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‘We provide a variational approximation for quasiconvex energies defined on vector valued
special functions with bounded variation. We extend the Ambrosio-Tortorelli’s construc-
tion to the vectorial case.

1. Introduction

Many mathematical problems arising from Computer Vision Theory and Frac-
ture Mechanics (see for instance3?,10) involve energies consisting of two parts, the
first taking into account a volume energy and the second a surface energy. The
variational formulation of the problem leads to the minimization of functionals rep-

resented by

E(u,K) = f (z,u, Vu) dx +/ o (z,u™,ut,v)dH™ T, (1.1)
Q\K K

where Q C R” is a fixed domain, K is a (sufficiently regular) closed subset of 2 and
u:Q\ K — RN belongs to a (sufficiently regular) class of functions with traces u®
defined on K.

Since the closed subsets of Q2 cannot be endowed with a topology which ensures

that the direct methods apply, a weak formulation of the problem is needed. To do
this, De Giorgi?? proposed to interpret K as the set of discontinuity points of . This
idea motivates the terminology ”free-discontinuity problem” for the minimization
of (1.1), to underline the fact that one looks for a function whose discontinuities are
not assigned a priori.
Thus, it is natural to set the problem in the space BV of function with bounded
variation, i.e., functions u which are summable and whose first order distributional
derivative is representable by a measure Du with finite total variation. Actually,
since free-discontinuity problems deal with volume and surface energies, it is natural
to allow in these problems only BV functions whose distributional derivative has
the same structure. Indeed, De Giorgi and Ambrosio?* relaxed the problem in the
space SBV of special functions with bounded variation, i.e., function » in BV such
that the singular part of Du with respect to the Lebesgue measure is supported in
the complement of the set of Lebesgue points for u, denoted by S,. Thus, setting
K = S, in (1.1) and defining F (u) = & (u,S,), the free-discontinuity problem
reduces to

min F(u). (1.2)



The abstract theory for such problems has been developed in the last years:
Ambrosio®,? established the existence theory, and many authors studied the regu-
larity of solutions (see?,18 13 11) thus solving the original problem in (1.1).

The numerical approximation for solutions of the problem (1.2) revealed to be
a hard task because of the use of spaces of discontinuous functions. The idea to
overcome this difficulty is to perform a preliminary variational approximation of
the functional F in the sense of De Giorgi’s I'-convergence?® via simpler functionals
defined on Sobolev spaces, easier to be handled numerically, and then to discretize
each of the approximating functionals. Many approaches have been proposed for
the approximation problem in the scalar case (see®,14,1517 1929 and the book!®
for an exhaustive treatment of the subject), while the vectorial case had not been
treated, yet.

Here we attack the vectorial problem, extending the Ambrosio-Tortorelli’s appro-
ximation.!4,1%

The energies we deal with have the form

/f(a:,u,Vu)dx+/ @ (vy)dH™ L, (1.3)
Q Su

where f is a positive Carathéodory integrand with superlinear growth and quasi-
convex in the gradient variable (see Section 2 for definitions) and ¢ is a norm on
R". Since the general form of the volume term in (1.3), the slicing methods no
longer applies to obtain a lower bound for it in the I'-limit. The idea, then, is to de-
duce lower estimates on the bulk term and on the surface term separately: the first
thanks to truncations and the lower semicontinuity Theorem 2.15, the second using
the slicing techniques. The upper bound for the I'-limit is obtained reducing our-
selves to an explicit construction only for functions with a polyhedral discontinuity
set S,,.

The plan of the paper is the following: in Section 2 we introduce the notation and
recall the many results we need concerning I'-convergence, SBV, GSBV functions;
in Section 3 we state and prove the main result of the paper Theorem 3.1; finally
Section 4 is devoted to a convergence result for the minimizers of the approximating
functionals.

2. Notation and Preliminary Results

2.1. Basic notation

Let n,k, N € N, we use standard notations for Lebesgue and Sobolev spaces, L™
denotes the Lebesgue measure and H* denotes the k dimensional Hausdorff measure
in R™.

With © we will denote a bounded and open set of R* with Lipschitz boundary,
and with A () the family of open sets of 2. Moreover, let

B(Q,RY) = {u:Q—R" : uis aBorel function} .
The space B (Q,RY) can be endowed with a metric which induces the convergence
in measure.

Let A CC B C R™ be open sets, a cut-off function between A and B will be a
function 3 satisfying

BeCX(B),0<B<1,B=10n4|VB, <

d(A,B)’



where d(A,B) = inf {la —b|:a € A,b € B} and |-| is the Euclidean norm in R™
induced by the scalar product {(a,b) = "7 | a;b;.

Let ¢ : R* — [0,400) be a norm, set M, m for maxgn-1¢ and ming»-1¢,
respectively. Notice that m > 0, thus for every v € R™ there holds

mlv| <o (v) < My (2.1)

(v
Let g € C! ([0,+00)) be such that g(t) =tif 0 <t <1,g(t) =0ift > 2 and
llgll.. < 2, fix k£ € N and define g, (t) = kg(t/k), then consider the radial maps
U, : RY — RY defined by

Uy (w) = {gk (|wl) |1wu_| (2.2)

w#0
w=0,
notice that ¥, € C! (RN, RY) and Lip(¥;) = Lip(gr) = Lip(g).

