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Chapter 1

Introduction

Many mathematical problems arising from Computer Vision Theory, Fracture Mechanics,
Liquid Crystals Theory, Minimal Partitions Problems (see for instance [15],[37],[57],[86], the
book [20] and the references therein for a more accurate list) are characterized by a competi-
tion between volume and surface energies. The variational formulation of those problems leads
to the minimization (under boundary or confinement conditions) of functionals represented
by

F(u,K):= f(z,u,Vu) dx —I—/ o (z,u”,ut,v) dH™ L, (1.0.1)

Q\K K

where Q@ C R” is a fixed open set, K is a (sufficiently regular) closed subset of 2 and
u:Q\ K — RN belongs to a (sufficiently regular) class of functions with traces u® defined
on K. We remark that K is not assigned a priori and is not a boundary in general. Therefore,
these problems are not free-boundary problems, and new ideas and techniques have to be
developed to solve them.

Since no known topology on the closed subsets of 2 ensures at the same time compactness
for minimizing sequences and lower semicontinuity of the surface energy of (1.0.1) even if
¢ =1 (although some recent results in this direction have been obtained in the paper [80]),
the direct methods do not apply and a weak formulation of the problem is needed. To do
this, De Giorgi [56] proposed to interpret K as the set of discontinuity points of u. This
idea motivates the terminology free-discontinuity problem for the minimization of (1.0.1), to
underline the fact that one looks for a function the discontinuities of which are not assigned
a priori.

As a first attempt one may try to set the relaxed problem in the space BV (Q; RN ) of
function of bounded variation on €2, i.e., functions w which are summable and with the first
order distributional derivative representable by a finite Radon measure Du on ). Actually,
since free-discontinuity problems as in (1.0.1) involve energies with volume and surface terms,
it is natural to allow in these problems only BV functions whose distributional derivative has
a similar structure. Indeed, De Giorgi and Ambrosio [57] relaxed the problem in the space

SBV (€ RN) of special functions of bounded variation, i.e., functions u in BV (Q; RN) such

that the singular part of Du with respect to the Lebesgue measure is supported in S, the
complement of the set of Lebesgue’s points for u. Naively, setting K = S, in (1.0.1), and



defining F (u) = E (u, Sy), the free-discontinuity problem reduces to

min F(u). (1.0.2)
u€SBV (;RY)

The abstract theory for such problems developed during the last few years: Ambrosio (see
[10],[11],[14],]20]) established the existence theory, and many authors studied the regularity
of weak solutions u (see [58],[19],[20],[23],[47]), proving in some cases that the jump set S,
differs from its closure by a set of zero H"~! measure, and that u is smooth outside S,. As a
consequence, the pair (u,S,) is a strong solution, i.e., a minimizer of the original functional
in (1.0.1).

Hence, from a theoretical point of view, the minimization of (1.0.1) has been solved
under very general assumptions. Nevertheless, explicit solutions can be computed only in
very few cases, also for simple choices of f and .

Thus, the numerical approximation of the problem (1.0.2) is not only interesting by itself,
but also crucial in order to get more pieces of information on the solutions of (1.0.1). The
problem revealed to be a hard task because of the use of spaces of discontinuous functions.
One method to overcome this difficulty is to perform a preliminary variational approximation
of the functional F, in the sense of De Giorgi’s I'-convergence [59], via simpler functionals
easier to be handled numerically, and then to discretize each of the approximating functionals.

Many approaches have been proposed for the approximation problem in the scalar case
(see [5],[24],[25],[40],[48],[49],[75] and the book [37]), while the vectorial case had not been
treated, yet.

In this Thesis we have collected some recent results dealing with the vectorial case, which
also generalize some of the scalar ones quoted above.

To begin with, in Chapter 2, we extend the so called Ambrosio-Tortorelli’s construction
[24],[25]. The model was originally built to obtain in the limit (the weak formulation of) the
Mumford-Shah’s functional of image reconstruction [86], defined on SBV () by

MS(u) = /Q \Vaul? dz + aH"1(S,) + B/Q lu — g|? dx (1.0.3)

where g is a given function in L*(), a > 0 and 3 > 0.

For our purposes the last term in (1.0.3) is irrelevant, since it does not affect I'-conver-
gence. Hence, we will drop it in the discussion in the sequel, i.e., we set 8 = 0.

The main issue of the model is the introduction of an auxiliary variable which asympto-
tically approaches 1 — Xg,, thus detecting the discontinuity set of w. In [25] (see [31],[81] for
numerical simulations) it was proved that the family of elliptic functionals

1
AT, (u,v) = / v? |[Vul? dx +/ (E(l —v)l4¢ |Vv|2> dz, (1.0.4)
Q Q
defined for u,v € W2 (), I'-converges with respect to the L'(Q; R?) convergence to the

functional defined on SBV(Q2) by

MS(u) ifv=1ae inQ
AT (u,v) =

400 otherwise,



equivalent to M S as far as minimum problems are concerned. The analysis is restricted to the
scalar isotropic case where the use of an integral-geometric argument, called slicing procedure,
allows to reduce the n-dimensional problem to the one-dimensional case.

Let us remark that the penalization term in (1.0.4) is strongly related to the Modica-
Mortola-type singular perturbation problems for phase transformations (see [83],[30],[34] and
[70)).

Pushing forward the construction of [25], and with obvious substitutions in the definition
of the approximating functionals (1.0.4) (see (1.1.2)), we extend the approximation to energies

defined on SBV (Q; RN), N >1, by

/ f(z,u,Vu) dz +/ @ (vy) dH™ L, (1.0.5)
Q S

where f is a positive Carathéodory integrand with superlinear growth and quasiconvex in the
gradient variable and ¢ is a norm on R™.

This extension, apart from its own mathematical interest, is motivated by some applica-
tions to Griffith’s theory of brittle fracture [15], for which the vectorial setting is more natural
than the scalar one.

Due to the general form of the volume term in (1.0.5), the slicing methods no longer
applies, and other techniques have to be exploited to deal with the anisotropic vectorial case
(see Compendium of Chapter 3 for a detailed discussion).

To approximate more complex surface energies depending also on the traces u®, which
arise for instance in fracture models of Barenblatt’s type (see [15],[28]), a variant of the
Ambrosio-Tortorelli’s construction is studied in [6], obtained by replacing in (1.0.4) |Vul?
with f (|Vul), where f is convex and with linear growth. Indeed, this weaker penalization of
Vu enables a stronger interaction between the two competing terms in (1.0.4).

An obvious consequence of the linear growth assumption is the presence of a term ac-
counting for the Cantor part D of Du in the limit energy, which has the form on BV (Q)

79y do+ 1D%ul @)+ [ g (it~ dre

where g is defined by a suitable minimization formula highlighting the contribute of the two
terms of (1.0.4). Again, the analysis in [6] is restricted to the scalar isotropic case in order to
exploit the usual one-dimensional reduction argument.

In Chapter 4 we consider the full vectorial problem by studying the asymptotic behaviour
of the family of functionals defined for v € Wh! (Q; RN), N >1,ve Wh2(Q) by

F.(u,v) = /Qv2f(a:,u, Vu) dx +/Q (%(1 —v)? +E\Vv]2> dx, (1.0.6)

where f is a quasiconvex function in the gradient variable satisfying linear growth conditions.

The slicing procedure is not useful to deal with this problem since the general form of
the integrand f. In order to get more pieces of information on the interaction between the
two terms in (1.0.6) we couple the two variables u, v as being a single vector-valued one. This
choice highlights the vectorial nature of the model, which is studied by exploiting techniques



typical in vectorial problems of Calculus of Variations. Indeed, by using the blow-up methods
of Fonseca-Miiller [67],[68] we are able to prove the I'-convergence of the functionals in (1.0.6),
with respect to the L' (Q; RN+1) convergence, to the functional defined for v in BV (Q; RN)
and v =1 a.e. on by

/ [ (z,u, Vu) dz +/ e (z,u,dDu) + | K (z,u",u",v,) dH" ",
Q Q Su

where f° is the recession function of f, and the surface energy density K is calculated as an
asymptotic limit of Dirichlet’s boundary values problems in the spirit of the Global Method
for Relaxation introduced in [35] (see Compendium of Chapter 4).

A different approach to approximate the Mumford-Shah’s functional in (1.0.3) can be fol-
lowed by considering non-local functionals where the gradient is replaced by finite differences.
It was conjectured by De Giorgi, and proved by Gobbino [75] (see [76] for extensions and [49]
for numerical implementation), the I'-convergence (up to some multiplicative constants) to
the Mumford-Shah’s functional with respect to the L'(£2) topology of the family

DG.w) = [ [ F (D cu(o)?) o) dode. (10.7)

where f : [0, +00) — [0,+00) is any increasing function such that f(0) = 0, f/(0%7) > 0 and
f(+00) < +00; p is a symmetric convolution kernel and D, cu(z) = L (u(z + &) — u(x)).
In Chapter 5, dealing with the two- and three-dimensional cases, we pursue this approach

to provide an approximation of functionals defined on (sufficiently regular) vector fields u :
Q\ K — R" by

u/ ygu(x)\2dx+3/ \div u(z)|? dz + yH" LK), (1.0.8)
Q\K 2 Jo\k

that is by taking in (1.0.1) N = n and f(Vu) = p|Eul? + %|div u|?, Eu being the symmetric
part of Vu. In this case, f is a linear elasticity density degenerate as a quadratic form with
respect to Vu. Incidentally, the functional setting of the weak formulation of this problem
changes from SBV (©2; R™) functions to SBD(f2) ones, i.e., summable vector fields u : Q —
R"™ with symmetrized distributional derivative Eu represented by a finite Radon measure
on €2, the singular part of which, with respect to Lebesgue’s measure, is concentrated on an
(n — 1)-dimensional set .J,,.

In order to approximate functionals of the type (1.0.8) for any choice of the parameters
1 and A, we have to introduce in the model a suitable difference quotient representing the
divergence, call it Div, ¢, and consider functionals of the form

/n /Rn éf (E (](Dg,gu(a:),§>\2 + 9[Div€7§u(a:)]2)) p(&) dx dE,

where (-,-) denotes the scalar product in R™. The presence of the divergence term does
not allow us to reduce to the one-dimensional case by the standard slicing procedures. The



convergence result is then recovered by a discretization argument which leads to the study of
discrete functionals of the form

> & f (e (1D-gul@)? + 0Dive gu(@)?)) (1.0.9)
aceZm™
with 0 a strictly positive parameter.

The study of the asymptotic limits of discrete systems is a recent trend of research, trying
to give a theoretical justification of the behaviour at a macroscopic level of homogeneous
media by means of a microscopic analysis (see [43],[44],[45],[92]).

So far, only the scalar setting has been investigated, and very general results are available
in such a case. In Chapter 5 and Chapter 6 we begin the analysis of functionals defined on
vector-valued discrete deformations.

In particular, in Chapter 6 we provide an approximation result, in the two- and three-
dimensional cases, for autonomous energies defined on SBV (Q; RN ) by

/ Y (Vu) dx +/ g(ut —u ) dH (1.0.10)
Q Su

for any quasiconvex function v with superlinear growth and g suitable.

The model adopted is analogous to that of (1.0.9). Our aim is to obtain in the limit au-
tonomous energies with any quasiconvex function v as bulk energy density . Then, in order
to recover the global behaviour of the gradient matrix Vu, we introduce a finite-differences
matrix D.u which plays the role of the difference quotient D, ¢u in (1.0.9). Hence, the ap-
proximating functionals have the form

> " (eDeu(w)) (1.0.11)

aceZn

where 1. is an interaction potential, underlying a separation of scales, obtained by rescaling
and truncating the function v suitably. The behaviour of v at infinity influences the formula
defining the surface energy density g, as shown in the two-dimensional case by discussing
different models.

What has been exposed in a descriptive way above, will be now discussed in a more
detailed and rigorous framework in the following four compendia. Each compendium summa-
rizes the contents of a corresponding paper, annexed as a chapter of this Thesis. The contents
of Chapters 3,4,5 and 6 are published in the papers [64],[7],[8] and [65] respectively; and are
the result of a research activity carried on by the Author at Scuola Normale Superiore di Pisa
and at Universita degli Studi di Firenze in collaboration with R. Alicandro and M.S. Gelli.

1.1 Compendium of Chapter 3

In this Chapter we provide a variational approximation for functionals defined on the space
GSBV (Q; RN) of the form

/ flz,u,Vu) de+ [ ¢ (v,) dH"Y, (1.1.1)
Q S



where ¢ : R® — [0,400) is a norm and f : Q x RY x R¥X" — [0, 4-00) is a Carathéodory
integrand, quasiconvex in z, satisfying for every (z,u,z) € @ x RN x RN*x»

cr|2? +0(u) — a(z) < f(z,u,2) < ca[2]” + b(u) + a(x)),

with p € (1,+00), ¢1,¢c2 > 0, a € LY(Q) and b € C° (RN) a non negative function.
The model we use is the one of Ambrosio-Tortorelli [25], that is by taking into account
the family of functionals defined on the space of Borel functions by

/ ((v) + ) f (w0, Vo) dﬂc+/ L)+ C o (v ) d
o e s Uy o Ep/ D
Fe (u,v) = (u,v) € W» (Q;RN+1), 0<v<lae. inQ (1.1.2)

400 otherwise,

where 1 : [0,1] — [0, 1] is any increasing lower semicontinuous function such that (0) = 0,
(1) =1,and ¥(t) >0if t > 0; p' = p%l; ne is any positive infinitesimal faster than P~ for

e— 0 W(t) =cw(l —t)? with ey = (2 fol(l — s)ﬁds) i

Let us briefly comment the heuristical idea of the I'-convergence for this model choosing
for simplicity f(Vu) = |VulP, ¢ to be the euclidean norm and 7. = 0 (it turns out from the
discussion below that 7. > 0 is essential only for the coercivity of F; but it does not affect
the I'-convergence of the family (F;), see Theorem 3.4.2).

Assume that we are given a family (uc, v:) converging to (u, 1) in measure on {2 and such
that

liminf F; (u,v:) < +00.
e—0t

On one hand v, is forced to stay very close to 1 since the potential W vanishes only for
t = 1 and it is strictly positive otherwise; on the other hand u. approximates a (possibly)
discontinuous function u, hence the term v (v:) in front of |Vu.|P (which prevents coercivity
in Sobolev spaces) must go to 0 to keep the Dirichlet’s integral bounded. Hence, v, is forced
to make transitions (which are sharper and sharper as ¢ — 07) between 0 and 1 near to
discontinuities of w. The balance between the two terms in the second integral of (1.1.2)
shows that the cheapest energetical transition cost is proportional to H"~1(S,,).

Actually, this idea can be made formal, it is indeed exploited in [25] for the proof of the
lower bound inequality in the one-dimensional case, to which the authors reduce the general
one by the usual integral-geometric argument.

Due to the general form of the volume term in (1.1.1), the slicing procedure no longer
applies to obtain a lower bound for it in the I'-limit. The idea, then, is to deduce lower
estimates on the bulk term and on the surface term separately by using a global technique
proposed by Ambrosio in [12], from which one also identify the domain of the limit functional.

Let us point out that in the vectorial setting IV > 1, the lower semicontinuity inequality
cannot be obtained by means of the slicing techniques even for f(Vu) = |VulP. Indeed, a
one-dimensional reduction argument yields the operator norm of the gradient matrix in the
I'-limit, instead of the euclidean one.



Denote by I.(u,v) and G(v) the first and second integral in (1.1.2), respectively. In
Lemma 3.2.1 we prove that for any family (u.,v.) converging to (u,1) in measure on  the
following hold true

liminf I, (ug, ve) > / f(x,u, Vu) dz, (1.1.3)
e—07t Q
and
lim(i)llf Ge (ve) > / o (vy) dH™ L (1.1.4)
E—

The main idea to prove such inequalities is to gain coercivity in GSBV by ’cutting around’
the discontinuity set S, of the limit function w.

