak topology of W ?(Q,RY) for p > 747¢- In the autonomous
case f = f(z) the lower semicontinuity inequality (1.4) was proven to hold true
for p > g — 1 by Fonseca-Marcellini [18], and for p > ”T_lq by Fonseca-Maly [17].
See also Maly [30] for related counterexamples and others for refinements (see
1151, [11],[22],[23].27],29],[31]).

However, this approach cannot be directly applied to establish existence re-
sults fo Dirichlet’ s boundary value problems since the different topologies with
respect to whom the functionals are coercive and lower semicontinuous.

Our aim is to study a particular class of integrands with (p, ¢) growth, those
for which the stored energy function is controlled in terms of suitable convex
functions. More precisely, we assume that f is a quasi-convex function satisfying
the non-standard growth conditions

—c1®1(|2]) = e2®a((s]) — cs(@) < flw,5,2) < gl 5) {1+ 2(]2))}, (1.5)

where ¢1,co are positive constants; c3 € L'(Q); ®,®; and ®, are N-functions
suitably related; and g : Q x RV — R is a positive Carathéodory’s function.



With this general growth conditions Orlicz-Sobolev spaces provides the nat-
ural setting where to study the lower semicontinuity properties of functionals in
(1.2). Indeed we prove that F(-,Q) is sequentially lower semicontinuous in the
weakx topology of the Orlicz-Sobolev space W'L® (Q, RY), assuming that in (1.5)
® satisfying a sub-homogeneity property at infinity called A, property, and @,
®, satisfying some asymptotic conditions with respect to ®.

Moreover, we estabilish an existence result for such class of integrands. Thus,
we are able to study energy densities, depending on the full set of the variables
with (p, q) growth and oscillating behaviour. Indeed, the coercivity and lower semi-
continuity now holds in the Orlicz-Sobolev spaces setting.

Ball [4] was the first to set some variational problems in the framework of
Orlicz-Sobolev spaces considering the poly-convex case. Recently, Focardi in [15]
has proved the lower semicontinuity properties for functionals in (1.2) in Orlicz-
Sobolev spaces for the integrands f = f(z) satisfying the non-standard growth
conditions (1.5) with ® € A,. This result will be an ingredient to prove semicon-
tinuity Theorem 3.1 below.

The case of N-functions ® not sharing the A, property, corresponding roughly
to exponential growth, has been considered by Focardi-Mascolo in [16] where a
suitable semicontinuity property has been proved.

The plan of the paper is the following:

Section 2 is devoted to all the preliminary results about Orlicz-Sobolev spaces
and the quasi-convex envelope of a function; moreover we recall the statement of a
recent result of higher integrability for local minimizers of integral functionals with
general growth conditions proved by Cianchi-Fusco [7]. In Section 3 we prove a
semicontinuity result, obtained by suitable modifications of the arguments used in
the natural growth case by Marcellini [32]. The proof is based on an approximation
procedure of the stored energy function by a non-decreasing sequence of quasi-
convex functions. Eventually, Section 4 is devoted to the proof of an existence
theorem and to some application to non trivial examples.

2 Notations and Preliminaries

We denote by (-,-) the Euclidean scalar product in R” and with | - | the usual
Euclidean norm. Throughout all the paper 2 denotes an open and bounded subset
of R® with Lipschitz boundary. We denote by L™ the Lebesgue measure on R"
and the notation a.e. stands for almost everywhere with respect to Lebesgue mea-
sure. We use standard notations for spaces of classically differentiable functions,
Lebesgue and Sobolev spaces. Given any function u € L'(Q) the symbol f—Qu dx
stands for the average of u over (O, i.e., L%(Q) fQ u dz.