2.2. T'-convergence

We recall some definitions and properties related to I'-convergence, the main
reference will be the book?2.
Definition 2.1. Let (X,d) be a metric space, let Y C X and let be given fp, : Y —
[—00, +0c]. We say that fr T-converges to f : X — [—o0,+o0] on X, and we write
fn 5 [, if the following two conditions hold:

(LB) Lower Bound inequality: for every x € X and every sequence (xp) 4z there
holds

f(z) < lminf f, (zp) . (2.3)

h—+o00

(UB) Upper Bound inequality: there erists a sequence (zp) 4 & such that

f(z) > limsup fn (zh) - (2.4)

h—+o00

We call recovery sequence any sequence satisfying (2.4); for such a sequence,
combining (2.3) and (2.4), there holds

f(x)= lim fy(zp).

h—+oc0

The function f is uniquely determined by (LB) and (UB) and is called the T-
limit of (fr). Moreover, given a family of functions (f:) labelled by a continuous
parameter € > 0, we say that f. [-converges to f on X ase — 0% if f is the I-limit
of (f.,) for every sequence e, — 0.

The main properties of I'-convergence are listed below.

Lemma 2.2. (i) Lower semicontinuity: the I'-limit is lower semicontinuous on
’

(73) Stability under continuous perturbations: if g : X — R is continuous and
r r
fe— fthenfo-+g9g— f+g;



(#3) Stability of minimizing sequences: if fe 5 f and (x.) is asymptotically mini-
mizing, i.e.,

lim_(f. (@) ~inf f.) =0,

e—0+
then every cluster point x of (xc) minimizes f over X, and

lim inf f. = f(x).

e—0t Y

2.3. Functions of bounded variation

We recall some definitions and basic results on functions with bounded variation,
our main reference is the book'? (see also®7,28).

Let u : Q@ = RN be a measurable function, let S = RV U{cc} be the one point
compactification of RV, fix z € Q, we say that z € S is the approzimate limit of u
at z with respect to Q, we write z = ap — limy—= u (y), if for every neighbourhood

yeR
U of z in S there holds

lim =" ({y € [y — 2| < p,u(y) £ U)) =0,

p—0

If z € RV we say that z is a Lebesgue point of v and we denote by S, the
complement of the set of Lebegue point of w. It is known that £™ (S,) = 0, thus u

coincides L™ a.e. with the function @ : Q\ S, — RN defined by

(@) = ap - Jim u(y).
yeQ

Moreover, we say that u is approzimately differentiable at a Lebesgue point z
such that @(z) # oo, if there exists a matrix L € RV*™ such that

o — fim [20) = 7(@) = Ly = )]

vy ly — |

=0. (2.5)

If u is approximately differentiable at a Lebesgue point z, the matrix L uniquely
determined by (2.5), will be denoted by Vu(z) and will be called the approzimate
gradient of u at x.

Definition 2.3. Let u € L' (Q,RN), we say that u is a function with Bounded
Variation in Q, we write u € BV (Q,lRN), if the distributional derivative Du of u
is representable by a N X n matriz valued measure on Q with finite total variation
|Du| (Q) whose entries are denoted by Diu®, i.e., if u = (u',... ,u") and ¢ €
C!(Q,RY) then

N N n
Z/ u®divp®dr = — ZZ/ psdD;u”. (2.6)
a=1"% Q

a=1 =1

Moreover, given E a subset of Q, we say that E is a Set of Finite Perimeter in
O if Xg € BV (Q) and we denote its total variation |DXg|(Q) by Per (E).



If u € BV (Q,RY), then u is approximately differentiable L™ a.e., S, turns out
to be countably (H" 1,n — 1) rectifiable, i.e.,

Su=NUlJ K,
i>1
where H"~1 (N) = 0 and each K; is a compact subset of a C! manifold. Hence, for

H™ ! ae. y € S, we can define an exterior unit normal v, to S, as well as inner
and outer traces of u on S, by

—+ _ .
uww (@) =ap—  lim  u(y)
yer®(z,m(2))
where % (z,v, (z)) = {y € R* : + (y — z,v, (x)) > 0}.

Let us consider the Lebesgue’s decomposition of Du with respect to £", then
Du = D*u + D?u, where D°uy is the absolutely continuous part and D?u is the
singular one. The density of D*u with respect to £™ coincides £™ a.e. with the
approximate gradient Vu of u. Define the jump part of Du, D?u, to be the restriction

of D*u to S, and the Cantor part, D°u, to be the restriction of D*u to Q\ S, thus
we have

Du = D% + D’u + D¢u.

Moreover, it holds Diu = (ut — u™) @ v, H" "' [ Sy, where given a € RY and b € R
a ® b is the matrix with entries equal to a;b?, 1 <i< N and 1 <j <n.

Definition 2.4. Let u € BV (Q,RN), we say that u is a Special Function with
Bounded Variation in Q, we write u € SBV (Q,RY), if D°u = 0.

Functionals involved in free-discontinuity problems are often not coercive in
SBV (0, RY), then it is useful to consider the following wider class (see®,).

Definition 2.5. Given a Borel functionu : Q — RY , we say that u is a Generalized
Special Function with Bounded Variation in Q, and we write w € GSBV (Q,RY),

if g (u) € SBV (Q) for every g € C' (RY) such that Vg has compact support.

Notice that GSBV N L*® (Q,RY) = SBV N L> (Q,RY).
Functions u € GSBV (Q,RN ) are approximately differentiable £™ a.e. in 2, S,
turns out to be (H"’l,n — 1) rectifiable and it is possible to define H™ ! a.e. in
S, the exterior normal v, and the one side traces u™ (see”).