According to the heuristic interpretation given above, S, is detected by means of the
superlevel sets Uz ; = {x € Q : v.(x) > t} of v.. Consider the GSBV functions w.; = u- Xy, ,,
notice that since v, converges to 1 in measure on 2, then £"(Q\ U, ;) is infinitesimal, which in
turn implies the convergence of w; ; to u in measure on Q. Moreover, with fixed 0 < A < X' < 1,
we may choose A < t. < X in such a way that (w.;_) is pre-compact in GSBV according to
the GSBV Compactness Theorem 2.7.11. Hence, the GSBV Closure Theorem 2.7.10 implies
that u is a GSBV (Q; RN ) function. It is easy to check that

L(ue,v.) > (\) /Q F (2, wer,, Viwey,) da + o1), (1.1.5)

then by using the GSBV Lower Semicontinuity Theorem 2.7.17 we may pass to the limit in
(1.1.5) on € — 0T, and eventually get the desired estimate (1.1.3) by letting A — 1~.

For what the surface inequality (1.1.4) is concerned, here we give a proof different from
the one originally appeared in [64], which was based on the slicing methods. The new proof
exploits the global procedure used for the bulk term. To explain the idea assume for simplicity
¢ to be the euclidean norm. Then, by following Modica and Mortola [83], Young’s inequality
yields the pointwise estimate

G.(v) > /Q V(D (v))| de (1.1.6)

for every v € WHP(Q) and & > 0, where ® : [0,1] — [0, +00) is the auxiliary function defined
by

t
(1) i— / (W (s))7 ds. (1.1.7)
0

Notice that ey is such that ®(1) = 1.
By taking into account the BV Coarea Formula (see Theorem 2.6.6) we have

a(1)
/ IV (B(v.) | da :/ Ml <JXU > ds.
Q 0 e, 1(s)

Then, since U ; 2 Sy, ,, to conclude it suffices to estimate the perimeter of the discontinuity
set of w.; and to prove that it is asymptotically greater than 2H"~1(S,), as one would
heuristically expects.

Let us point out that the whole information carried in F; is needed to prove the estimates
(1.1.3) and (1.1.4), even though each of them involves only one term between I, and G-.



Indeed, assuming the convergence of v, to 1 in measure on §2 without any additional
information, one can only infer the trivial inequality

liminf G > 0.
g Gelve) =
It is easy to show families (v.) for which the limit of G.(v.) exists and equals 0, for instance
v = 1.
Moreover, take 1. = 0, then I, coincide on W1 (Q; RN+1) with

I(u,v) :/Qw(v)f(Vu) dx.

The functional I, in general, is not lower semicontinuous in the L! (Q; RV +1) topology, as

pointed out by Eisen in his famous counterexample [61]. Indeed, forn = N =1, = (0,1) and
the simple choices f(i) = |u|*> and ¥(v) = v?, Eisen constructs a sequence (uj,v;) — (z,1)
in L' ((0,1); R?) for which I(uj,v;) = 0 for every j € N, so that

I(z,1) =1> limjinf[(uj,vj) =0,
and the lower semicontinuity of I is then violated. Hence, one cannot prove (1.1.3) by using
directly a lower semicontinuity argument on 1.

The loss of semicontinuity for I is due to the lack of coercivity in the v variable of the
integrand above, as one can deduce by the results in [66], where the deep relation between
coercivity (or the lack of it) and lower semicontinuity has been investigated. In our case it is
the term G. which recovers coercivity in the v variable for F.. Indeed, by (1.1.6), for every
(u,v) and € > 0 there holds

Fo(u,v) 2/{212@(1)))]0(90,%%) dx+/Q|V(<I>(v))|dx,

where (t) = (®(t)). Hence, for target functions in SBV, one could also prove the
lower bound inequality for the bulk term in (1.1.1), by using directly a lower semicontinuity
argument similar to those of [66],[71] (see also Subsection 4.6.2).

In Lemma 3.3.1 we prove the constructive inequality for functions with a polyhedral
discontinuity set S, and smooth outside. This is not restrictive, since the limit functional in
(1.1.1) is continuous on a class of functions, dense in its domain, which have a polyhedral
discontinuity set and are smooth outside (see Theorem 2.7.14).

For those regular functions the construction of the recovery sequence (v.) is quite easy
since v, has a finite range and thus (1) is piecewise constant. Then, one may use a one-
dimensional construction in a e-neighbourhood of Sy, in such a way that v, makes a transition
from 0 to a value approaching 1 as € — 0" according to an underlying minimality criterion
analogous to that of [24],[25].

As usual, the recovery sequence (u.) for u is obtained by considering u. = p.u, where
- is a smooth cut-off function such that u. does not charge the set where v. makes the
transition.



Finally, we provide a coercivity result for the approximating functionals F. perturbed
by a term of the type
/ lu— g|"d
Q

for ¢ € (0,+00) and g € L4 (Q; RN ), which does not affect I'-convergence.

1.2 Compendium of Chapter 4

Chapter 4 is devoted to study the asymptotic behaviour of the family of functionals defined
for w e Wht (Q;RN), veWhH2(Q) by

F.(u,v) = /Qw(v)f (z,u, Vu) dx +/Q (éW(v) +E\Vfu]2> dx, (1.2.1)

where f is a quasiconvex function in the gradient variable and satisfies linear growth condi-
tions (for the set of assumptions on ¢, f and W see Section 4.1).

This model is a variant of the Ambrosio-Tortorelli’s construction discussed in Com-
pendium of Chapter 3, obtained by taking a linearly growing potential in (1.1.2).

We prove that (F.) I'-converges with respect to the L' (Q; RN +1) topology to the func-
tional defined on (GBV (€)™ x {1} by

Flu) = /Qf(x,u, Vu) dx

+ /Q 1 (x,u,dDu) + i K (z,u™ u™,v,) dH™ Y, (1.2.2)
where > is the recession function of f and K is suitably defined (see (1.2.4) below).

Let us point out that the functional (1.2.2) is well defined also for GBV functions, since
in Lemma 2.7.4 we show that one can define a vector measure which can be regarded as the
Cantor part of the generalized distributional derivative.

The model provides a simplified variational formulation for problems in fracture me-
chanics involving crack initiation energies of Barenblatt’s type, i.e., depending on the size of
the crack opening (see [15],[28],[79]).

The convex isotropic scalar case was studied in the paper [6]. More precisely, for N = 1

f®)

and assuming f = f(|Vu|) to be convex and such that == — 1 for ¢ — +o0, it is proved the

I-convergence of the family in (1.2.1) to a functional which takes the form on BV (Q2) x {1}
| £ ul) do+ 107 @)+ [ gt =) are

where ¢ : [0, +00) — [0, +00) is the concave function defined by

g(t) = rlen[(i)l,ll} {w(r)t + 4/711 \/%ds} . (1.2.3)



Let us briefly comment formula (1.2.3). To draw a parallel with the Ambrosio-Tortorelli’s
model take W(v) = (1 —v)? and f(Vu) = |Vu| in (1.2.1). Going back to the heuristical
explanation of Compendium of Chapter 3, in this case the linear growth assumption on Vu
doesn’t force any longer the term 1 (v) to go to 0 near to discontinuities of u. Hence, v makes
a transition from 1 to a quota r € [0, 1] which is selected according to the minimality criterion
in (1.2.3).

In [6] the use of the slicing techniques allows to recover the n-dimensional problem
from the one-dimensional case; while, due to the generality of the functionals in (1.2.1), the
mentioned integral-geometric approach does not longer apply and different arguments have to
be exploited. The main tool of our analysis is the blow-up technique of Fonseca-Miiller [67],[68]
which has been intensively used for the study of the relaxation and lower semicontinuity
properties of functional with linear growth (see [66],[67],[68]) and for the study of anisotropic
singular perturbations of non-convex functionals in the vector-valued case (see [30]).

The proofs of the lower estimates on the diffuse and jump part of the limit functional
rely on different arguments.

The analysis of the diffuse part is reduced to the identification of the relaxation of
functionals with linear growth in the vectorial case, as considered in [66]. In fact, by arguing
as in (1.1.6) of Compendium of Chapter 3, one can note that for every (u,v) and € > 0 we
have

Fo(u,0) 2/91,!)(1})]“ (2, u, V) dm+2/Q|V(<I>(v))|dx,
where ® is defined by .
<I>(t):/0 (W (s))? ds.

The diffuse part of the relaxation of the functional on the right-hand side above turns out to
be the corresponding part of the limit functional.

For what concerns the surface part, a non trivial use of blow-up techniques and De
Giorgi’s type averaging-slicing lemma (see Subsection 4.2.2) is needed to show that the surface
energy density K can be written in terms of Dirichlet’s boundary value problems, in the spirit
of [30] and [35], that is

K (z,,a,b,v) := inf {/ <w(v)f°° (o, u, Vu) + LW (v) + % ‘VUF) dx :
L>0, (uv) e Wh! (Q,,; RN+1) , (1.2.4)
(u,v) = (a,1) on (0Q,)" , (u,v) = (b,1) on (8Qy)+},

where @), is an open unit cube with two faces orthogonal to the direction v and (OQ,,)jE =
0Q, N{x(z,v) > 0}.

We point out that, even for scalar valued functions u, the minimization problems above
are of vectorial type. This fact places some difficulty in order to give an explicit expression
to K in the general case, while this can be done under isotropy assumptions on f°°, as we
show in Subsection 4.1.1. In such a case we prove that K can be calculated by restricting the
infimum to functions (u,v) with one-dimensional profile. By virtue of this characterization,



we provide an extension to the isotropic vector-valued case of the result of [6] (see Remarks
4.1.6, 4.1.11).

The upper bound inequality for functions u in BV (Q; RY ) is obtained by exploiting
an abstract approach via integral representation methods. Indeed, it turns out that for every
subsequence of (F.) I-converging, the limit, as a set function, is a Borel measure absolutely
continuous with respect to the total variation measure ||Dul|| and that it does not depend
on the extracted subsequence. To show this we compute the Radon-Nikodym’s derivatives
of any T'-limit with respect to each mutually singular part of || Dul|, and then we prove that
they are exactly the densities of F(u) in (1.2.2) ||[Du| almost everywhere. Hence, Uryshon’s
property implies the I'-convergence of the whole family (F.).

The representation of the diffuse part then follows by a relaxation argument noting that
for every € > 0 and u in Wh! (Q; RN)

F.(u,1) = /Qf(ac,u, Vu) dz.

The representation of the surface part, thanks to a very general integral representation result
in [35] (see Theorem 2.6.15), can be proved only for piecewise constant functions jumping
along an hyperplane, for which the upper inequality follows by a standard homogenization
technique.

To recover the full I'-convergence result in GBV we use De Giorgi’s type averaging-
slicing techniques on the range and the continuity of the limit functional (1.2.2) with respect
to truncations.

Eventually, by suitably diagonalizing the family of functionals in (1.2.1), we provide an
approximation result for energies with superlinear growth as considered in (1.1.1) of Com-
pendium of Chapter 3 (see Theorem 4.6.3). A similar approach, but relying on a double
I-limit procedure, had already been used in [6] to obtain in the limit functionals with super-
linear bulk energy density and with surface energy depending on the one-sided traces, i.e., of
the type
/ 0 (Ju* —u~|) dH"",

u

for any positive concave function 6§ such that lim,_,q+ @ = +00.

1.3 Compendium of Chapter 5

In this Chapter we provide a variational approximation by discrete energies of functionals of
the type

i |Eu(z)[? dx—l—i/ |div u(z)|? d:n—l—/ d(ut —u,v)dH ! (1.3.1)
Q\K 2 Jo\k K

defined for every closed hypersurface K C € with normal v and u € C}(Q \ K;R"), where
Q2 C R" is a bounded domain of R". Here £u = %(Vu + V'u) denotes the symmetric part of
the gradient of u, u* are the one-sided traces of u on K and H"~! is the (n — 1)-dimensional
Hausdorff measure.



These functionals are related to variational models in fracture mechanics for linearly
elastic materials in the framework of Griffith’s theory of brittle fracture (see [77]). In this
context u represents the displacement field of the body, with €2 as a reference configuration.
The volume term in (1.3.1) represents the bulk energy of the body in the “solid region”,
where linear elasticity is supposed to hold, p, A being the Lamé constants of the material.
The surface term is the energy necessary to produce the fracture, proportional to the crack
surface K in the isotropic case and, in general, depending on the normal v to K and on the
jump ut —u.

The weak formulation of the problem leads to functionals of the type

,u/ \Eu(z)|® do + = /|d1vu( |2dx+/ d(ut —u”,vy) dH ! (1.3.2)
Q

defined on the space SBD(Q) of special functions of bounded deformation on €.

The description of continuum models in Fracture Mechanics as variational limits of
discrete systems has been the object of recent research (see [38],[43],[44],[45],[84] and [92]).
In particular, in [44] an asymptotic analysis has been performed for discrete energies of the
form

Hw= Y W(u@)-u(8).a—p) (1.3.3)

a,BER:, a3

where R, is the portion of the lattice eZ™ of step size € > 0 contained in €2 and u : R. — R"
may be interpreted as the displacement of a particle parameterized by a € R.. In this
model the energy of the system is obtained by superposition of energies which take into
account pairwise interactions, according to the classical theory of crystalline structures. Upon
identifying u in (1.3.3) with the function in L! constant on each cell of the lattice €Z™, the
asymptotic behaviour of functionals H. can be studied in the framework of I'-convergence of
energies defined on L'. Actually, as shown in Proposition 5.1.14, we may as well identify u
with any piecewise-affine function which is obtained on each cell of the lattice as a convex
interpolation of the values of u on the nodes of the cell itself.

A complete study of the asymptotic behaviour of energies in (1.3.3) has been developed
when u is scalar-valued; in this setting the proper space where the limit energies are defined
is the one of SBV functions. An important model case is when W, (z,w) = p(£)e" ! f (' 2P )
so that we may rewrite H, as

> p(©) X & (el Degul@)?).

gezn a€RE

where RS is a suitable portion of R. and the symbol D, ¢u(«) denotes the difference quotient
L (u(o + €€) — u(«)). Functionals of this type have been studied also in [49] in the framework
of Computer Vision. In [49] and, in a general framework, in [44] it has been proved that, if f is
any increasing function with f(0) = 0, f/(07) > 0 and f(400) < +00, p is a positive function
with suitable summability and symmetry properties, then H, approximates functionals of the
type

c/Q \Vu(z)|? da +/J O(ut —u™,vy) dH ! (1.3.4)



defined for u € SBV(Q2), which are formally very similar to that in (1.3.2) (see also [50],[87]
for a finite element approximation of the Mumford-Shah functional).

Following this approach, in order to approximate (1.3.2), one may think to “symmetrize”
the effect of the difference quotient by considering the family of functionals

> p(©) Y e (2D gula), )

Lezn a€RS

where (-, -) denotes the scalar product in R™.

By letting € tend to 0, we obtain as limit a proper subclass of functionals (1.3.2). Indeed,
the two coefficients p and A of the limit functionals are related by a fixed ratio. This limitation
corresponds to the well-known fact that pairwise interactions produce only particular choices
of the Lamé constants (see [33]).

To overcome this difficulty we are forced to take into account in the model non-central
interactions, in such a way that the energy contribution due to each pair of interacting points
depends only on the projection of their relative displacement onto their difference vector
in the reference configuration. The idea underlying our approach is to introduce a suitable
discretization of the divergence, call it Div, ¢u, that takes into account also interactions in
directions orthogonal to £, and to consider functionals of the form

> 2(€) X0 <" (2 (IDegu(@)f? + OIDive cu(a) ) ) (13.5)

gezn a€Rt

with 6 a strictly positive parameter (for more precise definitions see Sections 5.1 and 5.6).
In Theorem 5.1.1 we prove that with suitable choices of f,p and 6 we can approximate
functionals of type (1.3.2) in dimension 2 and 3 with arbitrary p, A and ® satisfying some
symmetry properties due to the geometry of the lattice. Actually, the general form of the
limit functional is the following

/QW(Eu(x)) dz + c/Q |div u(z)|? de + /Ju O(ut —u”,vy) dH ! (1.3.6)

with W explicitly given; in particular we may choose W (Eu(z)) = p|€u(z)|? and ¢ = 5. We
underline that the energy density of the limit surface term is always anisotropic due to the
symmetries of the lattices eZ™. The dependence on vt — u~ and v, arises in a natural way
from the discretizations chosen and the vectorial framework of the problem.