2.1 N-functions and Orlicz Spaces

For ease of reference we recall some definitions and known properties of N-functions
and Orlicz spaces (see [26],[35]).
A convex function @ : [0, +o00[— [0, +o0] is called N-function if it satisfies the
following conditions: ®(0) =0, ®(¢) > 0 for ¢t > 0, and
(1) I d(t)

lim —= =0, im —= =400
t—0 t t—+oo ¢

Such a function ® has an integral representation of the form

w0 = | ' pls)ds

for every t > 0, where p : [0, +oo[— [0, 4+00[ is non-decreasing, right continuous
and it satisfies the conditions: p(0) = 0, p(s) > 0 for s > 0, and
li = .
D P(8) = Hoo
The function p is called the right derivative of ®.
The notion of N-function can be relaxed, in the sense that only the behavior at
infinity is important. Indeed, given any convex function @ : [0,+oo[— [0, +o0]
satisfying
t
lim @ =+
t—+oco ¢
there exists a N-function ® and to > 0 such that Q(¢t) = ®(t) for every t > to.
Such a function @ is called principal part of the N-function ®, since this we will
not distinguish the two concepts anylonger.
The set of N-functions can be endowed with a partial ordering, we say that
®, dominates ®5, and we write &5 < &, if there exist two constants k,ty > 0
such that for every ¢t > tg it holds

By (t) < By (kt).

If, moreover, @5 < ®; and ®; < ®, we say that ®; and ®, are equivalent, while if
®; dominates ®5 but ®;,P, are not equivalent we say that ®; dominates strictly
®,, and we write @5 << ®;. We remark that if &, << ®; there exists a N-function
I" such that T' o &5 < ®;. For instance, I' can be defined as the primitive of

inf{w: t>s} s>1
q(s) = (2.6)

q(1)s 0<s< Ll

Let ® be a N-function, define the function

(1) = max{st - b(s)},



P is a N-function called the complementary N-function of ®. By the very definition
of @, the pair ®, ® satisfies Young’s inequality, i.e.,

st < ®(s) + B(t),

for every s,t > 0, with equality holding if ¢ = p(s) or s = p(t), where p is the right
derivative of ®.
In the sequel we will consider a special class of N-functions.

Definition 2.1 We say that a N-function ® satisfies the Ay condition, and we
write ® € Ao, if there exist two constants k > 1 and tg > 0 such that for every
t >ty there holds

d(2t) < kP(1).

By taking into account Proposition 2.1 of [10] we infer the following result.
Proposition 2.2 Let ® be a N-function, the following conditions are equivalent
(i) ® € Ay;
(i) there exists r > 1 and to > 0 such that for every t > to there holds

tp(t) < ro(t);

(iii) there exists r > 1 and to > 0 such that for every t > to and X > 1 there holds

B(\) < N D(1).

Conditions (i7), (#4¢) above hold true with the same r > 1, hence we write ® € AL.
It is easy to check that ®(¢) = " belongs to AL, r > 1, and that ®(¢) = t"log®(1+1),
for r > 1 and a > 0, is a N-function of class A" for every ¢ > 0. Moreover,

the functions ®(t) = m, with r > 2, and ®(t) = gatbsinsin(log(t))) - with

a > 1+ by/2, are N-functions of class As. The function ®(t) = ¢! —t —11is a
N-function which is not in class A, (for further properties of N-functions of class
Ay see [3]7[26]7[28]7[35])

Let Q be an open bounded set of R”, the Orlicz class K®(Q,RY) is the
set of all (equivalence classes modulo equality a.e. in  of) measurable functions
u:Q — RV satisfying

/ O(Ju|)dz < +oo.
Q

The Orlicz space L® (Q, ]RN) is defined to be the linear hull of K®(Q,RY). The
functional || - |0 : L2(Q,RY) — R, defined by

||u||d>79=inf{>\>0:/<1><l|> dazgl},
0 X



is a norm, called Luzemburg norm, and L®(Q,RY) is a Banach space if endowed
with it. In the sequel we will denote by s — L® (Q, ]RN) the norm convergence in
L% (9,RV).

The closure of C§°(Q, RY) in the norm topology of L® (Q, ]RN) is denoted
by E®(Q,RV), the inclusions E®(Q,RY) C K®(Q,RY) C L® (Q,IRN) are trivial
with equalities holding if and only if ® € A,.

The following result on the integral convergence in Orlicz spaces has been
proved in [16].

Proposition 2.3 Letu € E® (Q, ]RN), then for every (u,) — u in s— L% (Q, ]RN)
and for every A > 0 there holds

np/Q@(Murl)da::/Q@(Mu\)dx.

The partial ordering introduced in the set of N-functions induces topological
embeddings among Orlicz spaces.