The main features of the space GSBV (Q,RY) are the following closure and
compactness theorems (see®, see also?).

Theorem 2.6. Let ¢ : [0,4+00) — [0,+00) be a convexr non-decreasing function
such that @ — 400 as t = +00, let 6 : [0, +00) — [0,+00] be a concave function
such that @ — 400 ast — 0F.

Let (up) C GSBV (0, RY) and assume that

s%p{/(2¢(|Vuhl)dm+/S 0 (luf —up ) d’H"—l} < +00. (2.7)

Uh

If up, converges to u L™ a.e. Q, then u € GSBV (Q,RY) and



(i) Vup = Vu weakly in L (Q, RVN*");
(it) Diup, converges weakly in the sense of measures to Diu;
(i) [o ¢ (|Vu|) de <lminfh_ o [, ¢ (|Vun|) dz;

(Z’U) fS |u+ —u- |) dH" ! < hmlnfh_>+oo fS (|u2‘ _u;|) dH™ L.

Theorem 2.7. Let ¢, 6 be as in Theorem 2.6. Consider (upn) C GSBV (Q,RY)
satisfying (2.7) and assume, in addition, that ||un||,, o is uniformly bounded in h,
then there exists a subsequence (up, ) and a function u € SBV (Q,RN), such that
Uh, = u L™ a.e. in Q.

The original proofs of Theorem 2.6 and Theorem 2.7 make use of the one di-
mensional sections of BV functions which turned out to provide a useful tool for
the study of variational approximations of free—discontinuity problems.

Before recalling the Slicing Theorem (see®) let us fix some notations. Let £ €
S™~1, let TI¢ be the orthogonal space to £, i.e., TI¢ = {y € R™ : (¢,y) = 0}. Ify € I
and E C R" define Eey={teR:y+tfec E} moreover, given u : E — RY set

Ug,y : Eey = RN by ugy (t) = u(y + t€).

Theorem 2.8. Let u € GSBV (), then ugy € GSBV (Q,y) for all £ € S™! and
H™ 1 a.e. y € I, For such y we have

(i) ug,, (t) = (Vu(y +t£),&) for L' a.e. t € Qg y;
(i) Sue, ={t € R:y+1t£ € Su};

(ii3) uEiy (t) = ut (y +t&) or uzty (t) = uT (y + t€) according to the cases (v, &) >
0, (Vu,&) <0 (the case (v, &) = 0 being negligible).

Moreover, for every open set A C Q) there holds

[ G n i) = [ .ol @9

SuNA

Let us now introduce a useful sub-class of SBV functions.

Definition 2.9. Let W (Q,IRN) be the space of all u € SBV (Q,IRN) such that
(i) S is essentially closed, i.e., H" ' (S, \ Su) =0

(ii) S, is a polyhedral set, i.e., S, is the intersection of Q with the union of a
finite number of (n — 1) dimensional simplexes;

(iti) uw € Wh (\ S, RY) for every k € N.
The following theorem proved by Cortesani and Toader?! provides a density

result of the class W (€, RY) in SBV N L* (Q,RY) with respect to anisotropic
surface energies.



Theorem 2.10. Let u € SBV N L* (Q,RY) be such that
H™ 1 (Sy) < +o0 and Vu € LP (Q,RV*") |
for some p > 1, then there exists a sequence (up) C W (Q,RN) such that
(i) un — u strongly in L' (Q,RY);
(ii) Vup = Vu strongly in L? (Q,RV*");
(iit) Timsupy, ¢ oo [lunllo < llulls ;

(iv) for every A CC Q and for every upper semicontinuous function ¢ : Q x RN x
RY x S™1 — [0, +00) such that ¢ (z,a,b,v) = ¢ (x,b,a,—v) for every z € Q,
a,b € RN and v € S*! there holds

limsup/i o (z,up ,uf vy, ) dH ! < / o (2,0 ut,v,) A

h—+oo JANS.,, ANS.

(2.9)

Remark 2.11. The sequence (un) can be chosen such that (2.9) holds for every
open set A C Q if the following additional condition is satisfied

lim sup o (y,a' b, pu) < +oo
(v,0' b )= (2,0,b,v)
yeQ

for every x € 9Q, a,b € RN and v € S™'. In this case, A must be replaced by the
relative closure of A in Q (see’' Remark 3.2).

Eventually, we state the following result which will be useful in the sequel (see
for instance!®).

Lemma 2.12. Let pp : A(Q) — [0,400) be a superadditive function on disjoint
open sets, let \ be a positive measure on Q, let ¥p : Q — [0,4+00] be a countable
family of Borel functions such that p(A) > [, Ynd for every A € A(9Q).

Set 1 = supycn ¥n, then

i(A) > /A pdX

for every A € A(Q).

2.4. Lower semicontinuity in GSBV
Let us first recall some definitions.

Definition 2.13. We say that f : @ x RV x RV*™ — [0, +00) is a Carathéodory

integrand if f (-, s, 2) is Borel measurable for every (s,z) € RN xRV*" and f (z,-,-)
is continuous for L™ a.e. x € ().



Definition 2.14. We say that a Carathéodory integrand f : @ x RN x RV*" —
[0, +00) is quasiconvex in z if for L™ a.e. x € Q and for every s € RN

f(@,5,2) L (@) < / f(@,8,%+ Dy (4)) dy (2.10)

for every ¢ € CL (Q,RY).