To drop the anisotropy of the limit surface energy we consider as well a continuous
version of the approximating functionals (1.3.5) given by

/Rn L. 2F (2 (1D=gu(a), O + 8IDive cu(w)]?) ) p(€) da

where in this case p is a symmetric convolution kernel which corresponds to a polycrystalline
approach. By varying f, p and 6, as stated in Theorem 5.1.8, we obtain as limit functionals
of the form

p / Eu(z)[? do + % / (div (@) de +yH" () (1.3.7)
Q Q



for any choice of positive constants p, A and ~. This continuous model generalizes the one
proposed by E. De Giorgi and studied by M. Gobbino in [75], to approximate the Mumford-
Shah functional. Let us also mention that a finite element approximation of energies as in
(1.3.7) has been proposed in [88] in case n = 2.

The main technical issue of the Chapter is that, in the proof of the discrete approximation
from which we recover the continuous one by a discretization procedure, we cannot reduce
to the one-dimensional case by an integral-geometric approach as in [44],[49],[75], due to the
presence of the divergence term. Hence, a direct n-dimensional approach must be followed,
by comparing each functional

Z enlf (a—: (|Da,gu(0z)|2 + 9|Div57§u(a)|2)) ,

erRg

with a suitable n-dimensional energy defined on SBD(Q).

For a deeper insight of the techniques used we refer to Sections 5.3 and 5.4, we just
underline that the proofs of the two approximations (discrete and continuous) are strictly
related.

Analogously to [44], in Section 5.5 we treat boundary value problems in the discrete
scheme for the two-dimensional case and a convergence result for such problems is derived
(see Proposition 5.5.3 and Theorem 5.5.4).

1.4 Compendium of Chapter 6

In this Chapter we provide a variational approximation for energies defined on functions u
in SBV (Q;RN) by

/ b (V) da + / gt — u () dH2, (1.4.8)
Q Su

where § is an open bounded set of R?, 1 : RV*3 — [0, +00), g : RV \ {0} — [0, +00) and
¢ :S% — [0, +00) are assigned.

These models derive from the theory of brittle fracture for hyperelastic materials. For
such materials the elastic deformation outside the fracture can be modeled by an elastic
energy density independent of the crack. The assumptions required on ¢ are quasiconvexity
and superlinear growth; while, for what the surface term is concerned, g is a subadditive and
continuous function superlinear at 0 and ¢(v) = S5_; |(v, e¢)| (for more details see Chapter
6).

Our approximation relies on finite-differences discretization schemes, following the ap-
proach proposed by De Giorgi to treat the Mumford-Shah’s problem in Computer Vision (see
[75]), and applied to Fracture Mechanics firstly by Braides, Dal Maso and Garroni [43] and
then by Braides and Gelli [44],[45], in order to deduce continuum theories starting from an
atomistic description of the media (see also [8],[92]),

While the previous results mainly study the scalar case, here we deal with the vectorial
one. In this Chapter we prove the I'-convergence, with respect to both the convergence in



measure on € and L' (Q;RN ), to energies of type (1.4.8) of the family of approximating
functionals defined as

/ Ve (Vu(r)) dr, (1.4.9)
TN

where 7. is a regular triangulation of R3, 9. is a suitable non-convex interaction potential
and v : R®> — RY is continuous and affine on each element of 7.

The main problem in the vectorial case is to give a definition of discrete schemes that
is consistent with the ’discrete method’, i.e., find a suitable ’e-discretization of the gradient’,
D.u, by finite-differences, and find proper potentials ., in order to obtain, by means of a
separation of scales, the assigned bulk density 1, and the corresponding surface one.

Since we are interested in non-isotropic bulk energy densities, a quite natural choice for
D.u, in order to recover the global behaviour of the gradient matrix, is the finite-differences
matrix below

Do = %((u(a Feep) — u(@),ex)) eorns (1.4.10)

k=1,...,N

Let us remark that the gradient Vu in (1.4.9) coincides exactly with the matrix D.u de-
fined above, since we choose to identify a ’discrete function’ u, i.e., defined on the nodes of
the simplices of the triangulation 7, with its continuous piecewise affine interpolation, still
denoted by wu. This is done only for simplicity of notation (see Proposition 5.1.14 and also
Compendium of Chapter 5).

The scalar models considered so far are based on discretizations, Dfu, accounting for
increments only along given integer directions, i.e., D.u in (1.4.10) has to be replaced by

ufar + zer) — u(0).

In addition, in the case of linear elasticity (see Chapter 5), D.u is chosen to be the projection
along a fixed direction of the increment of u in the same direction, i.e.,

§<U(Ox + eeg) — u(a), eg).

Both these approaches allow to get a complete characterization of the limit by studying the
asymptotic behaviour of one-dimensional functionals. On the other hand, the only possible
bulk energy densities obtained as limits are those determined by summing up all the contri-
bution on fixed directions.

We overcome this drawback by defining 1. : R¥*3 — [0, +-00) as

¥ (X) if | X| <A

Ye (X) =49 13 (1.4.11)
- Z g (eXer) otherwise,
“ =

where (\:) C [0,+00) is such that A, — +oo as ¢ — 07 and sup,-( (e\?) < +oc.
The lower bound inequality is obtained by proving separate estimates on the bulk and
surface terms. With given u. converging to u in measure on 2, consider the sets of simplices

Ne={T € T.: |Vuel|lr > A},



we show that the family (N:) detects the discontinuity set of the limiting function u, and
that there holds

lim inf Ve (Vue) da > / »(Va) dz, (1.4.12)
e—=0T J(TA\N-)NQ Q
and
lim inf Vue) dx > / ut = u7) (v, e0)| dH2. 1.4.13
imm /\/’Emﬂwa( c) = Sug( ) I o) ( )

To this aim we construct a sequence (v.) C SBV (Q;RN ) such that v; converges to u in

measure on {2, (v.) satisfies locally all the assumptions of the GSBV Closure Theorem 2.7.10
and

lim inf e (Vue) dx > lim mf/ (Vo) d

e—=0T J(TA\N-)NQ e—0+
Hence, we infer u € (GSBV (€2))" and the bulk inequality (1.4.12) thanks to the GSBV lower
semicontinuity Theorem 2.7.17. The function v. coincides with u. on 7; \ M; and is constant
on N; in such a way that the measures of the jump sets S,_ are uniformly bounded.

A similar technique is used to prove the surface energy inequality (1.4.13), but, with
fixed ¢ € {1,2,3}, comparing the energy of (u:) on N. with the corresponding one of a
sequence with one-dimensional profile along ey, which is locally pre-compact in SBV in this
given direction, but in general not globally in GSBV (see Proposition 6.1.3).

As usual the upper bound inequality is first proven for regular functions and then the
conclusion follows by a density argument.

Eventually, in Section 6.2 we consider the two-dimensional setting for which we exhibit
two approximation results related to different definitions of ..

The first model is the formulation in the two-dimensional case of the result discussed
previously. The same techniques can be used to prove a slightly more general result. Indeed,
one can work out that the I'-convergence does not depend on the triangulation of R? chosen.

The second model is related to functionals defined on SBV (Q; RY ) of the form

[ e+ /S el dn,

where 3 > 0 and ¢ : S! — [0, +00) is given by

l(v,e1)| V |[{v,e2)] if (v,e1)(r,eq) >0
p(v) = {
l(v,e1)| + [(v,eq)| if (v,e1)(v,e0) <O.

We point out that the surface term is anisotropic and penalizes crack sites in different ways,
according to their orientation with respect to the basis {ej,ea}.

The family of approximating functionals is defined as in (1.4.9), with the function ;. :
RYN*2 — [0, +00) now given by

P (X) if [X] <A
e (X) =

-0 otherwise.
€



Such a model requires more sophisticated tools (see Lemma 2.2.4) and a new construction
must be performed in order to have an estimate along direction e, — ey, that is, a direction
in which difference quotients are not involved. This difficulty can be bypassed by considering
the lattice generated by the vectors eq, es —e; and by constructing a one-dimensional profiled
function affine on the slanted unitary cell P. of such lattice (see Proposition 6.2.3 and compare
it with Proposition 6.1.3).






Chapter 2

Preliminaries

2.1 Basic Notation

For every t € R, [t] denotes its integer part. If a,b € R we write a A b and a V b for the
minimum and maximum between a and b, respectively.

For z,y € R", [x,y] denotes the segment between x and y.

Given a € RY and b € R™, a ® b is the matrix with entries equal to a;#’, 1 < i < N and
1<j<n.

We denote by (-,-) the scalar product in R™ and with | - | the usual euclidean norm,
without specifying the dimension n when there is no risk of confusion. Given two sets A, B C
R™ the distance of A from B is defined as usual, i.e., d (A, B) :=inf{|a —b| : a € A,b € B}.

With fixed p > 0 and x € R" set B,(x) := {y € R" : |y — z| < p}; and we denote by
S"~1 the boundary of the unit ball centered in the origin. Moreover, given v € 8”71, Q, is
the unitary cube with two faces parallel to v.

Let n, k € N, then £" denotes the Lebesgue measure and H* denotes the & dimensional
Hausdorff measure in R". The notation a.e. stands for almost everywhere with respect to the
Lebesgue measure, unless otherwise specified.

In the sequel 2 will always be an open set of R"™. Denote by A(2), B(Q2) the families of
open and Borel subsets of €, respectively; and by Xp the characteristic function of the set
B € B(Q).

Define

B (Q; RN) = {u 0 - RY: uis a Borel function} )

and recall the following notion:

Definition 2.1.1 We say that a sequence (uj) C B (Q; RN) converges to u € B (Q; RN) in
measure on £ if for every n > 0 we have

li}mﬁ” ({z € Q : |uj(z) —u(x)| > n}) =0.

In case € is a set of finite L™ measure, such a convergence is induced by the metric defined
as

o lu — v
d(u,v) = /Q T — dx (2.1.1)
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for every u,v € B (Q; RN).
We use standard notation for Lebesgue and Sobolev spaces.

2.2 Overview of measure theory

The set of all Borel measures  : B(2) — RY is denoted by M(Q;RM). If N = 1 we simply
write M(Q2) instead of M(2;R). In the sequel, we will always understand measures as a
Borel measures, unless otherwise specified.

If B € B(Q), then the measure pl B is defined as ulB(A) = u(A N B). For any
p € M(Q;RYN) we will indicate by ||u|| the total variation of p, that is the positive finite
measure defined by

Iil(B) = sup{ 3_ |u(By)| = B: disjoint, B =] B:}

ieN i
for any B € B(Q2). M(€; R") is a Banach space when equipped with the norm ||| := ||u[|(£2)
and it is the dual of Cy (Q; RN ), closure with respect to the uniform convergence of the space
C.(€; R™M) of continuous functions with compact support in Q. By virtue of the duality above,

a notion of weak * convergence on M(; RY) can be introduced:

Definition 2.2.1 We say that a sequence (j1;) C M(Q; RY) converges weakly * to u (in the
sense of measures) if for any ¢ € Co(Q; RY)

lim/ d-:/ du.
Jim Jodu; = | ody

Note that by the lower semicontinuity of the dual norm with respect to weak * convergence
we have that p — ||p][(Q2) is weakly lower semicontinuous, i.e., ||p||(2) < liminf; ||x;]|(€) if
(pj) converges weakly * to p.

In the following proposition we collect some results concerning weak convergence in the
sense of measures.

Proposition 2.2.2 (1) Let (u;) C M(;RY) be a sequence of Radon measures converging
weakly * to p. If ||p;|| converges weakly = to X, then X > ||p]|.

Moreover, for every B € B(Q2) such that A\(OB) = 0, then lim; p1;(B) = p(B).

(2) Let (1;) C M(Q) be a sequence of positive Radon measures converging weakly x to p.
Then, for every upper semicontinuous function v : Q@ — [0, 4+00) with compact support

limsup/vd,uj S/vdu.
j 0 0

(3) Let () C M(S2) be a sequence of positive Radon measures, and assume the existence
of a positive finite Radon measure p on £ such that

lim (€)= p(€2); lim pi;(A) 2 p(A)

for every A € A(Y). Then (uj) converges weakly * to .



The following celebrated result of De Giorgi and Letta gives a criterion to establish when
an increasing set function defined on A(€2) is the trace of a positive measure (see Theorem
1.53 [20]).

Lemma 2.2.3 Let A : A(Q) — [0,400] be an increasing set function such that \(()) = 0.
Then X is the trace on A(Q2) of a Borel measure if and only if

(i) Superadditivity: for every A, A" € A(Q) such that ANA" =10
AMAUA) > AA) + M(A');
(#1) Subadditivity: for every A, A" € A(Q)
AMAUA) < A(A) + M(A);
(i4i) Inner regularity: for every A € A(Q2)
AA) = sup{A(A") : A" € A(Q), A’ ccC A}.

Eventually, we include the following proposition on the supremum of a family of measures
which will be useful in the sequel and that can be easily deduced from the regularity properties
of positive measures (see Proposition 1.16 [37]).

Lemma 2.2.4 Let A : A(Q2) — [0,400) be a superadditive function on disjoint open sets,
let p be a positive measure on Q0 and let ; : Q — [0,+00] be a countable family of Borel
functions such that \(A) > [, ; dp for every A € A(Q).

Set 1) = supjen ¥y, then
AA) = [ vy
A
for every A € A(Q).

2.3 TI'-convergence

In this section we introduce the notions of I'-convergence and state its main properties. For
a detailed introduction to this subject we refer to Dal Maso [53] (see also [26],[37],[39],[41]).

In what follows X = (X, d) denotes a metric space. In 1975 De Giorgi and Franzoni [59]
introduced a very general notion of variational convergence which turned out to be a useful
tool to study many “limit problems” in the Calculus of Variations.

Definition 2.3.1 We say that a sequence F; : X — [—o00,+00] I'-converges to F' : X —
[—00,4+00], and we write F(u) = I'-lim; F;(u), if for all w € X the following two conditions
hold:

(LB) Lower Bound inequality: for every sequence u; 2w there holds

F(u) < liminf F}(u;); (2.3.1)
j



(UB) Upper Bound inequality: there exists a sequence u; 2w such that

F(u) > limjsup Fj(uy). (2.3.2)

The function F is uniquely determined by conditions (LB) and (UB) and it is called the
I-limit of (F}).

Moreover, given a family of functions (F) labelled by a real parameter e > 0, we say
that F. I'-converges to F if F' is the I'-limit of (Fej) for every sequence €; — 07.

We call recovery sequence any sequence satisfying (2.3.2); for such a sequence, combining
(2.3.1) and (2.3.2), there holds

F(u) =lm F; (u;).

The main properties of I'-convergence are listed in the following theorem. In particular,
statement (ii7) below explains why the notion of I'-convergence is convenient in the study of
the asymptotic analysis of variational problems.

Theorem 2.3.2 Let F., F: X — [—00,400] be such that T'-lim,_,g+ F. = F, then
(i) Lower semicontinuity: F' is d-lower semicontinuous on X ;
(ii) Stability under continuous perturbations: if G : X — R is continuous, then

- lim (F. +G) = F +G;

e—0t

(iii) Stability of minimizing sequences: if (uc) is asymptotically minimizing, i.e.,

lim (FE (ue) — i%f F€> =0,

e—0t

then every cluster point u of (uz) minimizes F over X, and

lim 1&1{fFa = F(u) (: n}%nF) . (2.3.3)

e—0t
More generally, we introduce the notions of lower and upper I'-limits.