Proposition 2.4 Let ®,,95 be two N-functions such that ®5 < ®, then the
embedding

L (Q,RY) — L* (Q,RY)
is continuous. Moreover, if ®5 << ®1 then

L (Q,RV) — E* (Q,RY) .

The Orlicz-Sobolev space W'L® (Q,RV) is defined to be the set of all func-
tions in L® (2, RY) whose first order distributional derivatives are in L® (Q, RY).
It is a Banach space if endowed with the norm

lulli 3.0 = llulls o+ IVullg o
As in the case of ordinary Sobolev spaces W E® (Q,RY) is taken to be the closure
of C§°(Q,RY) in the norm of W'L?® (Q,RV).
Let @ be a given N-function, we may suppose that

1 ¢—1
/ (S)ds < 400,
0

1
sltw

replacing, if necessary ® by an equivalent N-function. Assume, moreover, that

/+00 q)_l(s)ds = 400, (2.7)

1
sttw

then we define the Sobolev’s conjugate function @, of ® by

@0 = [ s

1
sitw

for every ¢t > 0. The following compact embedding theorem generalizes to Orlicz-
Sobolev spaces Rellich-Kondrakov’s one (see ch. VII of [3],[6] and sect. 7.4 of [28]).



Theorem 2.5 Let ® be a N-function.
(i) If (2.7) holds, the embedding

W'L? (Q,RY) < L*(Q,RY)
s continuous. Moreover, the embedding
WL (Q,RY) < L**(Q,RY)
is compact for every N-function &1 << ®,.
(i) If (2.7) does not hold, the embedding
W'L? (Q,RY) < C°(Q,RY)
18 compact.

We now introduce the weak# convergence in L® (Q, ]RN), denoted by xw —
L® (Q, ]RN). Since the Orlicz space L® (Q, ]RN) is isometrically isomorphic to the
dual space of E® (Q, ]RN), a sequence u, — u *w — L® (Q, ]RN) if and only if for
every v € E® (Q, ]RN) there holds

li{n/g(ur,v)dx: /Q(u,v)dx.

Thus, by means of the Hahn-Banach theorem, we are able to characterize the
weak* convergence in W'L?® (Q,RY), denoted by *w — W'L® (Q,RY), that is:
u, = u xw— WL (Q,RY) if and only if (u,) and (Dju,), 1 < i < n, converge
tow and D;u s w — L?® (Q, ]RN), respectively.

Following the notations of [13],[25],[36] W3 L® (€2, RY) denotes the weakx clo-
sure of W} E® (Q,RY) in WL? (Q,RY), hence the inclusion W} E® (Q,RY) C
WJL® (Q, ]RN) is trivial. By taking into account Corollary 1.10 of [25], the intersec-
tion of W L® (Q,RY) with H?;Lll E*(Q,RY) is exactly Wg E® (Q, RY), therefore
we can infer, when & € Ay, the equality Wg E® (Q,RY) = W§L® (Q,RY).

2.2 Quasi-convex Envelope

In this section we state the main properties of the quasi-convex envelope of a
given measurable function satisfying non-standard growth conditions. The case of
natural growth has been established by Dacorogna [8] (see also [24]). The genera-
lization to the non-standard case is not difficult, we report only the statements of
the results without the arguments of their proofs.

Let A : RV — R* be a measurable function, define

() =int { he+ Doy € CF@EY)



by taking into account Proposition 5.3 of [24] we have that if @y and Q. are
bounded open sets of R” then vo, = yq, = Yq, so that we can drop the dependence
on {2 in the definition of 7 and denote it just by ~.

Moreover, assume that

(i) there exists a N-function ® € A, such that for every z € RV

co®(|z]) < h(z) < cr(1 4 @(|2])); (2.8)
(ii) there exists w € C°(R*,R"), with w(0) = 0, such that
h(z) = h(w)| < (1 + @(|2| + [w] + 1))w(]z — w]). (2.9)

By taking into account the growth condition (2.8) and the continuity assumption
(2.9) it is easy to check that

v(2) = inf {][Qh(z + Dy(y))dy : ¢ € WS E® (Q,]RN)} .