We recall the following result, proved by Kristensen3? in a more general version
(see also®), which ensures lower semicontinuity for variational integrals exactly in
the setting prescribed by the GSBV Compactness Theorem 2.7.

Theorem 2.15. Let f: Q x RY x RVX™ — [0, +00) be a Carathéodory integrand
quasiconver in z satisfying

e1 (2] +b(s) — a(@)) < £(@,5,2) < ea|2 +b(s) + alx))

for every (x,5,2) € Q x RV x RV*™ with p > 1, ¢1 and cy positive constants,
a€ L' (), and b€ C° (RY) a non negative function.
Let up, uw € GSBV (0, RY) be such that

(i) un —u L™ a.e. in Q;
(ii) Vun — Vu weakly in L (Q, RV*™);
(iii) sup [Vunl,,q < +00

. . ) 1t
(iv) there ezists a concave function 6 : [0, +00) — [0,+00] satisfying Jt—l — 400
as t — 0%, such that

Sl;p/ 0 (|u2‘ — u;|) dH™ ! < 4+o0.
Uh

Then

/ f(z,u, Vu)dzx < lim inf/ f(z,upn, Vup) dz. (2.11)
Q Q

h—+oo

Eventually, we end this subsection stating the following result concerning the
lower semicontinuity of surface integrals which follows straightforward from a more
general theorem proved by Ambrosio.”

Theorem 2.16. Let ¢ : R* — [0,+00) be a morm, let uy, u € GSBV (Q,RY) be
such that

(i) up — u in measure on §);

(ii) there exists p > 1 such that

sup [|Vul|, o < +oo0.
h



Then

/ ¢ (vy) dz < liminf ¢ (Vy,) dz.
Su h—+oco Suh

3. I'-Convergence Result

In this section we prove a variational approximation for functionals defined on
GSBV (2, RY) having the form

f(u):/szf(x,u,Vu) dar—|—/s @ (vy) dH™ 1, (3.1)

where f is a positive function satisfying some growth and regularity condition and
@ :R* = [0,400) is a norm. To perform the approximation we add a formal extra

variable v to F, defining F' : B (Q,RY) x B (Q) — [0, 4+00] by

F(u) weGSBV (L,RY), v=1L"ae. in

. (3.2)
400 otherwise.

F(u,v,Q)z{

The approximating functionals F. : B (2, RY) x B (Q) — [0, 4+00] have the form

Jo (@) +n:) f (@4, Vu) + £ (Vo) + LW (v))ds
F. (u,0,Q) = (u,v) € WP (Q,RV) x WP (Q), 0<w<1  (3.3)
+00 otherwise.
where ¢ : [0,1] — [0,1] is any increasing lower semicontinuous function such that
¥ (0) = 0,4 (1) =1, and ¢(t) > 0if t > 0; p € (1,+00) and p' = E7; 7. is any
positive infinitesimal faster than eP~! for e — 0F; W(t) = 1 (1 -¢t)", with a =

(2 fol (1- s))pi’ ds) pl, so that defining the auxiliary function @ : [0,1] — [0, +00) by

t
a(t) = [ (W) ds, (3:4)
0
we have ®(0) =0 and $(1) = 1.
Let us state and prove the main result of the paper.

Theorem 3.1. Let f : @ x RV x RVX" — [0,+00) be a Carathéodory integrand,
quasiconver in z, satisfying

e1 (12 + b(s) — a(z)) < f(@,5,2) < ea(|#I" + b(s) + a(x) (3.5)

for every (z,5,2) € Q x RN x RN with p > 1, ¢; and cy positive constants,
a€ L' (), and b€ C° (RY) a non negative function.
Then

T (B(Q,RY) xB(Q)) - lim, F. (u,v,9Q) = F (u,v,9).

e—0t



We divide the proof of Theorem 3.1 into two parts, each corresponding to the
(LB) and (UB) inequality of Definition 2.1.

3.1. Lower bound inequality

We first derive a lower bound for the surface term in dimension n = 1. In such a
case p (t) = (1)|t|, then arguing like in'* (see also!®,1) we get the following result.

We outline the proof for the convenience of the reader.

Lemma 3.2. Let I C R be a bounded and open set, then for every sequence
(un,vn) = (u,v) in measure on I such that

fimnf F., (11, 1, 1) < 400, (3.6)
it follows

lim inf et b 1 0

imint [ (o )4 W ) de 2o (S0 3)

Proof. Condition (3.6) implies v = 1 for £! a.e. z € I. Moreover, we may
extract a subsequence, not relabelled for convenience, such that (un,vn) — (u,v)
L' a.e. in I and the inferior limit in (3.7) is a limit. Notice that we may assume S,
not empty, since otherwise (3.7) is trivial.