Definition 2.3.3 Given a family (F.) of functions and u € X, we define the lower and upper
I'-limits by

F'(u) = I-liminf F.(u) = inf {lim inf F.(ue) : ue <, u} ;

e—0t e—0

e—0t e—0t

F"(u) = T-limsup F.(u) = inf {lim sup F.(ue) : ue LN u} ,

respectively.



It can be easily proved that the functions F’ and F” are d-lower semicontinuous. Notice that,
conditions (LB) and (UB) are equivalent to F'(u) = F"(u) = F(u) for all u € X.

In the sequel we will sometimes write I'(d)-liminf, I'(d)- limsup and I'(d)-lim to em-
phasize the dependence on the metric d with respect to which the convergence is taken. In
particular, we will write I'(meas) in case the metric d is the one in (2.1.1) inducing the
convergence in measure.

The so called Uryshon’s property holds for I'-convergence.

Proposition 2.3.4 A family (F.) T'-converges to F if and only if for every ¢; — 01 the
subsequence (F;) contains a further subsequence which I'-converges to F.

Let us now recall the notion of relaxed functional.

Definition 2.3.5 Let F: X — [—00, +0c0]. Then the relaxed functional F : X — [—00, +0o0]
of I, or relaxation of F', is the greatest d-lower semicontinuous functional less than or equal
to F, i.e., for everyu € X

F(u) =sup{G(u) : G d-lower semicontinuous, G < F'}.

We remark that relaxation theory can be studied as a particular case of I'-convergence. Indeed,
consider the constant sequence F; = F, then the relaxation F of F can be characterized as
follows

F =TI- 1le1 Fj,

that is F(u) = inf{liminf; F(u;) : u; — u} for every u € X.

2.3.1 T'-convergence

In this subsection we recall the notion of I'-convergence, which is useful when dealing with
the integral representation of the I'-limit of a family of integral functionals (see Chapter 16
[53]).

Definition 2.3.6 Let F. : X x A(Q2) — [0, +00] be such that for every u € X the set function
F.(u,-) is increasing on A(2) and define

F'(-,A) :=T-liminf F.(-, A), F"(-,A) :=T-limsup F.(-, A)

e—07t e—07t

for every A € A(Q). We say that (F.) T-converges to F : X x A(Q) — [0,+o0], if F is the
inner reqular envelope of both functionals F' and F", i.e.,

F(u,A) = sup{F’ (u, A") : A" € A(Q), A’ ccC A}
= sup{F" (u, A") : A" € A(Q), A" cC A},

for every (u, A) € X x A(f).

The following theorem shows that I'-convergence enjoys useful compactness properties.



Theorem 2.3.7 Every sequence Fj : X x A(Q) — [0,400] has a I'-convergent subsequence.

The following results give us a criterion to establish when the I'-limit, as a set function,
is a Borel measure. We recall that, according to the De Giorgi-Letta’s Lemma 2.2.3, an
increasing set function A : A(Q) — [0, +o0] is a measure if and only if it is superadditive,
subadditive and inner regular.

Proposition 2.3.8 Let F; : X x A(Q) — [0,400] be such that Fj(u,-) is increasing and
superadditive. Then both F'(u,-) and its inner reqular envelope are superadditive.

In particular, if (F}) I'-converges to F', then F(u,-) is superadditive.
Proposition 2.3.9 Let F; : X x A(Q) — [0, +00] be such that
F"(u,A"UB) < F"(u, A) + F"(u, B)

for every u € X and for every A', A, B € A(Q) with A’ CC A. Then the inner reqular
envelope of F"(u,-) is subadditive.

In particular, if (F;) T-converge to F, then F(u,-) is subadditive.

If, in addition, there exists G : X x A(Q) — [0, 4+00] such that G(u,-) is a measure and
F" <@, then F"(u,-) coincides with its inner reqular envelope for every A € A(Q) for which
G(u, A) < +oo.

In particular if (F;) T-converges to F, then

J

for every A € A(Q) such that G(u, A) < +o0.

2.4 Rectifiable sets

Let us recall an important measure theoretic property of sets and some results concerning it.
Definition 2.4.1 Given a Borel set J C R™ , we say that J is countably H" ! rectifiable if

J=NUlJK,
i>1

where H""1(N) = 0 and each K; is a compact subset of a C' (n — 1)-dimensional manifold.

For rectifiable sets a generalization of the coarea formula holds true (see [63]). Let us fix
some notation. Let £ € S”™! be a fixed direction, denote by II¢ be the orthogonal space to
¢ ie, I = {y € R": (¢,y) = 0}, and by 7¢ : R" — II¢ the orthogonal projection. If y € II¢
and E C R" define E§ ={tecR:y+t{c E}and Ef ={y € II¢ - E§ # (}. Moreover, given
g:FE — RN define, for y € Ee, gey - Eg — RYN by

ey (t) = g(y +t§).



Lemma 2.4.2 For every countably H" 1 rectifiable set J C R™ there exists a Borel function
vy J — S"L such that for every £ € S"1, A€ A(Q) and g € L' (J; H™™Y) there holds

Jp @@l @ = [ [ eyt arw e w) (241)

An interesting property of countably H" ! rectifiable sets is that their H"~! measure can
be recovered from the £"~! measure of their projections onto hyperplanes (see Proposition
2.66 [20]).

Proposition 2.4.3 For any countably H"~! rectifiable set J C R™, H"~(J) is equal to

N
sup {Z £t (me,(K;)) : K; € J compact pairwise disjoint, &; € S"_l} .
i=1

2.5 Approximate limits and approximate differentials
Let S = RY U {00} be the one point compactification of R.

Definition 2.5.1 Let B € B () such that L™ (B,(x) N B) > 0 for every p > 0. We say that
z € S is the approximate limit in x € Q of u € B (Q; RN) in the domain B, and we write
z=ap— limyﬂg u(y), if for every neighbourhood U of z in S there holds

ye

b QY € By(@) N B s uly) ¢ U)
- L (B@) D)

=0.

Denote by .S, the set of points where the approximate limit of u in €2 doesn’t exists; it is well
known that £" (S,) = 0. Define the function @ : 2\ S, — S by

i(x) = ap — limu(y),
vea
thus u is equal a.e. on 2 to 4. Notice that @ is allowed to take the value oo but L™ ({& = c0}) =

0.

Definition 2.5.2 We say that © € Q is a jump point of u, and we write x € J, if there
exist a, b € S, and a vector v € S" such that a # b and

a=ap—lim u(y), b=ap—lim u(y), (2.5.1)
yel'[i(ac) yEHi(x)

where ITY (x) = {y € Q: £ (y — x,v) > 0}.

The triplet (a,b,v), uniquely determined by (2.5.1) up to a permutation of (a,b) and a
change of sign of v, will be denoted by (u™(z),u™ (x), vy (1)).

Moreover, if x € Jy, the quantity [u](z) := u*(x) —u™ (z) is called the jump of u at x.



The definitions above, given in terms of approximate limits, take into account only the
geometry of the level sets of u and don’t need any local summability assumption. Let us recall
that in case u € L}OC(Q; R”) we can define similar concepts by means of integral averages.

Indeed, if u € L} (Q;RY) the complement of the Lebesgue’ set of u is denoted by SZ,

loc

ie, x ¢Sy if and only if
lim p_"/ lu(y) — z|dy =0 (2.5.2)
p—0t By(x)
for some z € RN, If 2 exists then it is unique, and we denote it by @(z). The set S¥ is £"
negligible and = is a Borel function equal to u a.e. in €.
Moreover, we denote by .J; the set of all points = € S}, for which there exist a,b € RV
and v € S"! such that a # b and

lim _”/ u(y) —a|ldy =0, lim p~" u(y) — bl dy = 0, 2.5.3
i p B;(M! (y) —aldy Jim, p B;(w)! (y) — bl dy (2.5.3)

where B;E(a:, v) := B,(z) NI (x). The triplet (a,b,v), uniquely determined by (2.5.3) up to
a permutation of (a,b) and a change of sign of v, will be denoted by (u) (z),u; (x),v}(x)).

Notice that J;; is a Borel subset of S, and the following inclusions hold true
Jy CJ, €S, C Sy (2.5.4)

Hence, 4 = @ on '\ S}.
It is easy both to prove that if u € L} (Q; RN) the notions introduced in (2.5.2) and

loc
(2.5.3) coincide with the ones of Definitions 2.5.1, 2.5.2, respectively; and to show counter-

examples without that additional assumption.
We refer to Remark 2.6.10 for a deeper analisys in a more specific case.
We can also introduce a notion of approximate differentiability.

Definition 2.5.3 We say that u is approximately differentiable at a point z € Q\ S, such
that @(z) # oo, if there exists a matriz L € RN*™ such that

ap — lim lu(y) — a(z) — L(y — =)

vea ly — 2|

= 0. (2.5.5)

If u is approzimately differentiable at a point x, the matriz L uniquely determined by (2.5.5),
will be denoted by Vu(x) and will be called the approximate gradient of u at x.

Even for approximate differentials a stronger definition is available in terms of integral
averages, i.e.,

p—0F

lim p / lu(y) — a(z) — Ly — )| dy = 0 (2.5.6)
Bp(z)

with z € 2\ S and for some matrix L € RV*",
It is easy to check that if for a point x (2.5.6) holds, then also (2.5.5) does, and the
matrix L, uniquely determined by (2.5.6), equals Vu(z).



2.6 Functions of Bounded Variation

We recall some definitions and basic results on functions with bounded variation which we
will use in the sequel. Our main reference is the book [20] (see also [62],[73],[93],[94]).
Definition 2.6.1 Let u € L' (Q; RN). We say that u is a function of Bounded Variation

in Q, we write u € BV Q;RN), if the distributional derivative Du of u is representable
by a N x n matriz valued Radon measure on ) whose entries are denoted by D;u®, i.e., if
peCl (Q; RN) then

N N n
Z /Quadz'vgpa de = — Z Z/Qgpf‘dDiua.
a=1

a=11i=1
Moreover, ifu € L}, (Q; RN) then we say that u is a function of locally Bounded Variation,
we write u € BV, (Q; RN), ifue BV (A; RN) for every A € A(Q) with A CC Q.
If we define
[ull By (mr~y = llull L umy + | Dul|(€2),

then BV (Q; RN ) turns out to be a Banach space. The next theorem shows that its embedding
in L (Q; RN) is compact.

Theorem 2.6.2 If (u;) C BV (Q;RN) is such that sup; [luj|| gy (r~) < +00, then there

exists a subsequence (uj,) and a function u € BV (Q; RN) such that wj, — u in L' (Q; RN)
and Duj, — Du weakly * in the sense of measures.

The following result extends the theory of traces to BV functions.

Theorem 2.6.3 Let Q C R" be an open set with bounded Lipschitz boundary, and let u €
BV (Q; RN). Then, for H" ™1 a.e. x € OQ there exists u'}(x) € RN such that

lim p_"/ u(y) — uQ(x)’ dy = 0.
p—0+ QNB,(z)

Moreover, |[u®||11903n-1) < Cllull gy (r~y for some constant C > 0 depending only on 2.

From now on, the equality of BV functions on the boundary of a regular set is to be intended
in the sense of traces.

Let us recall a density result in BV of Sobolev’s functions with prescribed boundary
conditions (see Lemma 2.5 [35]).

Lemma 2.6.4 Let 2 C R™ be an open set with Lipschitz boundary. Given u € BV (Q; RN)
we may find (u;) C Wht (Q;RN) such that u; — u in L' (Q;RN) and

[1Du;[[(€2) — | Dull(€), u;j = u on Q.



The class of characteristic functions in BV is particularly interesting.

Definition 2.6.5 We say that a set E C R"™ is a set of finite perimeter in Q if Xp € BV ().
The quantity | DXE||(?) is called the perimeter of E in Q.

The following result is a generalized version of the Fleming-Rishel’s coarea formula (see
Lemma 2.4 [54]).

Theorem 2.6.6 Letu € BV (). Then, for L' a.e. t € R the set {u > t} has finite perimeter
in Q and for any B € B(Q) there holds

Du(B) = [ DX (B)dt, [Dul(B) = [ 1DXo||(B) .

Moreover, for every Borel function f:Q x R x R™ — [0,4+00) such that f(z,u,-) is convex
and positively one-homogeneous for each (xz,u) € Q x R there holds

/Qf(x,u,dDu):/Rdt/ﬂf(a:,t,dDX{u>t}). (2.6.1)

Remark 2.6.7 In (2.6.1) we have used the notation commonly adopted in literature for
functionals defined on measures: with fized a Borel function g : Q x R"™ — [0,+00] convex
and positively one-homogeneous in the second variable and p € M (Q; R™), then

[ ot = [ g (x,%@)) )l ().

Let’s now describe the structure of the distributional derivative of a BV function u. By
the Radon-Nikodym’s Theorem we have

Du = D% + D?u,

where D%u, D*u are the absolutely continuous and singular part with respect to £", respec-
tively.

We may further decompose the singular part Du. Define the jump part of Du, Diu, to
be the restriction of D%u to S, and the Cantor part, D, to be the restriction of D*u to
Q\ Sy. Thus, we have

Du = D% + D7u + D¢u.

We will denote by C,, the support of the measure D¢u.
In the following theorem we collect some properties of D%u, D u, D7u.

Theorem 2.6.8 Let u € BV (Q; RN), then

(i) u is approximately differentiable at a.e. x € Q and for every B € B(Q2)
Du(B) = / Vudz.
B

Moreover, if E C RN is H"! negligible, then Vu vanishes a.e. on v (E);



(ii) || D¢u|| vanishes on sets B € B(Q) such that H"'(B) < +oo, and on sets of the form
@~ Y(E) with E C RN H! negligible;

(iii) S, is countably H™ ' rectifiable. In addition, H" ' (S, \ Ju) = 0, and for every B €
B(£2)

Diu(B) = /Bm (ut —u) @ v dH" .

Remark 2.6.9 A useful locality property of Du can be deduced by Theorem 2.6.8. Let uq,
ug € BV (Q;RN) and define

L={zeQ\ (Sy, USy,) : u1(x) = t(x)}.
By applying Theorem 2.6.8 with E = {0} to u = u; — ug we obtain Duyl_ L = Dusl L.

Remark 2.6.10 Let us point out that, in case u € BV (Q;RN), the definitions of Sy, Jy

and u* given in Definitions 2.5.1-2.5.8 are essentially equivalent to those of S&, J, uf.
Indeed, one can refine statement (iii) of Theorem 2.6.8 and prove that

(S ) = 0

(see Theorem 3.78 [20]). Hence, by (2.5.4) and the result above, the sets Jy, Jy, Sy, and
S* differ up to a H" ' negligible set. Thus, for x € J* either (u}(x),ul (z),vi(z)) =
(u™ (), u™ (), vu(@)) or (uf(z),ug (x),v;(2)) = (u”(2), u’(z), —vu(2)).

Moreover, by a classical result of Calderén and Zygmund, BV functions are approxi-
mately differentiable in the stronger sense (2.5.6) (see Theorem 3.83 [20]).

We need the measure theoretic definitions given in Definitions 2.5.1-2.5.8 since they
make sense also in the more general framework of GBV functions as we will see in Section
2.7.

The (n — 1)-dimensional density of the measure ||D7ul| is identified in the following
lemma (see Lemma 2.6 [68]).

Lemma 2.6.11 For H" ! a.e. z, € J,

1

lim—/ ut(z) —u (2)] dH" Y (2) = |ut(z0) — u™ (z,)].
5 sy @) = @] ) = i (o) = (o)
Let us recall a chain rule for BV functions.