Moreover, the same assumptions imply that v is a continuous function.
Define @Q.h, the quasi-convex envelope of h, to be

Q.h =sup {¢: ¢ < h quasi-convex},

then, arguing as in the case of natural growth we can prove the following charac-
terization of Q. h.

Theorem 2.6 Let h: RN" — RT be satisfying (2.8) and (2.9), then v = Q.h.

2.3 A Regularity Result

In the proof of Theorem 3.1 we will need a regularity result for local minimizers
of functionals with non-standard growth. In particular, we will make use of higher
integrability properties recently proved by Cianchi-Fusco [7].
Let h : RN™ — R be a continuous function such that there exists a N-function
® ¢ A, for which
co®(|2]) < h(z) < 1 (1 +@(]2]))

for every z € RV",
We say that u is a quasi-minimum, or equivalently @Q-minimum, for the func-
tional H : W'L? (Q, RN ) — R defined by

Hv,Q) = /Qh(Dv(a:))da:,

if there exists a constant () such that for every open set g CC € there hold

/ ®(|Dul)dz < 400,
Qo



and
H(u, Q) < QH (u+ 1, Q),

for every weakly differentiable function 1 : Q3 — RV with compact support and

such that [, ®(|D¢|)dz < +oc.
The following result holds true (see Theorem 1.1 of [7]).

Theorem 2.7 Let u be a Q-minimum of H with h as above, then for every open
subset Qg CC Q there exists & > 0 depending on n, ®, Qq, dist(Qg,dN) and
Jo, ®(|Dul)dz such that

/QO &(|Dul) <‘I)|(|£;|‘|)>adx < +00. (2.10)

We remark that by using the same arguments of [7], it is possible to prove
that given a sequence (uy) of @-minima for H(-,Q) such that

sup/ ®(|Dug|)dz < +o0,
k Joo

with fixed Qg CC €, there exist a positive constant § independent from k such

that s
‘P(Duk|)>
su ®(|Du ——— | dx < +oc.
o [, 200w (* 5

3 A Semicontinuity Result

Let f: QxRN x RV — R be a Carathéodory’s function, i.e., f is measurable
with respect to x for every (s, z) € RN x RV and continuous with respect to (s, 2)
a.e. in (1, satisfying the growth condition

—c1®1([2]) — 2®a(|s]) — es(x) < f(z,s,2) < g(z,5) (1+ 2(|2])) (3.11)

where ¢y, co are positive constants, c3 € L'(Q), ® is a N-function of class A5, &,
and ®, are N-functions such that ®; << ® and either ®; << @, if (2.7) holds or
®, is arbitrarily chosen otherwise and ¢ : @ x RN — R is a positive Carathéodory’s
function.

Assume that f is quasi-convez with respect to z, i.e., for every (zq, so, 20) €
Q xRV x RV and ¢ € C5°(Q, RY) there holds

f(@o0, 50, 20) < f (w030, 20 + D)) dy. (3.12)

The following semicontinuity theorem holds true.



Theorem 3.1 Let f : @ x RY x RV” — R be as above, then the functional
F:W'L? (Q,RY) - R defined by

F(.9) = [ f(@u(e). Du(w))da

is sequentially lower semicontinuous with respect to xw — W'L® (Q, ]RN).

The proof of the Theorem 3.1 is based on the following approximation result.

Theorem 3.2 Let f : Q@ x RNV x RV® — R be as above, assume that (3.11) is
substituted by
co®(|2]) < f(z,5,2) < g(x,s)(1+ 2(]2])) (3.13)

where ¢y is a positive constant.
Then there exists a sequence (fr) of Carathéodory’s functions quasi-convex
with respect to z such that fi : @ x RY x RV — R satisfies

cod(J2]) < fule, 5,2) < K1+ B(|2])) (3.14)
fe(z,s,2) =co®(|z]) Is| >k, |z2|>k (3.15)
fr < frma sup fr=1f (3.16)

Proof. In the first part of the proof the arguments are similar to those of Theorem
1.2 of [32]. However, for the sake of completness we outline the main ideas.