Let {t1,...,t,} be an arbitrary subset of S,,, then consider I; = (a;,b;),1<i<r,

pairwise disjoint intervals such that ¢; € I;, I; CC I and Uzzl I; ¢ I. We claim
that

s; = lim sup (i?_fw (vh)) =0.

h——+oco i

Indeed, if s; > 0 for some j € {1,...,r}, there exists a subsequence (vs,) for which
it holds

: 5
12f¢(vhk) Z 2 °

The growth condition (3.5) yields

k——+o0

S5.. . P
Zliminf [ |up, [" <e,
2 5

thus there exists a subsequence of (up,) converging to u weakly in Wt (I;,RY),
so that w € Wb (I;, RV ), which is a contradiction.
So let ti € I; be such that

lim Uh (tZ) = 0,

h—+oco
and «;, B; € I;, with a; < ti < f;, be such that

pim (e =, B o (5) = 1

10



Using the auxiliary function ® introduced in (3.4), by Young’s inequality we get

/<£ P (vy,) + 1 W (v ))da:
AN

& )
/ vy, (W (vg))?" dt

i

Bi .
e (1) /ﬂ_ vy, (W (vp))?" dt

= o1)|® (vn (t)) — ® (va ()| + (1) |® (va (Bi)) = @ (vn (th))] s

from which we deduce

\Y%

+¢ (1)

et
lim inf ( h P (v}) +
L\ p

h—+oo

1
w dz > ¢(1).
LW (o)) > (1)
Adding the last inequality on 4, and using the arbitrariness of r we get inequality
(3.7). O
We are now ready to prove (LB) inequality.

Lemma 3.3. Let (un,vn) € B(Q,RY) x B(Q) be such that (un,vy) — (u,v) in
measure on ), then

liminf F;, (un,vn,Q) > F (u,v,). (3.8)

h—+oo

Proof. Without loss of generality we may suppose

liminf F, (up,vn, ) < 4o00. (3.9)

h—+o00

Notice that condition (3.9) implies the convergence of v, to 1 in measure on €,
hence v =1 L™ a.e. in .
We further divide the proof of the lower bound inequality (3.8) into two steps
corresponding to the estimate on the bulk term and on the surface term, respectively.
STEP 1:(Bulk energy inequality) We prove the following inequality

liminf/ ¥ (vn) f (z,un, Vug) dz > / f (z,u, Vu) dz. (3.10)
Q Q

h—+oco

First suppose to extract a subsequence, not relabelled for convenience, such that
(un,vn) = (u,1) L™ a.e. in Q and

lim inf/ ¥ (vn) f (z,un, Vup)de = lim / ¥ (vn) f (z,un, Vuy) dz.
Q Q

h—+oco h—+4oo

Consider the auxiliary function ® introduced in (3.4), we claim that (® (vg)) is
bounded in BV (). Indeed, (2.1), Young’s inequality and (3.9) yield

sup | D® (vp)| () = sup/ |V® (vh)| dz
h n Ja

1 eh! 1
< —su h__ 0P (v)) + W (v )d$<+oo, 3.11
< s [ (Fgr )+ () (3.11)

11



where m is the constant defined in (2.1).

To prove that u € GSBV (,RY), let 0 < v < 7' < ®(1) and set Uy, =
{z € Q: ® (v; (x)) > t}, then by the Fleming-Rishel Coarea Formula (see!2,27,28)
Up, has finite perimeter for £! a.e. t € R Set py (t) = Per (Un:), by the Mean
Value Theorem there exists t, € (,7') such that

' ®(1)
(' =) pn (tr) < / pr () dt < / pn (t)dt = |D® (v)|(Q) . (3.12)
lo% 0
Let U, = Upy,, and g € C! (RY) such that Vg has compact support. Define
the functions gr = g (us) Xu,, then g, € SBV (Q) with H"~! (S,,) < px (tn) and
Van =V (g (un)) Xy, (see®*, see also Chapter 3 of!?).
Thus by (3.5), (3.9), (3.11), (3.12), infatn > 7, and since (gp) is equi-bounded in
L>(Q), (gn) satisfies all the assumptions of the GSBV Compactness Theorem 2.7,
so that we can extract a subsequence, not relabelled for convenience, converging £
a.e. in Q to w € SBV(Q).
Moreover, since g(un) — g(u) L™ a.e. in 2, the whole sequence (gp) converges to

w = g(u) L™ a.e. in Q and then g(u) € SBV(Q) so that u € GSBV(Q,RY).

To prove (3.10) define w, = upXy,, thus w, € GSBV (2, RY) and by (3.5),
(3.9), (3.11) and (3.12) the sequence (wy,) satisfies all the assumptions of the GSBV
Closure Theorem 2.6 with wp, — uw £™ a.e. in Q. Then Vw, — Vu weakly in
L' (©,RV*™), and so (wy) satisifies all the assumptions of the GSBV Lower Semi-
continuity Theorem 2.15, thus we deduce

liminf/ ¥ (vh) f (z,un, Vuy) dz
Q

h—+oo

. -1

> liminf¢ (277 (7)) Uhf(x,Uh,VUh)dx
T -1

= lhlgilglﬁ(q’ () Uhf(mawhavwh)dm
T 1

= lﬁffiflp(q) (ﬂ)/ﬁf(m,wh,th)dm
>

b (@ (7)) /Q f (2,1, Vu) dz,

where the last equality follows from (3.5).
The lower semicontinuity of ¢ yields inequality (3.10), since, letting v — ®(1) we
have @1 (y) — 1.