Theorem 2.6.12 Let u € BV (Q; RN) and f € C* (RN; Rp) be a Lipschitz function satis-
fying £(0) =0 if L"(Q) = +o00. Then, w = f(u) € BV (2;RP) and

{ D% =V f(u)Vu L™ Dw =V f(u) Du;

Diw = (f (ut) = f (u=)) @ va H™ L J,



Eventually, we introduce a special subspace of BV functions, which appeared in [57] as
the relaxed domain of free-discontinuity energies taking into account only volume and surface
terms and with an imposed confinement condition.

Definition 2.6.13 Let u € BV (Q;RN), we say that u is a Special function of Bounded
Variation in ), we write u € SBV (Q; RN), if Dy = 0.

Equivalently, u € SBV (Q; RN ) if and only if D*u is concentrated on S,.

Many properties and results about SBV functions will be stated in the more general
framework of GSBV functions (see Subsection 2.7.1). Here, we only recall an extension result.

Theorem 2.6.14 Let Q) C R™ be a bounded and open set with Lipschitz boundary. Let u €
SBV (L= (% RY) be such that

/Q IVul? do + H" (Sy) < +oc

for some p € (1,+00).

Let ' C R"™ be a bounded and open set such that Q CC Q. Then there exists a func-
tion &« € SBV N L™ (Q’; RN) such that ilg = u, H" 1 (S NON) = 0, 4]l oo (r;mN) =
HUHLOO(Q;RN) and

/Q, |ValP de +H" " (Sg) < +oo.

2.6.1 Lower semicontinuity and integral representation in BV

Given a Borel function f : Q x RY x RV*" — [0, +0c0) consider the integral functional
F: L' (RY) — [0, +0c] defined by

/ f(z,u,Vu) de ifue whl (Q;RN)
F(u; Q) := < /¢
e if ue Lt (QRY) \ W (0 RY),

and denote by F its relaxation in the strong L' (Q; RN ) topology. Actually, it is convenient

to localize the functional F', and thus F, by considering a set dependence of F on the domain
of integration, which we assume to vary among sets in A(€2).

Recently, there has been a great effort to find an explicit representation for F' under
very mild assumptions on f, at least for target functions u in BV (Q; RY ) (see Chapter 5 of
[20],[18],[21],[35],[36],[66]).

As a first step observe that if f has linear growth in z then (the localized version of) the
relaxed functional F': BV (Q; RN ) x A(Q) — [0, +00] is a variational functional with respect

to the strong L? (Q; RN) topology in the sense of [55], that is: F'(u, -) is the restriction to A(€2)



of a Borel measure for every u € BV (Q; RV ); F(,Q)is Lt (Q; RN ) lower semicontinuous;

and F is local, i.e., F(u, A) = F(v, A) whenever u,y € BV (A, RN), Aec AQ) and u = v
a.e. in A (see Proposition 4.2 [21]).

Hence, we may address the more general problem of finding an explicit integral repre-
sentation formula for variational functionals.

In the sequel we recall some results concerning these kind of problems, in a form which
is useful for our purposes. The first theorem is an integral representation result which sum-
marizes Lemma 3.5 and Theorem 3.7 of [35].

Theorem 2.6.15 Let Q C R”™ be a bounded open set, and let F : BV (Q;RN) x A(Q) —
[0, 4+00] be a variational functional such that for every uw € BV (Q; RN) and A € A()

0<F(u;A) < c(L(A) + || Dull(A)) -
Then, for every u € BV (Q; RN)

(1) for a.e. x, € Q

M(wo) = lim sup 1 inf{f(w,wo +6Q) :we BV (Q; RN) ’
dLm 6—0t or

w = u(x,) + (Vu(z,), (- — o)) on x, + 58@}3

(2) for ||Dul a.e. z, € C,

M(m ) = limsu !
d[[Deu] " T e IDeu] (2 + 0C

)inf{}"(w,xo +4C) :
w e BV(Q;RN),w:u on :U0+58C’},

where C' is any convex bounded open set containing the origin;

(3) for H* ! a.e. z, € J,

dF (u,-) L L, :
m(xo) = llg%llp F lnf{]: ('UJ, Lo -+ 5Qyu(fﬂo)) .

w € BV (Q7RN) , W= Uy ON Ty + 58@1/“(:(:0)}7
(2.6.2)

where

Uo(x) :=

{ ut(z,) if (x,vy(2,)) >0

u(x,) if (x,vu(20)) <0 .



In the case of relaxation one can make more specific the statements given above and find
lower and upper bounds on the densities of F' in terms of the original integrand f. Different
sets of hypotheses are needed to deal with the diffuse and jump part, and since in the sequel
we are interested only in the former, we state partial results.

We need to recall a few concepts. The first condition is the well known Morrey’s quasi-
convezity [85], which turned out to be crucial in vectorial Calculus of Variations (see [52],[74]).

Definition 2.6.16 Let Q be a bounded open set of R™ and f: Q x RN x RNX" — [0, +00)
be a Borel function. We say that f is quasiconvex in z if for a.e. x € Q and for every u € RN

flou) £7(Q) < [ f (@uz+ Do) dy
Q
for every ¢ € C! (Q; RN).

Definition 2.6.17 Let f : Qx RV xRN*" — [0, 4+00) be a Borel function. For any (z,u, 2) €
Q x RY x RVX" define the recession function of f by

t
f°(z,u, z) = limsup M
t——+oo t

The following result is due to Fonseca-Leoni (Theorem 1.8 [66]).

Theorem 2.6.18 Let Q2 C R™ be a bounded open set and let f : Q@ x RN x RNX" — [0, +00)
be a Borel integrand. Assume that

(i) f(x,u,-) is quasiconvex for every (z,u) € Q x RN and there exists ¢ > 0 such that
0< f(z,u,2) <c(z|+1) (2.6.3)
for every (z,u,z) € 2 x RNV x RN*";

(ii) for all (zo,u,) € Q x RN either f(x,,uy,2) = 0 for all z € RNX", or for every n > 0
there exist cg,c1,0 > 0 such that

f(xo,uo,z) —f(m,u, Z) 377(14‘]0(1‘,% Z))v (264)
f($,’LL, Z) 2 Cl|Z| — Q0
for all (z,u) € Q x RN with |z — x,| + |u — u,| < 6 and for all z € RVN*",
Let w € BV (Q;RN), then F(u,-) is the trace of a finite measure on A(S), and for every
Aec AQ)
Flu, A) > / F (2,0, V) do + / £ (2, @, dDC) .
A A

The statements of Theorem 2.6.18 are complemented by the ones in the following, which
are contained in Theorem 1.9 [66].



Definition 2.6.19 We say that f : @ x RN x RV*™ — [0, +-00) is a Carathéodory integrand
if f (-,u, 2) is Borel measurable for every (u,z) € RN x RN*" and f (x,-,-) is continuous for
a.e. €.

Theorem 2.6.20 Let Q C R™ be a bounded open set, and assume that f satisfies condition
(7) of Theorem 2.6.18.

Letuw e BV (Q; RN), then F(u,-) is the trace of a finite measure on A(Q), and for every
Aec AQ)

(1) if f is Carathéodory or f (-,-,z) is upper semicontinuous then

F(u, A\ (J,UuCy,)) < /A f(z,u,Vu) dz;

(2) if f*(-,-, z) is upper semicontinuous then

Flu,ANC,) < / £ (2, @, dD%u) .
A

Remark 2.6.21 Let us point out that the notation adopted in Theorem 2.6.18, 2.6.20 for
the term accounting for the Cantor part is consistent with the discussion of Remark 2.6.7.
Indeed, it is easy to check that, in case (2.6.3) holds, f*°(x,u,-) inherits the quasiconvezity
property from f(x,u,-); so that f°(xz,u,-) is convex on rank-one matrices (see [52],[74]).

Eventually, a result of Alberti [1] ensures that %(m) has rank-one for ||Dul| a.e. x € Q.

2.7 Generalized functions of Bounded Variation

Functionals involved in free-discontinuity problems are not coercive in the space BV if no
L bound on the norms is imposed. Then, it is useful to consider the following larger class
(see [57], Chapter 4 of [20]).

Definition 2.7.1 Givenu € B (Q; RN) , we say that u is a Generalized function of Bounded

Variation in Q, we write u € GBV (Q; RN), if g (1) € BVjoe(Q) for every g € C* (RN) such
that Vg has compact support.

The above generalization is based on a double localization, with respect to both the de-
pendent and independent variables. Moreover, GBV functions are not even locally summable
in general. Nevertheless, GBV functions have generalized derivatives which keep the same
structure as those of BV functions.

Notice that by the very definition we have BV (Q;RN) C GBV (Q;RN), and also

GBV N L® (Q;RN) — BV NL® (Q;RN).

Remark 2.7.2 In case N = 1, it can be easily checked that w € GBV () if and only if
(=T)VuAT)e BV(Q) for every T > 0.

While, for N > 1 the product space (GBV (Q)) is strictly contained in GBV (Q; RN)
even if Q C R (see Remark 4.27 of [20]).



The space GBV inherits some of the main properties of BV (see Proposition 1.3 [11]).

Theorem 2.7.3 Let u € GBV (Q; RN), then
(i) u is approximately differentiable a.e. in Q;
(ii) S, is countably H" ' rectifiable and H"' (S, \ J.) = 0.

To give a rigorous mathematical sense to variational functionals involved in our problems,
we need to associate to a particular class of GBV functions a vector measure which can be
regarded as the Cantor part of the generalized distributional derivative.

Let us first recall that if w € GBV (Q; RN ) then a positive measure || Dul| is associated
to u. Indeed, for every 7 € N, let ¥; be defined as

u if |ul < a;
U;(u) = { , (2.7.1)

0 if Ju| > ai41

where (a;) C (0, +00) is a strictly increasing and diverging sequence, ¥; € C'* (RN RN ) and
Hv\PiHLoo(RN;RNxN) <1
Then, set u' := ¥;(u) € BV (Q;RN), and define for every B € B()) the positive

measure ||D|| by '
|[D%ul[(B) := sup || D' ||(B).

Actually, the sup above is independent of the truncation performed on u and it is also the
pointwise limit and the least upper bound measure of the family (|| Du?||).

For a GBV function u for which ||D¢u|| is a finite measure, we define a vector measure
the total variation of which is exactly || D ul|.

Lemma 2.7.4 Let u € GBV (Q;RN) be such that |Dul| is a finite measure, then the
sequence (Dcui) pointwise converges to A € M (Q; RNX") such that for every B € B(2)

IAI(B) = [[Dul|(B).
Moreover, \ does not depend on the particular truncations chosen.

Definition 2.7.5 Let u € GBV (Q;RN) be such that ||Du|| is a finite measure, then we
define D := .

Proof. Set

Do :={z € Q\ Sy :u(x) = 00} (2.7.2)
and note that ||Dul|(2s) = 0. Indeed, for every i € N, Qy, C {z € Q\ S, : @'(z) = 0}, thus,
by Remark 2.6.9, || Du’[|(Qs) = 0. If we set Q; := {x € Q\ S, : |a(z)| < a;}, we then have
that Q = (U;>1Q;) U N, with ||D|(N) = 0. Let i > j, notice that @' = @/ on ;, and so,
again by Remark 2.6.9,



DU Qj = DU Q. (2.7.3)

Let us point out that since || Dul|| is a finite measure then (|| Dl[(2\ ©;)) is infinitesimal.
Consider the set function X : B(Q2) — RV*" defined as

A(B) := lim D°u*(B).
Let us first notice that the limit above exists since

D% (B) — D°u'(B)| |
< D7) (B 9y) + [ D%l (B ) < 2Dl (B\ ).

and one can easily check that A € M (Q; RN X").

In particular, Proposition 2.2.2 (3) implies that (Dcui) is weakly * convergent in the
sense of measures to the vector measure \.

We claim that || Du|| = ||A||. First notice that since (|| Du’||) converges to || Du| weakly
% in the sense of measures then Proposition 2.2.2 (1) yields ||Dul|(A) > [|A|[(A) for every
A € A(Q). Moreover, with fixed j € N for every i > j by (2.7.3)

INI €5 = I Q] = [1D%u" L Q5| = [ D[] L Q4 = [[D°ul| L,

from which there follows ||A[[(2) = || Du||(2) by passing to the limit on j — +o0. Hence, by
Proposition 2.2.2 (3), (||Du’||) converges weakly * in the sense of measures to ||A| and so
the conclusion follows.

Eventually, it is easy to check that the argument used does not depend on the particular
family of truncating functions chosen. _

Let us now recall an alternative characterization of functions in (GBV (2))" through
their one-dimensional sections, which extends a classical result in BV. The so called ’sli-
cing techniques’ have been intensively exploited to prove variational approximations of free-
discontinuity problems since one may reduce n-dimensional problems to the one-dimensional
case (see [37]).

Let us recall the Slicing Theorem (see [10]), the notation we use here has already been
fixed before Lemma 2.4.2.

N
Theorem 2.7.6 (a) Let u € (GBV(Q))Y, then Ugy € (GBV (Qg)) for all ¢ € ™! and
H ! ae ye Q¢. For such y we have

(i) 1y (t) = Vu(y+t&) € for LY ace. t € Qg;

(iii) Uét,y(t) = uF (y +t€) or uzy(t) = uT (y + t§) according to the cases (v, &) > 0, (v, §) <
0 (the case (vy,&) = 0 being negligible).



(b) Conversely, let {&1,...,&,} be a basis of R™ and v = (u®)1<a<n € B (Q;RN). If
N
for every &, 1 <i<n, ug, 4 € (GBV (Q%)) for H* 1 a.e. y € Q¢,, and

| IDU=T) v ATy (@) d™ ) < +oc,
.

for every T >0 and 1 < a < N, then u € (GBV(Q))".
Let u € BV (Q; RN), then by Remark 2.6.10, the set
JX ={z € J,:ut(z) =0 or u (x) = o0}

is H"~! negligible. On the contrary, for GBV functions it may happen that H" ! (J°) >
0. In the following theorem we show that for GBV functions satisfying suitable a priori
bounds, J£° is H" ! negligible (see Theorem 4.40 [20] for a sharper result under more specific
assumptions).

Theorem 2.7.7 Let u € GBV () be such that

/ IVl de +/ 0 (Ju™ — u|) dH™" + | D°ul|(2) < +oo, (2.7.4)
Q Ju
where 6 : [0, +00) — [0, +00) satisfies

. .. 00

0>0= inf § >0; liminf— >0. (2.7.5)

|t|>6 t—0+ T

Then
HL(J®) = 0.

Proof. Assume first n = 1, in such a case we prove that u € BV (), and so the conclusion
is a well known property of such functions.
Indeed, let J = {t € J, : [ut(t) —u~(t)] <6}, then (2.7.4) and (2.7.5); yield

(inf 9) HO (LTS < S0 0 (jut —u]) < +oo,
[t|>d
teJu\JS

hence My = SUD 7,0 (13 UJge) |u™ — u™| is finite and actually it is a maximum. Thus, by (2.7.5)2,
we get

o fut—uT[ e X 0 (jut —uT]) + MyHO (T \ ) < +oc.

teJu\JP teJs
By (2.7.4) H°(J2°) < +oo and let J° = {t;}1<i<, With ¢; < t;11. Then, with fixed 4, for
every z,y € (t;,ti+1) we get

ur(e) —ur()| < | [ 1Val |+ =]+ 1Dl (),
z teJu\J°



where up = ((=T)VuAT) € BV(Q), T € N. By choosing y € (t;,ti+1) \ Qo0, where Q is
defined in (2.7.2), it follows that there exists a positive constant \; such that |ur(z)| < \;,
and so by passing to the supremum on 7" we get

sup |u(z)] < \;.
(tistit1)

Hence, J° = () and u € L>(R), so that u € BV (Q).