First we perform a truncation with respect to variables (z,s). For i € N, let
¢; : R —» R be a continuous function such that

G =1 0<t<i—1, ¢i(t)=0 t>i,

A ’j(ag‘z‘)) glz,s) >1i

and define

gi(:c,s,z) = ni(‘ras)f(x: S:Z) + (1 - 771(1:3))00‘1’(‘2‘)

The functions g; are Carathéodory’s functions quasi-convex with respect to z such
that
co®([2]) < gi(w,5,2) < (i + co)(1 + B(|2])),
gi(iE,S,Z) ZCO(I)(|Z|) ‘S‘ Zla
gi(x,s,2) = f(z,s,2) i>g(z,s)+|s|+ 1,
ligngi(x,u,z) = squi(x,s,z) = f(z,s,2). (3.17)

10



Now, we perform a truncation with respect to z. Define the Carathéodory’s
function
gim (2,5, 2) = dm([2))gi(z, 5, 2) + (1 = dm([2]))co®(]2]).- (3.18)
The functions g¢;, are not quasi-convex with respect to z, therefore we consider
their quasi-convex envelopes G;,,,. Hence, the quasi-convexity of G, and condition
(3.17); imply
co®(|2]) < Gim(w,s,2) < (i +co)(1+ 2(|2])), (3.19)

moreover, (3.17)s yields
Gim(x,s,2) = co®(|2]) (3.20)

i. By taking into account (3.19) and (3.20), we may apply
nd the following integral representation formula for G,

for |z| > m, |s

>
Theorem 2.6 and fi

Gim(x,s,Z)zinf{][ gim(x,5,2 + Dp(y))dy : ¢ € Wy E® (Q,RN)}- (3.21)
Q

The more significant and technically difficult part of the proof is worked out in
Lemma 3.3 below in which we prove that (Gim)men converges to g; pointwise on
Q. Assuming Lemma, 3.3 to hold true, we can conclude the proof of Theorem 3.2.
Indeed, for k& > 2 + ¢¢ define

fr(z, s, z) = max{Gim(z,s,2) : i + m < k},

then fj, satisfies (3.14), (3.15) and (3.16). 7

Lemma 3.3 For every i € N the sequence (Gim)men converges to g; pointwise on
Q.

Proof. With fixed i € N let (xg,50,20) € Q x RY x RV, First notice that
(Gim(zo, S0, 20))men 18 a non decreasing sequence and that for every m € N in-
equality Gim (2o, S0, 20) < gi(z0, So, 20) is trivial by the very definition of G, (see
(3.18) and (3.21)).

By the representation formula (3.21), for fixed m € N there exists w,, €
Wy E® (Q,RY) such that

1
][ 9im (%0, S0, 20 + Dwy,)dy < Gim (%0, 50, 20) + —.
Q m
Consider the functional
11 N
ve W, (QRY) —>][ 9im(Z0, So, 20 + Dv)dy,
Q

by taking into account Ekeland’s Variational Principle (see [14],][24]) there exists
Um € Wy (2, RN) such that

1
][ Gim (%o, 80, 20 + Dy )dy < Gim (0, 50, 20) + o (3.22)
Q

11



and such that for every ¢ € W' (€, RV) there holds
][ gim (%o, 80, 20 + Dy, )dy
Q
1
< ][ 9im(Zo, S0, 20 + Dp)dy + — / |Duy, — Depl|dy. (3.23)
Q mJjq
Let us prove that (u,,) is a sequence of @-minima, with @ independent on m, of
the functional
v e WEE® (Q,RY) - / (14 &(|Dv)))dy,
Q

i.e., there exists @ such that for every ¢ € WJE® (Q,RY), denoted ¥ = supp(yp —
Um), there holds

/ (1+ @(|Duml)) dy < Q/ (1+ @(|Dgl)) dy. (3.24)
b b
First notice that formulas (3.17)1,(3.19) and (3.23) yield for m sufficiently large
co/ ®(|z0 + Dup|)dy
b
< (i 4 ¢o) / (14 ®(|z0 + Dypl)) dy + / |Duy, — Dep|dy. (3.25)
® ®
Without loss of generality we may assume c¢g < 1, hence Young’s inequality yields
Co Cp ~ (27
Dty = Dyl < F20(Dun) + 28D + 8 (=), @320)

then combining (3.25),(3.26) and assumption ® € A} we get

[ 4Dy
< (;—0 + 2) /ZtI)(|D<p|)dy +47 (@(zo) +d <i—0) + Ci + 1) L7 (),

which implies (3.24) with @ = Q(co, 7,7, ®(|20]))-
Let Qo CC Q be fixed, formulas (3.19) and (3.22) give

o @120 + Dty < (i + ) (1 +8z0]).
Q
hence, setting Qp, = {y € Qo : |20 + Duy(y)| > m — 1}, we get