STEP 2:(Surface energy inequality) We prove the following inequality

fen 3 Elp;_l P 1 -1
= > n—1, .
lﬁgfif/g( p 7 (Von) + o (Uh)) 2 /su o (va) dH (3.13)

Without loss of generality we may assume that the inferior limit in (3.13) is a limit.
Fix £ € S™!, by using the notations of Theorem 2.8 we have that (up)e,y — Uey

and (vp)e,, — Ve, in measure on Q¢ , for ™! ae. y € TI6.
Consider the dual norm ¢, of ¢ defined as

1
bol) = s, (o ®9): (3.14)

12



then (o), = ¢-
Notice that by conditions (3.5) and (3.9) it follows

p—1 1
lim inf ((w (V) + ne,) |Vun|? + ch oF (Vop) + — W (vh))dm < +o0,
h—+oo Jo EnP
(3.15)
thus (3.14), (3.15) and Fatou’s lemma yield
. . ! P
e (6o o)
et o1 T I |
Tgog—(é') ‘(’l}h)67y| -+ ;pIW ((Uh)f,y))dt < +OO, (316)

for H" ! a.e. y € IIS.
Now we introduce local functionals depending only on the v variable. Indeed,
let G. : WH? (Q) x A(Q) — [0,+00] be defined by

G. (v, 4) = /A (Epp_lgop (w)+8ip,W(v)>dx,

then (3.14) yields

et 1 |
6o ) > [ (T V0ol + W W) )as

/ne W /Aw (671%@) @] + Eip,W (vg,y))dt- (3.17)

Define p : A (f2) = [0,4+00) by
H (A) = 1;}2_;,1_25 Gsh (Uha A) ’

then by Fatou’s lemma and by Lemma 3.2, which we can apply thanks to (3.16)
and the convergence in measure of the one dimensional sections, (3.17) yields

p(A)
> [ o (y)l}mg/&ycz’:f@ (@), | + #W ((’Uh)g,y)>dt
> %@ /H HO (Sue, NA)dH (1)
= o ) .ol ), (3.18)

where the last equality holds by (2.8).
Moreover, since y is a superadditive set function on disjoint open sets contained in
Q, by Lemma 2.12 and the very definition of the dual norm we get

w(@) > /5 o () AH™, (3.19)

u
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passing to the sup in (3.18) on a sequence (&), oy dense in ™1

Notice that (3.19) is exactly inequality (3.13).
Eventually, Step 1, Step 2 and 7, > 0 yield (LB). O

3.2. Upper bound inequality

To prove the upper bound inequality (UB), we have to construct a recovery
sequence for any function u in GSBV (Q,RV).

First notice that using an approximation procedure we can reduce ourselves to
consider the case in which the limit u belongs to W (€2, RV ). Indeed, without loss
of generality we may assume v = 1 L™ a.e. in  and H" ! (S,) < +00, the cases
v# 1 and H" ! (S,) = +00 being trivial, and suppose inequality (UB) proven for
functions in W (Q,RY).

Let u belong to SBV NL> (Q,RY), take (up) C W (Q,RY) to be the sequence
provided by Theorem 2.10, then (2.9), Remark 2.11 and Theorem 2.16 yield

lim © (V) dH™ ! = / @ (1) dH™ 1,
h—+oco Suh Su

moreover, Theorem 2.15 and Fatou’s lemma yield

lim /f(a:,uh,Vuh)darz/f(x,u,Vu)dm.
Q Q

h—+oco

By a simple diagonal argument (UB) inequality then follows for any u in SBV N
L>= (Q,RN).

Eventually, if u belongs to GSBV (Q,R"), fix k € N and consider the auxiliary
functions ¥, defined in (2.2), notice that u* = ¥, (u) belongs to SBVNL*> (Q,RY).
Lebesgue’s Dominated Convergence Theorem yields

lim @ (vyr)dH™ ! = / ¢ (vy) dH™ 1,
k—+oco Suk S.

moreover, Theorem 2.15 and Fatou’s lemma yield

lim /f(m,uk,Vuk) dz = / f (z,u, Vu)dz,
Q Q

k—+oco

then we may use again a standard diagonal argument to conclude.
Thus, we have reduced ourselves to prove the following lemma.

Lemma 3.4. Let u € W (Q,RY), there ezists a sequence (up,vn) — (u,1) in
measure on §) such that

lim sup Fy, (up,vn, Q) < F(u,1,Q).

h—+oco

Proof. Assumption u € W (Q,R") implies that we can find a finite number of
polyhedral sets K? such that

D Su=0nUi, K%
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(i) for every 1 <i < r the set K@ is contained in a (n — 1) dimensional hyperplane
m; and 7; # m; for i # j.

Let at, b., d. be positive infinitesimals for ¢ — 0%, fix 1 < i < r and denote
with v; a normal to m;. Let v be a minimizer of the one dimensional problem

/ai bs(sp 190” (vi) | '|p+—1 ( )) (3-20)
i) |v -W (v) ) dt, }
be p Ep

with the conditions v (b.) =0, v (al +b.) =1 —de, v € W (be,al +b.).
According t0*?, the minimum value in (3.20) is exactly ¢ (v;) ®(1 — d.), where ®
is the auxiliary function defined in (3.4), and it is achieved by functions for which
Young’s inequality holds with an equality sign, i.e., ¥ is the unique solution of the
Cauchy’s problem

N i) 5
{(75) = i (7 ()
72 (be) = 0.

Thus 0 < 'y;' < 1-—d., an explicit computation yields aé = —ep (v;)Inde, so d; is
chosen such that ¢Ind. is infinitesimal for ¢ — 0.
Define the functions o : [0, +o0) — [0,1 — d.] by

0 0<t<b,

ol (t)={7i(t) b <t<ai+b. (3.21)
1—d. t>al+b..