In case n > 1, notice that by the discussion above for every & € S"~! and H" ! a.e.
Yy E (J;jo)g the set (Jgo)i is empty. Hence, the projection of J2° onto II¢ is £"~! negligible.
Eventually, since J, is countably H"~! rectifiable, Proposition 2.4.3 implies that J2° is H"
negligible. _

Remark 2.7.8 Ifu € (GBV ()Y, one can show that J© = Ufilz]qj’f UN, with H" 1 (N) =
0. Then, from Theorem 2.7.7 we deduce that, if u; satisfies (2.7.4) for each 1 < i < N, then
H L (J) = 0.

2.7.1 Generalized Special functions of Bounded Variation

As in the BV case we may consider the sub-class of GBV functions for which D% = 0, which
now makes sense by Lemma 2.7.4.

Definition 2.7.9 Given u € B (Q;RN), we say that u is a Generalized Special function
of Bounded Variation in Q, we write uw € GSBV (Q;RN), if g(u) € SBV (Q) for every
gecC! (RN) such that Vg has compact support.

Notice that SBV (Q;RN) c GSBV (Q;RN), and GSBV N L® (Q;RN) — SBV N
L (Q;RN )
The main features of the space GSBV (Q;RN ) are the following closure and com-

pactness theorems which turned out to be the essential tools in order to state an existence
theory for free-discontinuity problems taking into account only volume and surface terms (see
[3],[10],[14]).

Theorem 2.7.10 Let ¢ : [0,+00) — [0,400) be a conver non-decreasing function such that
@ — 400 ast — 400, let 0 : [0,4+00) — [0, 400] be a concave function such that @ — 400
ast — 0F.

Let (uj) C GSBV (Q; RN) and assume that

sgp {/Qqﬁ(\Vuj\) dx + /Suj 0 (‘uj — u]_D dH"_l} < +o0. (2.7.6)

If u; — w in measure on Q, then u € GSBV (Q; RN) and



(i) Vuj; — Vu weakly in L' (Q;RNX");
(i) DIu; — DIu weakly x in the sense of measures;
(iii)
[ 6 vul) do < timint [ 6(Vu,)) de;
Q J Q
(iv)
+ - n—1 CE +_ - n—1
/UH(‘u u”|) dH §hmjlnf Suj@(‘uj u; D dH" ™.
Theorem 2.7.11 Consider a sequence (u;) C GSBV (Q;RN) satisfying (2.7.6), with ¢, 0
as in Theorem 2.7.10, and assume in addition that HUJ'HLq(Q-RN) is uniformly bounded in j
for some q € (0, +0o0].
Then there exists a subsequence (u;,) and a function u € GSBV (Q;RN), such that
uj, — u a.e. in ).
Moreover, in case g =00 u € SBV (Q; RN).

Remark 2.7.12 The original proofs of Theorem 2.7.10 and Theorem 2.7.11 make use of the
one-dimensional sections of GBV functions introduced in Theorem 2.8.5.

Indeed, GSBV functions can be characterized through their one-dimensional sections as
follows: u € (GSBV(Q)Y if and only if u € (GBV(Q))" and U,y € SBV (Qgi;RN) for
H L a.e. y € Q,, where {&,...,&,} is a basis of R™.

Let us now introduce a sub-class of GSBV which can be approximated by piecewise
smooth functions. Given p € (1, +00), define the vector spaces

(G)SBV? (4 RY)
= {ue (G)SBV (GRY) : H"7! () < 400, Vu e IP (RN ") |

In analogy with the WP case, GSBVP functions can be approximated by functions which
have a regular jump set and which are smooth outside.

Definition 2.7.13 Let W (Q; RN) be the space of all u € SBV (Q; RN) such that
(i) S, is essentially closed, i.e., H" ! (S_u \ Su) =0,

(ii) Sy is a polyhedral set, i.e., S, is the intersection of Q with the union of a finite number
of (n — 1) -dimensional simplezes;

(iii) u € Wk (Q \ Su; RN) for every k € N.

The following theorem proved by Cortesani and Toader [51] provides a density result of
the class W (Q; RN ) in SBVP N L*® (Q; RN ) with respect to anisotropic surface energies.



Theorem 2.7.14 Let Q C R"™ be an open set with Lipschitz boundary and v € SBVP N
L*® (Q;RN), for some p € (1,400). Then there exists a sequence (uj) C W (Q;RN) such
that

(1) u; — u strongly in Lt (Q;RN) ;
(i) Vuj — Vu strongly in LP (Q; RNXn);

(iti) lim sup ||uj||L°O(Q;RN) < HUHLOO(Q;RN);
J

(iv) for every A CC Q and for every upper semicontinuous function ¢ : Q@ x RN x RN x
S"=! — [0, +00) such that ¢ (z,a,b,v) = ¢ (x,b,a,—v) for every x € Q, a,b € RN and
v € S there holds

limsup/_ © (x,uj_,uj,yuj) dH" ! < /_ ¢ (z,u™,ut p,) dH (2.7.7)
j ANSu; ANSy

Remark 2.7.15 The sequence (uj) can be chosen such that (2.7.7) holds for every open set
A C Q if the following additional condition is satisfied

limsup ¢ (y,a’,b',pu) < 400

(y,a’ b ,p) = (z,a,b,v)
yeN

for every x € 99, a,b € RN and v € S"~1. In this case, A must be replaced by the relative
closure of A in Q (see Remark 3.2 [51]).

Remark 2.7.16 Let u € GSBV?P (Q;RN), then by a truncation argument and a diago-
nalization procedure, it is easy to infer from Theorem 2.7.14 the existence of a sequence
(uj) W (Q; RN) for which conditions (i) and (ii) of the same result hold true.

Hence, W (Q;RN) is dense in GSBVP (Q;RN) in the sense of the GSBV Closure
Theorem 2.7.10 (see Remark 3.4 [51] for a detailed discussion).

2.7.2 Lower semicontinuity in GSBV

In this section we recall some lower semicontinuity results for variational functionals defined
on GSBYV. The first result in this direction is provided by Theorem 2.7.10, where a separate
convergence property holds for the volume and surface terms. The same problem can be posed
for more general functionals.

The next result, proved by Kristensen [78] (see also [14]), ensures lower semicontinuity
for volume integrals exactly in the setting prescribed by the GSBV Closure Theorem 2.7.10.

Theorem 2.7.17 Let f : Q x RY x R¥X" — [0, +00) be a Carathéodory integrand quasi-
conver in z satisfying

c1 |2|P 4+ b(u) — a(x) < f(z,u,2) < ca(|z|” + b(u) + a(x))



for every (x,u, z) € QxRN xRN*" withp € (1,400), ¢1 and cy positive constants, a € L' (2),
and b € CY (RN) a non negative function.

Let uj, u € GSBV (Q;RN) be such that u; — u in measure on Q and (u;) satisfies
(2.7.6) with ¢(t) = tP.
Then

/ f(z,u,Vu) do < lim.inf/ f(z,uj, Vuy) de. (2.7.8)
Q i Ja

Eventually, we end this subsection stating some results concerning the lower semiconti-
nuity of surface integrals. The first result follows straightforward from a more general theorem
proved by Ambrosio (see Theorem 3.5 [11]).

Theorem 2.7.18 Let ¢ : R" — [0,400) be a norm, let u;, u € GSBV (Q; RN) be such that

(i) uj — u in measure on 2,

(i1) there exists p € (1,+00) such that

sup ||Vl 1o o.rvy < 00
j

Then

/ ¢ () dx < liminf ® (I/uj) dz.
Su J S“j

In order to state an analogous result for surface energies depending on the one-sided
traces u™ we need to introduce the notion of subadditivity.

Definition 2.7.19 Let A := {(2,2) : z € RN}. We say that a function ¥ : RN x RV \ A —
[0, +0c] is subadditive if for all distinct z; € RN, i = 1,2,3, we have

19(2’1,22) S 19(2’1,23) + 79(23, 22).

We extend ¥ to the whole RY x R” setting ¥ = 0 on A.

Notice that, in case we consider traslation invariant functions, that is 9(z1, z9) = 9(z1 —
22,0) =: 0(21 — z2) where 0 : RV \ {0} — [0, +00] and #(0) = 0, the subadditivity condition
on ¥ can be rewritten for 6 as

9(2’1 +29) < 9(2’1) + 0(22)
for every z; e RN, i=1,2.

The following result is an easy generalization to the vector-valued case of Theorem 4.3
[39].



Theorem 2.7.20 Let Q C R be a bounded open set, let ¥ : RN x RN — [0, +oc] be a
symmetric, subadditive and lower semicontinuous function.
Let u; € SBV (Q; RN) be such that uj — w in measure on Q and (u;) satisfies (2.7.6),

for some ¢, 0 as in Theorem 2.7.10. Then, u € SBV (Q; RN) and

/ 9 (ut,u) dH° < limjinf/s v (u;',uj_) dH°.

Let us point out that the results stated in Theorem 2.7.20 heavily depend on the one-
dimensional setting. Indeed, being (u;) C SBV (Q; RN ) not equi-bounded in L*° a priori,
by Theorem 2.7.10 we can only infer that v € (GSBV(€2))". On the other hand, the super-
linearity and the concavity assumptions on the function 6 of (2.7.6) and the choice n = 1

imply v € SBV (Q; RN) (see the proof of Theorem 2.7.7).

2.8 Functions of Bounded Deformation

We recall some definitions and basic results on functions with bounded deformation. For the
general theory of this subject we refer to [17] (see also [32],[60],[91]).

Definition 2.8.1 Let u € L'(;R"™); we say that u is a function of Bounded Deformation
in Q, and we write u € BD(Q), if the symmetric part of the distributional derivative of u,
FEu = % (Du + Dtu), is a n X n matriz-valued Radon measure on €.

It is easy to check that BV (€; R™) C BD(f2), and the inclusion is strict as shown in
[17],[32].

For every £ € R", let D¢ be the distributional derivative in the direction & defined by
Dev = (Dv,€). For every function u :  — R™ let us define the function u® : Q — R by

ut(x) = (u(2),€).
Theorem 2.8.2 If u € BD(Q), then Deut € M(Q) and
Deu® = (Eug, ).

Conversely, let {&1,...,&,} be a basis of R™ and let u € LY(Q;R"); then u € BD(Q) if
D5u5 € M(Q) for every & of the form & +&;, 4,5 =1,...,n.

As in the BV case, we can decompose Fu as
FEu = E% + F'u + E‘u,

where E%u is the absolutely continuous part of Eu with respect to £, E/u is the restriction
of Eu to J, called jump part of Eu, and E°u is the restriction of E*u to Q\ J}, called Cantor
part of Eu.

The following theorem is analogous to Theorem 2.6.8.



Theorem 2.8.3 Let u € BD(RQ), then

(i) u is approzimately differentiable at a.e. x in Q and for every B € B()
E*u(B) = / Eu(z) dx,
B

where
Eu = % (Vu + Vtu) ;

(i3) ||[Eu|| vanishes on sets B € B(Q) such that H" Y(B) < +o0;

(iii) J is countably H" ! rectifiable and for every B € B(f2)
Flu(B) = / (vt —u") © v dH"
BnJj

where a®b:=1(a®b+b®a).

One of the main open problem in BD theory is to establish whether H"~1(S%\ J*) =0
or not. So far, it has been proved that H"~17¢(S*\ J*) = 0 for every € > 0, i.e., the Hausdorff
dimension of S} \ Ji¥ is at most n — 1.

Definition 2.8.4 Let u € BD(R2); we say that u is a Special function of Bounded Deforma-
tion in Q, and we write u € SBD(Q), if E°u = 0.

It is easy to check that SBV(£2;R™) C SBD(f2), and the inclusion is strict as shown in
[17],[32].

In analogy with the BV functions, we may characterize the spaces BD(2) and SBD(2)
by means of suitable one-dimensional sections, for which we introduce an appropriate notation
(see [17]). Let £ € R™\ {0} and let II*, ES, E¢ be defined as before Lemma 2.4.2, with E C R"

and y € E¢. Moreover, given u : £ — R", we define usy E§ — R by

ubY(t) := (u (y + &), £).

If u € BD(Q) we set

JS = {x e g (ut(z) —u(2),6) #0}.
Note that, since H* ™! ({¢£ € S 1 : (ut(2) —u~(z),&) = 0}) = 0 for every z € J;, by Fubini’s
Theorem we have for H"~! a.e. £ € S"71,

H (T3 J5) = 0.

Theorem 2.8.5 (a) Let u € BD(Q) and let £ € S"~!. Then u¥ € BV(Q) for H™™! a.e.
y € Q¢, for such y the following equalities hold

(i) WSY(t) = (Eu(y +t&) €,€) for LY a.e. t € Qg;



. 3
(ii) Jyenw = (Jg)y.
Moreover, we have

[ 1D (B5) dr @) = [ Deu (B) < oo (281)
3

for every B € B(Q).
(b) Conversely, let uw € L*(;R™) and let {&1,...,&,} be a basis of R™. If for every & of
the form & + ¢&;, usy € BV(QS) for H" ! a.e. y € Q¢ and

P 5 =) < o

then uw € BD(Q).
Moreover, if u € BD(Q), then v € SBD(Q) if and only if usY € SBV(Q;) for every &
of the form & + &; and for H" ! ae ye Q.

The following compactness result in SBD({)), analogous to the GSBV Compactness
Theorem 2.7.11, is due to Bellettini, Coscia and Dal Maso (see [32]) and its proof is based on
slicing techniques and on the characterization of SBD(2) provided by Theorem 2.8.5.

Theorem 2.8.6 Let (u;) C SBD() be such that
12 n—1 * .
sup (/Q |Eu;|*dr +H (Juj) + ||u]||Loo(Q;Rn)) < +o0.
j

Then, there exists a subsequence (u;,) converging in L} .(Q;R™) to a function u € SBD(Q).
Moreover, Euj;, — Eu weakly in L? (Q; R"Q) and

. . n—1 * n—1 *
11;21&157-{ (Jujk) zH (Tl

Actually, a sharper lower semicontinuity result in SBD can be proved by following the
same ideas and strategy of the proof of Theorem 2.8.6.

Theorem 2.8.7 Let uj,u € SBD(Q) be such that uj — u in L' (Q;R™) and

sup [ <r<euj<x>s,§>12dx +/ ; |00:6) dH"—l) < +oo (2.82)

J

for £ e R\ {0}. Then (Euj(x)€, &) — (Eu(x)E, &) weakly in 12(Q) and
flenselaret < [ o, ) v

In particular, if (2.8.2) holds for every & € {&1,...,&,} orthogonal basis in R™, then divu; —
divu weakly in L?(9).
Eventually, we introduce the following subspace of SBD(f)

SBD*(Q) :={u € SBD(Q) : H'(J;) < +o0; Eu € L? (% R™) |






Chapter 3

Variational Approximation of
Energies with Superlinear Growth

3.1 Statement of the I'-Convergence Result

In this Chapter' we prove a variational approximation for integral functionals defined on
(GSBV(Q))" having the form

F(u) = /Qf(x,u, Vu) dx —I—/J @ (vy) dH™ L, (3.1.1)

where ¢ : R" — [0, 400) is a norm; and f : Q@ x RY x RV*" — [0, +00) is a Carathéodory
integrand, quasiconvex in z, satisfying

c1)zP +b(u) —a(z) < f(z,u,2) < ca(|z|” + b(u) + a(x)) (3.1.2)

for every (z,u,z) € QxRN xRN*" with p € (1, 4+00), ¢c1,c2 > 0,a € L' (Q), and b € C° (RN)
a non negative function.

Set M, m for maxgn-1 ¢ and mingn—1 ¢, respectively. Notice that m > 0, thus for every
v € R" there holds

mlvl <o) < M. (3.1.3)
To perform the approximation we add a formal extra variable v to F, defining F :

B(RN*T) [0, +oc] by

{]-'(u) uwe (GSBVPQ)Y, v=1 ae inQ
F(u,0) = (3.1.4)

+o00  otherwise.