B(m —1)L"(Q) < (;—0 + 1) (14 ®(|20])) L(2),

12



and then £"(Q,) — 0 for m — +oc.
Moreover, by (3.19) and (3.22) it follows

sup/ O (| Dy |)dy < +00, (3.27)
m Jo

hence by taking into account the regularity result of Theorem 2.7, we have that
there exists § > 0, independent on m, such that

®(|Dup)\’
sup /Qo tI>(|Dum)<Tm|> dy < +o0. (3.28)

m

B
Define ®5(t) = d(¢) [@] and let T'5(s) = ®5(®1(s)), the function

‘I’(j(t) ZA Fé—(S)dS

S

is a N-function of class Ay such that ¥s(t) < Ts(t) for every t € [0, +00). Hence,
by taking into account Young’s inequality we get

| #Dun )y < 14DunDl 050, 10 54,

m

Notice that 1
) o -1({_ +
||1Qm||L‘I's(Qm) = L") Ty <£"(Qm)> ;

and thus we infer ||1g — 0 for m — +oc0. Moreover, the very definition

m HL‘i’é(Qm)
of the Orlicz norm yields

120Dty 5(0,) < 1+ [ To(@(Dun )y,

m

and therefore by (3.28) we can conclude
lim/ (/D |)dy = 0. (3.29)
m Jq,

By the generalization of Poincaré inequality to N-functions (see Lemma 5.7
of [24]) and (3.27) the sequence (u,,) C WJE® (Q,RY) has equibounded norms
in W'L?® (Q,RV). Therefore, there exists a subsequence, still denoted by (uy,)
converging to a function u € W E® (0, RY) in »w — W'L® (Q,RV).

Consider inequality (3.22), then the choice of §2,,, and formulas (3.17)4, (3.18)
yield

1
Gim (o, 80,20) + — > / 9i(z0, S0, 20 + Dum)dy (3.30)
m — L") Jon\a..

1 i+ co

) 590 D m -
2@ Jo, B0 20 DUn) = g

> /Qm (14 ®(|20 + Dum|)) dy.
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Hence, by taking into account the lower semicontinuity result in the autonomous
case f = f(z) (see Theorem 3.1 of [15]) and formula (3.29), passing to the limit in
(3.30) we have

lim G, (20, S0, 20)
m

> ][ 9i(x0, S0, 20 + Du)dy — 9i(xo, S0, 20 + Du)dy
Q

@
L) Jova,
1
> gi(xo, s0, 20) — /J”—(Q) /Q\Q 9i(xo, s0, 20 + Du)dy, (3.31)

where the last inequality follows by the quasi-convexity of g;. Indeed, condition
(3.17); assures the continuity of the functional

vew'rL® (Q,]RN) — / gi(z,v, Dv)dz
Q

in the strong topology of W1L® (Q,]RN), thus quasi-convexity inequality for g;
can be extended also to test functions in W3 E® (€, RY).
Eventually, by letting £"(Q2\ Qo) — 0 in (3.31) we get

lim Gim (%0, 50, 20) > 9i(To, S0, 20),
which concludes the proof of the lemma. _

We can now prove Theorem 3.1.

Proof of Theorem 3.1 With fixed € > 0, define
fe(z,8,2) = f(,5,2) + ca®a(|s]) + e3(z) +e®(|2]) + ce,
where ¢, > 0 is chosen such that

felw,5,2) 2 59(|z]),

| ™

for every (z,s,2) € @ x RV x RN, The existence of such ¢, follows by the growth
conditions (3.11) of f and the assumption ®; << ®.