Denote by II; : R* — 7; the orthogonal projection on 7; and set d; (z) =
d(z,m;); it is well known that if £ € R™ \ m; there holds

z —II; (x)

Vi (2) = T, (@)

For any 6 > 0 set
Ki={yem:d(y,K') <d},

fix € > 0, let 3¢ be a cut-off function between K! and K&_, then define

vz (z) = 2 (Ii(2)) oz (di(2)) + (1 - B2 (Wi(2))) (1 - de). (3.23)
Let

B! = {z€R":IL(z) € K! and d; (z) < b.};

C: = {zeR":1;(z) € Kj and d; (z) < al +b.}.

By the very definition of v} there holds (see Figure 1 below)

vl = {1 —de 9 ,\ Ce (3.24)
0 B,
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a,+b,
B.
b,
l K'
vi=1-d, vi =0 vi=1-d,

Figure 1: construction of v}

and since II; € Lip; (R, R"), HVﬂ;HOO <ce !and |Vd;| =1 L™ a.e., there exists
a positive constant ¢ such that

i c
Vel < < (3.25)

Thus, 0 < v <1, vi € W (Q) and v{ = 1 L™ ae. in Q.
Define H! = C? \ B?, let us estimate the integral

I :/ (Ep_lgop (Vo) + 1, w (v;))dm (3.26)
Hi\ P Ep
To do this, consider the sets
H' = {zeR":IL(z) € Ki. \ K! and d; (z) < a’ +b.},
H?? = {zeR":1;(z) € K! and b. < d; (z) < al +b.},
then H! = H»' U H?, and setting
[id — et o 1 i
o= /;_’J_ ( » o (Vi) + po w (v5)>dm, (3.27)

it follows I} = I?" + I»?. We estimate the I/ separately.
By (3.25), and since H"~! (K3, \ KZ) = O (¢) for ¢ = 0%, we get

al +b.

< EE" (H') = 2e=——H" 1 (K5 \ KZ) = o(1). (328)

Moreover, by the definition of v¢ on H%? there holds

Vol (z) = (v2)' (di (2)) Vdi (z)
thus, by (3.20) and (3.22) we get

az+bs p—1 . p .
2=z [ oo [T (e 0 + Sw o) )a
= 28(1—d.)p () H" ! (KY) S/Kigo(ui)d?l"_l—i-o(l). (3.29)
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Eventually, by adding (3.28) and (3.29) we get

I g/_¢(yi)dﬂ"—1+o(1). (3.30)
K

~ Now we define the recovery sequence for the v variable ”gluing up” together the
vl as to minimize the surface energy. This will be done defining a function which,

on every C!, coincides with v? up to a region of very small area.
More precisely, let

V. = min vf, (3.31)
1<ilr

then 0 <V, <1,V € Wb (Q) and Vo= 1L"ae. in Q.
Setting B, = |J;_, B: and C. = |J;_, C? there holds

1-d. R*\C.
V. = \C (3.32)
0 Bsa
and also
V. =Voi L7 ae in V. =[] {vi<vl}, (3.33)
i
so that by (3.25) it follows
IVVlle < g (3.34)
Since Q = (Q\ C.) U (QNC: \ Be) U (2N Be), (3.32) yields
[ (e o+ Swon)a
€ +— € Z
o\ P epf
a .. be
< =L (Q\CE)—I—/ (..)dz+c—
€ QN(C:\B:) €
- / (...)dz +0(1) = R. + o(1), (3.35)
QN(C:\B¢)
choosing d. such that d2 = o(e) as well as elnd. = o(1), and also b, = o(¢).
To estimate R., notice that C. \ B. = U;_, (H:\ B.), thus
. gt 1
R<Y | (e @+ W m))as,
; Qn(Hi\B,) \ P o (VTe) ep’ (Ve)
and consider the inclusion H; \ B. C Ujx; (H:NHZ) UN;y (H:\ CY).
Since Njx; (HE \ C2) C V., arguing like in (3.30), by (3.33) we have
er ! 1
. P (VVe) + W (Ve) | da
ﬁ_,,-#-(H;'\Cﬁ)mQ p Ep
et 1 ;
= _ P (Vi) + =W (vl) | da
Mjsi (H;\Cé)ﬂﬂ p EpP
< / o (vi) dH™ + o(1). (3.36)
QMK
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Moreover, by (2.1) and (3.34) we have
gpt 1 c n {rri ,
> | O (VV2) + —W (Vo) Jdz < =) L™ (HINHI),  (3.37)
o HinH} p Ep € ot
we claim that for every 4,5 € {1,...,r} it holds
L™ (H:NHI) = o(e). (3.38)

Indeed, we may assume K'N K7 # 0, since otherwise for ¢ sufficiently small it
follows H: N H = () and then £ (H: N HZ) = 0. Notice that

HNH C{zeR": di(z)<al+b}N{z eR*: dj(z) <al+b.}, (3.39)

and since condition m; # m; implies that K* N K7 is contained in an (n — 2) dimen-
sional affine subspace of R, from (3.39) we deduce

£ (HiN HE) < c(al +b:)(al +b.) = c1e? In*d. + o(e),

where ¢, ¢; depend on H"~2 (K* N K7) and on the angle between m; and ;.
Thus, assertion (3.38) is proved if d. is such that 2In®d. = o(e); the choice d. =

exp (—5*%) fulfills all the conditions required, i.e., d? = o(¢) and € In* d. = o(e).
Eventually, (3.35), (3.36), (3.37) and (3.38) yield

[ (e o+ Lwan)as

> / e o)

/ ¢ (v) dH™ 1 + o(1), (3.40)
S.