'The contents of this Chapter are contained in the paper On the variational approzimation of free-
discontinuity problems in the vectorial case, published on Math. Models Methods Appl. Sci. 11 (2001), 663-684.
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The approximating functionals F; : B (Q; RV +1) — [0, 4+00] have the form

1 ep—1 »
/Q ((w(v) + 1) f (@, u, Vu) + g—p/W(v) T (W)> dz

e (u,v) = (u,v) € wtp (Q;RN+1), 0<v<1lae. in® (3.1.5)

400 otherwise,

where 1 : [0,1] — [0, 1] is any increasing lower semicontinuous function such that (0) = 0,
P (1)=1,and (¢t) >0if t > 0; p' = p%l; 7. is any positive infinitesimal faster than eP~! for
e— 0T W(t) =cew(l—1t)P; @:[0,1] — [0,400) is the auxiliary function defined by

1
o

B(t) = /Ot (W (s))7 ds, (3.1.6)

2 -7’
where ¢y is chosen such that ®(1) =1, ie., ey = (2 fol (1—s)¥ ds) .
Let us state and prove the main result of the Chapter.

Theorem 3.1.1 Let 2 C R"™ be an open set with Lipschitz boundary. Let (F¢) be as above,
then (F.) T'-converges with respect to the convergence in measure to the functional F given

by (3.1.4).

Remark 3.1.2 The apriori condition of quasiconvexity on f is assumed only for simplicity,
as in the general case it would suffices to replace in the formula of the effective energy the
function f by its quasiconvexification, i.e., the greatest quasiconvex function less or equal to

1.

Remark 3.1.3 Let us point out that the assumption v € [0,1] a.e. in (3.1.5) is not restrictive
since the functionals F,. are decreasing by truncations in the v variable.

Remark 3.1.4 For the sake of simplicity we have chosen explicitely the potential W. The
same result can be proved, with similar techniques, for any continuous function W : [0,1] —

[0, +00) such that W (1) =0 and W (t) > 0 ift # 1 (see [37],[39]).

We divide the proof of Theorem 3.1.1 into two parts, each corresponding to the two
inequalities of Definition 2.3.1.

3.2 Lower bound inequality
Lemma 3.2.1 For any (u,v) € B (Q;RN+1)

I'(meas)-liminf F(u,v) > F(u,v). (3.2.1)

e—0



Proof. Let ¢; — 07, (uj,v;) € B (Q; RN+1) be such that (u;,vj) — (u,v) in measure on €.
Without loss of generality we may suppose

liminf F; (uj,v;) < +oo. (3.2.2)
j

Notice that condition (3.2.2) implies the convergence of (v;) to 1 in measure on €, hence
v=1a.e. in (.

We further divide the proof of the lower bound inequality (3.2.1) into two steps corre-
sponding to the estimate on the bulk term and on the surface term, respectively.

Step 1:(Bulk energy inequality) We prove the following inequality

linljinf/gq/}(vj)f(m,uj,Vuj) dx > /Qf(a:,u, Vu) dz. (3.2.3)

First suppose to extract a subsequence, not relabelled for convenience, such that (u;,v;) —
(u,1) a.e. in Q and

limjinf/ﬂq/)(vj) f(z,uj, Vuy) de = li}m/gi[) (vj) f (x,uj, Vuj) du.

Consider the auxiliary function ® introduced in (3.1.6), we claim that (® (v;)) is bounded in
BV (). Indeed, (3.1.3), Young’s inequality and (3.2.2) yield

sup [D(@ ()] (©) = sup | 19@ ()] de
1 i

1 €
< -su /<—W vj) + L —f Vv»)dx<+oo, 3.24
2w [ (W 1)+ L (7 (324

for a suitable positive constant c.
To prove u € (GSBVP(Q))N, let 0 < v < o/ < ®(1) and set

Uit ={x € Q:®(v; (x)) >t}. (3.2.5)

By the BV Coarea formula (see Theorem 2.6.6), U;; has finite perimeter for LY ae teR.
Set p;(t) = | DXy, [|(R2), by the Mean Value Theorem there exists t; € (7,7') such that

!

gl (1)
o -mt) < [Cnwas [T n0a-pe@)©. 620

Let U; := Uj, and define w; = u;Xy;, then by a truncation argument and the BV Chain
Rule formula (see Theorem 2.6.12) it is easy to check that w; € (GSBV(Q))Y, and also that

hmmf/?[) vj) f(x,uj, Vu;) do
>11m1nf¢(<1> L )/ f(z,uj, Vuj) do
>11m1nf¢((1> ! )/ f(z,wj, Vw;) dx

= l1m1nf1/) (<I> L / f(z,wj, Vw;) dx (3.2.7)



where the last equality follows from (3.1.2).

Hence, by (3.1.2), (3.2.2), (3.2.4), (3.2.6) and (3.2.7) the sequence (w;) satisfies all the
assumptions of the GSBV Closure Theorem (see Theorem 2.7.10) with ¢(t) = tP? and 0(t) = 1
Then, since w; — v a.e. in Q, u € GSBVP (Q;RN). Actually, we can apply the same
argument, componentwise to deduce u € (GSBVP(Q))V.

Eventually, by using the GSBV lower semicontinuity Theorem 2.7.17 from (3.2.7) we

get
hmmf/ Y (v) f(x,uj, Vuj) do >¢ /f z,u, Vu) dx.

The lower semicontinuity of ¢ yields inequality (3.2.3), since, by letting v — ®(1), we have
o1 (v) — L

Step 2:(Surface energy inequality) We prove the following inequality

p—1
£;
hmmf/ <€ (vj) +—<,0 (ij)> dx 2/ © (vy) dH" 1 (3.2.8)
J Ju
It is useful to introduce the dual norm ¢, : R™ — [0, 4+00) of ¢ defined as
1

Yo (V) :== sup (— v, & ), 3.2.9
W)= s (gl (329)

and it is easy to see that (¢.), = ¢.
Notice that, for every 7 € N, Young’s inequality yields

p—1

/Q(%W(Uj) + %g@p(vw)> dx > /Q(W (vj))>

:/QQD(V@(UJ»))) d:p:/oq)(l) (/JX | o (va,,) dH”—l) dt, (3.2.10)

with U;; defined in (3.2.5) and the last equality following from the BV Coarea formula (see
Theorem 2.6.6)
With fixed A € A(2) and £ € S"7!, we claim that for H" ! a.e. y € A¢

1
_/

¢ (Vv;) dx

. 0 0
lim inf <J(Xijt)§yy n A> > 2H° (e, N A) (3.2.11)
for every t € (0, ®(1)).

Assume (3.2.11) proven, then, with fixed ¢ € (0,®(1)), (3.2.9), (2.4.1) of Lemma 2.4.2

and Fatou’s lemma yield the following lower semicontinuity estimate

1
lim inf vy, ) dH™ ! > liminf / vy, SO dHM!
. Jx_tnAeo(XU],t) >liminf s | w1 6))

J
Uj,t

= lim inf

i %1(6) /A5 " (J(Xuj,t)g, mA) dH"! (3.2.12)
2 o 9 .
= %—(g)/AﬂO (uey N1 4) " = /MAuuu,de 1




Consider the superadditive function on disjoint open sets A\; : A(2) — [0, +00) defined by

At(A) := liminf © (I/X _ ) dH" 1,
J JXUj ,nA Uj¢

then, by Lemma 2.2.4 and the very definition of the dual norm ., we get

At(2) = lim inf ® (I/XU_ ) dH"1 > 2/ @ (vy) dH™! (3.2.13)
J Ty, e Ju

by passing to the supremum in (3.2.12) on a sequence (¢;) dense in S”~1. Finally, by (3.2.10)
and (3.2.13), Fatou’s lemma yields (3.2.8).

Thus, to conclude we have only to prove (3.2.11). Notice that, by Theorem 2.7.6 for
H" 1 a.e. y € Q¢ there holds

ugy € (GSBV? ()", ((0))ey: (0))ey) — (uey1) (3.2.14)

in measure on Qg Moreover, by (3.1.2), (3.2.2), (3.2.9) and Fatou’s lemma for H"~! a.e.
y € (¢ there holds

hmmf/ < Uy Ey (uj)ﬁ,y|p

g1,
+€]—pw<( wea) + L (i)l )dt<+oo. (3.2.15)

Fix y € Q¢ be satisfying (3.2.14), (3.2.15), and assume also H° (Juéyy N A) > 0 since otherwise
(3.2.11) is trivial. Let {t1,...,t,.} be an arbitrary subset of Jue,, N A, and (I;)1<i<, be a family
of pairwise disjoint open intervals such that ¢; € I;, I, CC Ag. Then, for every 1 < i <r, we
claim that

s; = lim sup (i%flb ((vj)g,y)) = 0.

j
Indeed, if s, was strictly positive for some h € {1,...,r}, then

iﬁfzb((vak)g y) > 7

for a suitable subsequence, and thus (3.2.15) would give

_1 £ <
]gglgo/ (@ )eul” < c

Hence, Rellich-Kondrakov’s theorem and (3.2.14) would imply the slice u¢ ,, € Wi (I n RY ),

which is a contradiction since H° (Juéyy N Ih) > 0.
So let t;- € I; be such that

lim(v;)e.y (t) =0,



and «y, 0; € I;, with a; < t; < B;, be such that

lim(v)ey (as) = lim(vy)ey (B:) = 1.

Then, for all t € (0, ®(1)), since (XUN) X(th)g, there follows
ity

&y -

. 0 >
hIIllelfH (J(XUN)M N Iz) > 2.

Hence, the subadditivity of the inferior limit yields

.. 0
hmjlnf'H (J(XUj,t)E’y N A) > 2r,

and by the arbitrariness of r we get (3.2.11). L

3.3 Upper bound inequality

To prove the upper bound inequality, we have to construct a recovery sequence for any
function u in (GSBVP(Q))".

First notice that using an approximation procedure we can reduce ourselves to consider
the case in which the limit u belongs to W (Q; RV ) Indeed, without loss of generality we

may assume v = 1 a.e. in  and H""! (J,) < +o0, the cases L™ ({x € Q: v(z) < 1}) > 0 and
H" 1 (J,) = +oo being trivial, and suppose the upper bound inequality proven for functions

in W (Q; RN).
Let u belong to SBVP N L*° (Q;RN), take (uj) C W (Q;RN) to be the sequence
provided by Theorem 2.7.14, then (2.7.7), Remark 2.7.15 and Theorem 2.7.18 yield

lim © (Vuj) dH" ! = / @ (vy) dH™ L.
J Juj Ju

Moreover, Theorem 2.7.17 and Fatou’s lemma yield
lim/ f(z,uj, Vuj) do = / f(z,u, Vu) dz.
J JQ Q

By a simple diagonal argument and the lower semicontinuity of the upper I'-limit the upper
bound inequality then follows for any u in SBVP N L™ (Q; RY )

Furthermore, if u belongs to (GSBV?(2))", fix i € N and consider the auxiliary func-
tions W; defined by
u if |ul < a;
Ui(u) == { , (3.3.1)

0 if |’LL| > Ai4+1



where (a;) C (0,400) is a strictly increasing and diverging sequence, and for every i €
NV, € ¢! (RN;RN) and ||V gn gyxnyy < 1. Notice that u® = U, (u) belongs to
SBVP N L*® (Q; RV ) Lebesgue’s Dominated Convergence Theorem yields

u

lim/ @ (vyi) dH™ 1 :/ @ (vy) dH™ L.
(2 Ju"
Moreover, Theorem 2.7.17 and Fatou’s lemma yield

lim/ f (:L',ui,Vui) dx :/ f(z,u,Vu) dx,
i Ja Q

then we may use again a standard diagonal argument and the lower semicontinuity of the
upper I'-limit to conclude.
Thus, we have reduced ourselves to prove the following lemma.

Lemma 3.3.1 Let u € W (Q;RN), there exists a sequence (uj,vj) — (u,1) in measure on
Q such that
limsup F; (uj,v;) < F(u,1).
J

Proof. Assumption u € W (Q; RV ) implies that we can find a finite number of polyhedral
sets K such that

(i) Su=10nN ngl Ki§

(ii) for every 1 < i < r the set K* is contained in a (n — 1)-dimensional plane 11"/, with
normal v;, and I £ I1% for i # j.

Let a’, b., d. be positive infinitesimals for ¢ — 07; let 4! be a minimizer of the one-
dimensional problem

[ (T w ) (332)
7 V) + v;) v t, 3.
e Ep p
with the conditions v (b:) =0, v (al +b:) =1 —d., v € WH (b, al + be).

According to [83], the minimum value in (3.3.2) is exactly ®(1 — d.)p (v;), and it is
achieved by those functions 4! for which Young’s inequality holds with an equality sign, i.e.,
7% is the unique solution of the Cauchy’s problem

. 1
Ve = gO(i.)g (W ()"

Thus, 4% is increasing, 0 < 4% < 1—d,, and an explicit computation yields a = —e¢ (;) Ind..
Hence, d. is chosen such that the al is infinitesimal for e — 0.



Define the functions o’ : [0, +00) — [0,1 — d.] by
0 0<t<b,

al(t)=47i(t) be<t<al+bh (3.3.3)

1—d. t>al+b..

Denote by m; : R™ — II" the orthogonal projection onto II* and set d;(x) := d (x,I1"%). It is
well known that if z € R™ \ II* there holds

x —m; ()

Vd; (z) = = +u;. (3.3.4)

|z — mi(z)]
For any 6 > 0 set Ki := {y € I : d (y, K') < 4§}, fix ¢ > 0, let B be a cut-off function
between K! and Ki_, i.e., satisfying

2

i oo i 3 - T i
ﬁa € Cc (K2g) , 0< ﬁa <1, ﬁ€|K§ =1, Lo (T14) = d(KévKéa) ‘

v

Then define ‘ ‘ ‘ ‘
o (@) = () o (di(@) + (1~ 3 (@) (1 — o). (3..5)

and
Bi:={z € R :m(z) € KL, d; (x) <b.};
Cl.= {x cR":m(z) € Ki, d;(2) <al +b€}.
By the very definition of v there holds (see Figure 1 below)
{ 1-d. Q\C

0 B,

(3.3.6)

(2
£

and since m; € WhH* (R", R") with [V7il| oo (mn Ry < 1, Hvﬁénpo(nvz') < ce land |Vd;| =
1 a.e., there exists a positive constant ¢ such that

i
HV’UE

< (3.3.7)
L>(R™,R"™) £

Thus, 0 < v <1, vt € W (Q) and v2 — 1 a.e. in Q.
Define H! = C!\ B, let us estimate the integral

Il = /Hg (62, w (vé) + 61;;90” (Vvé)) dx. (3.3.8)

To do this, consider the sets

Hi = {2 € R" i mi(2) € Ki \ KL, di(2) < ol +0.),

12 = {0 € R : i (2) € KL, be < d (2) < al + D).



vi=1-d vi =0 vi=1-d

Figure 3.1: construction of vt

then H! = H>' U H??, and setting

[ = /H ., (ei,w (v8) + 5%1@1’ (wg)) da, (3.3.9)

there follows I! = I»! + 2. We estimate the I/ separately.
By (3.3.7), and since H" ! (K%, \ K!) = O (¢) for e — 0", we get

. . (R . .
< Sen (i) = 9cde gy (K3 \ KZ) = o(1). (3.3.10)
£ 9

Moreover, by the definition of v: on H%? there holds
VoL (z) = 4 (di () Vd; (),

thus, by (3.3.2) and (3.3.4) we get

. aé‘l'bs 1 . Ep_l . p
1,2 n—1 1 - . 0
2 [ (W (i) + e ol ) a

=20(1 — d.)p () K" (KL) < | o(w) dH"' +0(1). (3.3.11)
i

Eventually, by adding (3.3.10) and (3.3.11) we get
I g/ o (v) dH™ 4 0(1). (3.3.12)
K

Now we define the recovery sequence for the v variable by "gluing up” together the v,
1 <¢ <7, as to minimize the surface energy. This will be done defining a function which, on
every C!, coincides with v! up to a region of very small area. More precisely, let

cg
Ve '= min v
S i< &



then 0 < v. < 1,v. € W (Q) and v. — 1 a.e. in Q. Setting B, = J[_; B and C. = J}_, C?

there holds
1—-d. R"\C:
Ve =

0 B.
and also ' ' _
Vv =Vl ae. in V. = ﬂ {vf: < vg},
J#i
so that by (3.3.7) it follows
c
||V'U5||Loo R» Rn) S g

Since Q= (Q\ C)U(QNC.\ B:) U (2N B.), (3.3.13) yields

LW e+ e @) < er @0

gp~1

= + b
+ W & v ) i 1 o2
/QO(CE\BE) (sp’ (ve) ‘Pp (Vve) ) dx + ¢ .