Let (f: 1), be the sequence of quasi-convex functions provided by Theorem
3.2, then arguing like in Lemma 4.3 of [32] the functionals F¥ : W!'L* (Q,RY) —» R
defined by

FFu,Q) = / fer (x,u, Du) dz
Q

are sequentially lower semicontinuous in sw — W'L® (Q, ]RN). Moreover, consider
the functional F. : W!'L® (Q, ]RN) — R defined by

F.(u,Q) = /Qfs (z,u, Du) dz,

14



since F.(-, Q) = sup,, F¥(-,Q) we infer the lower semicontinuity of F. (-, Q) in *w —
WIL® (Q,RY).

Let (u,) be a sequence weakly* converging to u in W!'L® (Q, ]RN), since the
choice of @5, Proposition 2.4 and the embedding Theorem 2.5 yield the convergence
of (u,) to u in the norm topology of L*2(Q,RV) and u € E®2(Q, RV). Hence, by
applying Proposition 2.3 we infer

lim/ <I>2(\ur|)d:n=/<l>2(|u\)da:,
rJa Q

and since the xw — W!L?® (Q,RY) convergence of (u,) to u yields
sup/Q ®(|Du,|)dz < M,
we get
limrinf /Q f(z,u., Du,)dz
> limrinf/gfs(:r,ur,Dur)d:E — /Q (ca®a(Jul) + e3(x) + cc)dx —eM
> /Q fe(z,u, Du)dz — /Q (ca®a(Jul) + c3(x) + cc)dx —eM
> /Qf(x,u,Du)dx—sM,

which concludes the proof as ¢ — 0. 71

4 Existence and Applications

Let us first recall few facts about trace operator in Orlicz-Sobolev spaces. Let Q2
be such that 0 is Lipschitz regular, in this case one can define a trace operator
from W'E?® (Q,RY) to E® (092, RY) whose kernel is exactly W3 E® (Q, RV ). Note
that in case ® € Ay we have W'L® (Q,RY) = W'E?® (Q,RY), L® (0Q,RY) =
E* (09Q,RN) and Wg E® (Q,RY) is xw — W!L® (Q,RY) closed (see [20],[28]).

The last statement enable us to consider Dirichlet’s boundary values problems
in Orlicz-Sobolev spaces in case ® € As.

In the vectorial setting, as pointed out in [24], the most natural growth con-
ditions to impose on the stored energy densities f are the ones given below, i.e.,

—c1 P (|2])=b(x)P2(|s])—c3(z) < f(z,8,2) < ca®(|2])+b(z)Pa(]s])+e3(x), (4.32)

fz,5,2) 2 f(2) = b(z)®2(]s]) — c3(x) (4.33)

15



where in (4.32) ¢; > 0 for i = 1,2, ¢35 € L*(Q), ®, ®; and ®, are N-functions
such that ® € Ay and ®; << ® for i = 1,2. Moreover in (4.33) b € EF(Q) with T’
defined by (2.6) is such that T'o ®5 < & and f:RN" - Ris a strictly quasi-convez
function in z = 0, i.e., fis a continuous function such that

s /Q $(Dgl)dz + FO)L"() < /Q F(Dy)da (4.34)

for every p € W4 E® (Q, ]RN) with ¢4 > 0. Without loss of generality we may also

assume f(0) = 0.
Let us state and prove the following existence result (for related results in
the poly-convex case see [4]).

Theorem 4.1 Let f : Q x RN x RN" — [0, 4+oc) be a Carathéodory’s function,
quasi-convex with respect to z satisfying (4.32),(4.33).
Let ug € W'L® (Q, ]RN), consider the Dirichlet’s class

Vo =uo + Wy E® (,RY),
then the variational problem
inf{F(u,Q) :u € Vp}
has solution.