u

IA

the last equality holding thanks to the first condition in Definition 2.9.
To prove (UB) set

D, = U {x e R : II;(z) € K’% and d;(z) < %E}, (3.41)

i=1
and let . be a cut-off function between D, and B.. Define

U.=(1-¢.)u, (3.42)
u €W (Q,RY) implies that U. € W (Q,RY), moreover U, — u L™ a.e. in Q.
Eventually, (3.40) and (3.42) yield
F. (U, Ve, Q)
L, 0 n) S Vade . [ 1 U,V

Be

/(Ep_l P(VV) + = W(V))d
+ £ +_, € X
Q p v &p

IA

/ f(z,u,Vu)de + / » (V) dH™ ! + cnsbs_”Jrl +0(1),
Q s

u
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inequality (UB) follows choosing b. = (1755)%. O

Remark 3.5. The function associating to u in B (Q,RN) the value fQ |ul?dz, q €

[1,+00), is only lower semicontinuous with respect to convergence in measure, thus
we cannot deduce directly from Theorem 3.1 and statement (i) of Lemma 2.2 the
T-convergence of F. (-,-,Q) + [, |-|* dw to F (-,-,Q) + [, |-|* de.

Nevertheless, the result still holds since all the arguments and the constructions
we used to prove the (LB) and (UB) inequalities in Theorem 3.1 can be directly
applied to such family of approrimating functionals.

4. Convergence of Minimizers

Let us state an equicoercivity result for the approximating functionals defined
in Remark 3.5. For the sake of simplicity we assume () = t¥ in Definition 3.3,
even though the result holds true for a larger class of functions .

Lemma 4.1. Let (up,vn) € B(Q,RY) x B(Q) be such that

h—+oco

lim inf (Fsh (un, v, Q) +/ lun|? dw) < +00, (4.1)
Q

with q € [1,+00).
Then there ezist a subsequence (un,,vn,) and a function u € GSBV (Q,RY)
such that (up,,vn,) — (u,1) in measure on Q.

Proof. Condition (4.1) implies that, up to a subsequence not relabelled for
convenience, v, — 1 and hence @ (vy) = ® (1) = £ L™ a.e. in Q.

Fix k € N, consider the sequence (® (vy)uf) C Wh! (Q,RY), where uf =
U, (up) with ¥y, the auxiliary functions defined by (2.2). Arguing as in the proof
of Lemma 3.3, (® (vy)) is bounded in BV (f2), moreover, since ®(¢t) < ct, ¥(t) = t?,

Young’s inequality yields

/Q |V (® (vn) up) | dz < ck(1 + F., (un,vn, ).

By (4.1), by applying the BV Compactness Theorem (see'2,27,2%) and a diagonal

argument we may suppose that, up to a subsequence not relabelled for convenience,
for every k € N there exists s¥ : Q@ — RV, with ||s’°||o<> < 2k, such that ® (vs) uf —

s* £ a.e. in Q. Hence, we deduce that for £” a.e. z in Q

lim uf(z) = 2s*(2), (4.2)

h—+4oco
for every k € N.
Let us prove that for £™ a.e. x in Q there exists u : @ = R such that

lim 2s*(z) = u(2). 4.

257 (z) = u(z) (4.3)
Indeed, let z € Q be such that (4.2) holds, then either |up(z)| — +o00 or there
exist w € RY and (un,;) C (un) such that up;(z) = w. In the first case s*(z) = 0
for every k € N, and then (4.3) holds with u(z) = 0; while in the second case

uﬁj (z) = w for every k > |w| as j — 400 and thus u(z) = w by (4.2).
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Let us prove the convergence of (u) to u in measure on 2. Indeed, condition (4.1)
yields

£7({z €0 jun(@)| > k) < ok,
thus for every ¢ > 0, since the decomposition
{x € Q:|up(z) —u(z)| >e} ={z € Q: |uf(z) —u(x) >c}U
({z € Q: |un(@) —u(z)| > e} n{z € Q: [un(a)| > k}),
we have
£ ({0 € 0+ ) — ue)] > <)) < £7({o € 0 k(@) — o) > <)) + ok,

and the claimed convergence follows by (4.2) and (4.3).
Eventually, by (4.1) and by applying the same argument used in Step 1 of Lemma

3.3, we deduce that u € GSBV (Q,RY). O

We are now able to state the following result on the convergence of minimum
problems.

Theorem 4.2. For every g € L7 (Q,RY), q € [1,400), and every v > 0, there
exists a minimizing pair (ue,ve) for the problem

m. = inf {FE (u,v,9Q) +7/ lu—g|"dz : (u,v) € B(Q,RY) x B(Q)} (4.4)
Q
Moreover, every cluster point of (ue) is a solution of the minimum problem
m:inf{]—'(u)+7/ |u—g|?dz :u € GSBV (Q,]RN)} (4.5)
Q

and m. - m ase — 0.

Proof. The existence of (u.,v:) for every e > 0 follows by (3.5) and the very
definition of F, which ensure its coercivity and lower semicontinuity with respect
to convergence in measure.

Assumption g € L7 (2, RY) yields

sup {FE (ue,ve, ) + ’y/ lue — g|qu} < 400,
£ Q

thus Lemma 4.1 ensures the existence of a subsequence (u,,ve,) converging in
measure on ) to (u,1) with u € GSBV (Q,RV).

Eventually, statement (iii) of Lemma 2.2 and Remark 3.5 yield the conclusion.
O
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