Proof. Let u € V and set ¢ = (u — ug), then assumption ® € A, and formulas
(4.33),(4.34) yield

/Q<I>(|Du|)d:n < c/Q<I>(|D<p|)d:U+c/Q<I>(|Du0\)dm (4.35)
< c/Qf(Dcp)dx+c/Q<I>(\Du0|)dx
< [ 1@ Do)z +c [ 0)@(ul) + er(o) + B Dug)) do,

denoting with ¢ a generic constant which may varies from line to line. By taking
into account Proposition 3.2 of [15] we have

/Qf(:r,u,Dgo)dx (4.36)
=/ (f(z,u, Dyp) —f(:n,u,Du))da:—}—/ f(z,u, Du)dx
Q Q

< C/Q(P(WD + p(|Dul) +P(|Du0\))|Du0\dw +/Qf(:n,u,Du)dw,
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where f(z) = ® ! (c3(z) + b(2)®2(Ju(z)|)) and recall that p is the right derivative

of ®. Notice that since b € E'(Q) then by Young’s inequality
~ 1
/ b(w)®s (|u))dz < / (L 1b(2) ) + a/ &(|u))dz, (4.37)
Q Q ¢ Q

Which implies that 6 € L® (2, RV ). Moreover, by taking into account assumption
® € Ay, (4.37), Young’s inequality and Poincaré’s inequality for N-functions it
follows

| (0060)+ 1D + 51 Do ) D (4.38)
< c/ (cs(z) + ®(|Duol) + f(cs|b(:ﬂ)|))d:c + 5/ (®(|u]) + ®(|Dul)) dz
Q Q
< c/9(63(56) + ®(|ug|) + ®(|Dug|) + L(ce|b(z)]))dz + 25/Q ®(|Dul)dz.
Hence, collecting (4.35),(4.36) and (4.38) we get

/Q<I>(\Du\)dx < c/Qf(:E,u,Du)dx
+e [ caa) + ®(Juol) + #(Duol) + (e () o

which yields the coercivity of F'(-,Q) on Vj.
Eventually, by applying Theorem 3.1, the Direct Methods yields the existence
of a minimizer for F(-,Q) on V5. 7

We now give some applications of our result.

Zhang in [37] developed a method to construct non trivial, i.e., non convex,
quasi-convex functions g, = gp(z) with polynomial growth p > 1 at infinity. Under
additional assumptions the resulting functions g, are not even poly-convex.

In [15],[16] a suitable modification of Zhang’s method, i.e., using N-functions
instead of powers, enabled the construction of quasi-convex functions g¢ = ge(2)
satisfying the non-standard growth conditions

co(®(|2]) = 1) < ga(2) < er(®(|2]) + 1)

with cg,c; > 0. Therefore, given a function a € L>®(Q x RV) such that a(z,s) >
co > 0 a.e., the function fs(z,s,2) = a(x, s)ga(z) satisfies conditions (4.32),(4.33)
of the existence Theorem 4.1. Hence, we may apply the result above to solve
Dirichlet’s boundary values problems for the integral functionals

(1, Q) = /Qf<p(a:,u,Du)d:U. (4.39)
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We remark that in the case of variational integrals whose integrands f have
(p,q) growth (p < ¢) and depend on the full set of variables, weak lower semi-
continuity results in W' P(Q, RV ) are available only under additional continuity
assumptions on the dependence of f on (z,s) (see Remark 4.3 of [17]). Moreover,
there is a restriction on the mutual dependence of p and ¢. Our approach bypasses
these limitations for functionals whose energy densities are controlled in terms of
N-functions of class A,.

Let, for instance, ®(t) = ﬁ, then the corresponding fs has (p, q) growth
with p =2 — ¢ and g = 2 for every € > 0. The known results in ordinary Sobolev
spaces implies the sequential lower semicontinuity of F (-, ) in the weak topology
of Wh2(Q,RY), but the functional is coercive only on W2=¢(Q, RY). Thus, the
Sobolev spaces setting does not allow the use of the Direct Methods to solve
Dirichlet’s boundary value problems unless one is able to exhibit a minimizing
sequence possessing higher integrability properties.

Eventually, let ®(t) = gottsinGin(og®)) with a > 1 + by/2, and let fp =
fo(z,z). Notice that fe has (p,q) growth with p = a — b and ¢ = a + b, thus
the results of Marcellini [33] ensures the weak lower semicontinuity of Fg(-, ) in
Whe=b(Q RN) provided a > (2n+ 1)b (see the Introduction), that is when p,q are
relatively close to each other, i.e., ¢ — p < “T’b On the other hand, Theorem 3.1
does not impose any further restriction on a and b, and thus Theorem 4.1 can be
applied to solve Dirichlet’s boundary value problems for any a,b chosen as above.
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