Epl

1
N /m(cs\BE) (E_p’W( o)+ —@p (V%)) dz + o(1) = Re + o(1),

choosing d. such that d? = o(e) as well as elnd. = o(1), and also b, = o(e).
To estimate R., notice that C. \ B. = Ul_; (H{\ Be), thus

R<Z/

eb— 1
( W (ve) + —90 (VUE)> dr,
QN(HI\Be) p

(3.3.13)

(3.3.14)

(3.3.15)

(3.3.16)

and consider the inclusion H!\ B. C U;; (H: N HZ)UNj; (HE\ CY). Since Njz; (HL\ CY) C

Vi, arguing like in (3.3.12), by (3.3.14) we have

/ﬂj#(Hg\Cg)ﬂQ (Eip’w( )+ ﬂ(pp (VUE)> &
. p—1
- /ﬂ#i(Hg\Cg)ﬂQ (%W ( ) " 6—@27 (VU )) e
< [ o) a4l

Moreover, by (3.1.3) and (3.3.15) we have

S Lol W)+ S (Vo)) o < S 2 (i ).

J#i J#i
We claim that for every i,j € {1,...,7}, i # j, there holds

L" (Hg N Hg) = o(e).

(3.3.17)

(3.3.18)

(3.3.19)



Indeed, we may assume K’ N K7 # (), since otherwise for ¢ sufficiently small it follows
H!N H! =0 and then £" (H: N HZ) = 0. Notice that

HinH C{zeR": de) <al+bpn{zeR": dj(x) <al+b},  (33.20)

and since condition IT"# # I1% implies that K*N K7/ is contained in an (n — 2)-dimensional
affine subspace of R", from (3.3.20) we deduce

L" (H; N Hg) < clal +b)(al +b.) = c1e? In*d. + o(e),

where ¢, ¢; depend on H" 2 (K ‘NKJ ) and on the angle between IT and II"/. Thus, assertion
(3.3.19) is proved if d. is such that eln?d. = o(1) as well as d? = o(¢). The choice d. =

exp (—6 4) fulfils all the conditions required.
Eventually, (3.3.16)-(3.3.19) yield

/Q(eip/w( e) + ﬁsﬁ” (Vve)> dx
: Z/ T+ ofl) = /s () dH" " o(1),  (33.21)

the last equality holding thanks to the first condition in Definition 2.7.13.
To prove the upper bound inequality set

L;{:EER”‘ )EKZandd()S%},

and let . be a cut-off function between D, and B.. Define
= (1 —:)u, (3.3.22)

u e W (Q; RN) implies that u, € WhH> (Q; RN), moreover u: — u a.e. in Q. Finally, (3.3.21)
and (3.3.22) yield

Fues) = [ () +n)f (o, V) da

Q\B:

tc [ Vi) do [0 @)+ S (9 ) da

< / f(z,u,Vu) dx +/ o () dH™ ' + cnab;pJr1 +o(1),
Q Ju

'GI'—‘

the upper bound inequality follows choosing b. = (1.€)?. _

Remark 3.3.2 The function which associates to u in B (Q;RN) the value [ |ul? dz, q €
(0, 4+00), is only lower semicontinuous with respect to convergence in measure, thus we cannot



deduce directly from Theorem 3.1.1 and statement (ii) of Lemma 2.3.2 the T'-convergence of
(B () + o 7 de) to F () + Jo |7 d.

Nevertheless, the result still holds since all the arguments and the constructions we used
to prove the lower and upper bound inequalities in Theorem 3.1.1 can be directly applied to
such family of approximating functionals.

Remark 3.3.3 Notice that if we restrict the approximating functionals F. and the limit
one F to L' (Q;RN+1), the T-convergence result holds also with respect to L' (Q;RN+1)
convergence. Indeed, the lower bound inequality can be deduced straightforward by Lemma
3.2.1 since the L' (Q;RNTL) convergence is stronger than the one in measure; while the
upper bound inequality follows by applying the same arguments and constructions performed in
Lemma 3.3.1 above, and noticing that the L' (Q; RN+1) convergence of the recovery sequence
occurs.

Remark 3.3.4 We prove that, given e; — 07, if (uj,v;) is a recovery sequence for (u,1),
with F(u,1) < 400, then

1 b1
<—/W (vj) + L—¢P (ij)> L= o) H" L,
£;p p

weakly * in the sense of measures on 2.
Indeed, consider the measures with traces on A()) defined by

M) = [ (00) ) S (@, V) d,
p—1
! W (v;) + %cpp (ij)> L,

1 (A) = (

AA) = /A f(z,u, Vu) dz,
p(A) =@ () H" 1L (J, N A).

/
€jp

Proposition 3.2.1 yields for every open set A € A(Q)

liminf \;(A) > A(A), liminfp;(A) > A(A).
J j

Moreover, Theorem 3.1.1 yields

lim((©) + 5 (52)) = A(S) + (€,

from which there follows

lim Ay (52) = M), lim 1;(2) = ().

Hence, Proposition 2.2.2 (3) yields the conclusion.



3.4 Convergence of Minimizers

Let us state an equicoercivity result for the family of functionals defined in Remark 3.3.2.

Lemma 3.4.1 Let (u;,v;) € B (Q; RN+1) be such that

11m1nf< 5 (uj,v5) / lu;|? dm) < +o0, (3.4.1)
J

with q € (0,+00). Then there exist a subsequence (uj, ,v;,) and a function u € (GSBVP(Q))N

such that (uj,,vj,) — (u,1) in measure on 2.

Proof. We may suppose ¢ € W1 ([0, 1]). This is not restrictive up to an increasing appro-
ximation argument using the Yosida’s transforms. Indeed, let A > 0 and consider the Yosida’s
transform of v, i.e.,

UA(D) = inf {0(r) + At =]}

then vy € WH> ([0,1]), (1) is increasing in A and converges pointwise to . Moreover, since
1 is increasing also 1) satisfies that property. Notice that (1) < 1, with the possibility of
strict inequality, but 1,(1) — 1 as A — +oo. Nevertheless, we may substitute ¢ with 1 in
the definition of F. and apply the argument in the sequel to the new sequence of functionals.

Condition (3.4.1) and the bound [|v]|z(q) < 1 imply that v; — 1 in L}(Q). Fix i € N,
consider the sequence <w (%) uz) c Wbl (Q;RN), where u = W, (uj) with ¥;
the auxiliary functions defined in (3.3.1) and @ is the one defined in (3.1.6). Let us show that
(1,!) (%) u;> is bounded in BV (Q; RV ) Indeed, by the Lipschitz continuity and
the monotonicity of both ® and 1, Young’s inequality yields

® (v;) (v;) i V| de
w(umwm [01]> ( (\wmm) )‘d

§ci£"(Q)+/¢(vj)]Vuj]dw+ 1970 o) /\v ()| dz
Q 19| £oe (j0,17)

< ci(l + F; (u),05)),

denoting by ¢ a positive constant independent of .

By (3.4.1) and the convergence v; — 1 in L'(Q), by applying the BV Compactness
Theorem 2.6.2 and a diagonal argument we may suppose that, up to a subsequence not
relabelled for convenience, for every i € N there exists w' : Q@ — RY, with ||w|| peo@) <
such that for a.e. in 2

li§n u; (z) = w'(z). (3.4.2)

Let us prove that for a.e. z in Q there exists u : Q2 — R such that

limw' (z) = u(z). (3.4.3)

7



Indeed, let © € 2 be such that (3.4.2) holds, then either |u;(x)| — +oo or there exist w € RY
and (uj,) C (uj) such that uj, (z) — w. In the first case w'(x) = 0 for every i € N, and
then (3.4.3) holds with u(z) = 0; while in the second case u;k () — w as k — 400 for every
i > |w|, thus u(xz) = w by (3.4.2).
Let us prove the convergence of (u;) to u in measure on 2. Indeed, condition (3.4.1)
yields
L"{zx € Q:|uj(x)| >i}) <ci™?,

thus for every € > 0, since the decomposition
{z e Q:uj(z) —u(z)] > e} = {x €N ]ug(az) —u(z)| > E} U
{zx e Q:juj(z) —u(x)| > et nN{zr € Q: |uj(x)] > i}),
we have
L({a € @ fuy(2) — u(@)| > <))
< E"({az €Q:|ul(z) — u(z)| > E}) +ci Y,

and the claimed convergence follows by (3.4.2) and (3.4.3). By (3.4.1) and the same argument
used in Step 1 of Lemma 3.2.1 we deduce that u € (GSBV?(Q))V. r

We are now able to state the following result on the convergence of minimum problems.
Theorem 3.4.2 For every g € LY (Q;RN), q € (0,+00), and every v > 0, there exists a
minimizing pair (uz,ve) for the problem

me = inf {Fa (u,v) +’y/Q lu—g|? dx : (u,v) € B (Q;RNH)} . (3.4.4)
Moreover, every cluster point of (u:) is a solution of the minimum problem

m = inf {]—'(u) + 7/ |lu—g|? dx:u e GSBV (Q; RN)} , (3.4.5)
Q

and me — m ase — 0T.

Proof. The existence of (uc,v:) for every ¢ > 0 follows by (3.1.2) and the very definition
of F. which ensure its coercivity and lower semicontinuity with respect to convergence in
measure (see for instance Theorem 2.7.17).

Assumption g € L9 (Q; RN ) yields

sup {Fa (UE,Ua) +7/ ‘ua _g’q dw} < 00,
5 Q

thus Lemma 3.4.1 ensures the existence of a subsequence (uej,vsj) converging in measure on

Q to (u,1) with u € (GSBVP(Q)V.
Eventually, statement (7i7) of Lemma 2.3.2 and Remark 3.3.2 yield the conclusion. |



Chapter 4

Variational Approximation of
Energies with Linear Growth

4.1 Statement of the I'-Convergence Result

In this Chapter' we prove a variational approximation for integral functionals defined on
(GBV(@)V N L (4 RY) as

F(u) = /Qf(:c,u, Vu) dz (4.1.1)

+/ [ (z,@,dDu) + | K (z,ut,u",v,) dH"
Q Ju

where the assumptions on all the quantities appearing above are specified in the sequel.
Let Q C R™ be a bounded open set, and let f: Q x RY x R¥X" — [0, +00) be a Borel
integrand satisfying

(f1) there exist three constants cg > 0, ¢; and ¢y > 0 such that
ezl —eo < fzyu, 2) < eo(lz] + 1) (4.1.2)
for every (z,u,z) € Q x RNV x RVxn;

(f2) f(x,u,-) is quasiconvex in z for every (z,u) € Q x RY, and either f is Carathéodory
or f(-,-,2) is upper semicontinuous for every z € RV*";

(f3) for every (x,,u,) € 2 x RY and > 0 there exists J, depending on (,,u,) and 7, such
that

f(wmum Z) - f(ac,u, Z) <n (1 + f(x7u7z)) (4'1'3)

for every (z,u) € Q x RN with |z — z,| + |u — u,| < § and for every z € RV*™;

!The contents of this Chapter were obtained by the Author in collaboration with R. Alicandro, and are
contained in the paper Variational approximation of free-discontinuity energies with linear growth, to appear
on Comm. Cont. Math.. The paper is also downloadable at http://cvgmt.sns.it/papers/alifoc01/.
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(f4) for every =, € 2 and n > 0 there exist §, L > 0 (depending on x, and 1) such that

fautz)) <1 n M) , (4.1.4)

foo(x7u7z) - t t

for every t > L and = € Q with |z — ,| < 0 and for every (u,z) € RN x RV*n;

(f5) for every x, € © and 7 > 0 there exists ¢ (depending on z, and 7) such that
[z, u,2) — f(z,u, 2) < nf>(x,u, 2), (4.1.5)
for every = € Q with |z — 2, < § and for every (u,z) € RN x RV*";

(f6) f°°(-,-, z) is upper semicontinuous for every (z,u) € Q x RV.

Remark 4.1.1 Recall that f°(x,u,-) inherits from f(xz,u,-) the quasiconvexity property in
z. Moreover, by the growth condition (4.1.2) for every (z,u,z) € Q x RN x RN*™ there holds

alzl < P (z,u,2) < ezl (4.1.6)

To perform the approximation we introduce an extra variable v and define the functional
F:.L! (Q;RN+1) — [0, 400] by

{f(u) if ue (GBV(Q))Y, v="1ae. inQ
F(u,v) = (4.1.7)

400 otherwise,

which is equivalent to F as far as minimum problems are concerned. The approximating
functionals F. : L! (Q; RN +1) — [0, +00] have the form

/ fe (z, (u,v), V(u,v)) dz if (u,v) € Wt (Q;RN+1),

Q

F (u,v) = 0<v<1la.e in (4.1.8)
400 otherwise,

where f. : Q@ x RVt x RWHDXn [0 400) is defined by

el (0,0, (2Q)) 1= Y0 (2,,2) + W (0) + <l

with ¢ : [0,1] — [0,1] any lower semicontinuous increasing function such that (0) = 0,
(1) =1 and 9(t) > 0 if ¢ > 0; and W : [0,1] — [0,400) is any continuous function such
that W (1) =0 and W (t) >0if ¢t € [0,1).

Let us fix and recall some notations. If v € S" !, recall that II¥ C R”™ denotes the
orthogonal space to v, i.e., IIY = {x € R" : (v,x) = 0}. With fixed {v;},.,.,,_; an orthogonal
base of IT”, set Q), := {Zlgign—l Aivi N < %}, and @, = {y—i— Ay €@, N < %} In
case v = e, we take v; = e;, drop the subscript and use the notation Q., = Q.

Let us state and prove the main result of the Chapter.



Theorem 4.1.2 Let (F.) be as above, then (F.) T'-converges with respect to the L' (Q; RN+1)

convergence to the functional F given by (4.1.7), and the function K : QxRN xRN x8§n~1 —
[0, +00) is defined by

K (xzo,a,b,v) :=
inf {/ <1,Z)(v)f°° (o, u, Vu) + LW (v) + % |Vv|2) dr
(u,v) € A(a,b,v), L > 0}, (4.1.9)
with
A(a,b,v) = {(u,v) cwh! (Q,,;RNH) s (u,v) = (ugpy,1) on GQV}, (4.1.10)
where for every (a,b,v) € RN x RN x §n~1
b if (z,v) >0
Ug,pp(T) = { ) (4.1.11)

a if (z,v) <0

In the rest of the Chapter we will denote T’ (Ll (Q; RN +1)) by T' (L') for simplicity of
notation.

Remark 4.1.3 The apriori condition of quasiconvexity on f is assumed only for simplicity,
as in the general case it would suffices to replace in the formula of the effective energy the
function f by its quasiconvexification.

Remark 4.1.4 We will prove Theorem 4.1.2 in case (4.1.2) of (f1) is substituted by
a |z) < fzyu,2) < |z + 1), (4.1.12)

for every (z,u,z) € QxRN x RVX", This is not restrictive, by considering the approzimating
functionals obtained by substituting f with fi = f + co, which now satisfies (4.1.12) above,
and by noting that, calling Fy their T'-limit, F} = F 4+ ¢oL™(Q2).

Remark 4.1.5 The result of Theorem 4.1.2 generalizes that of Theorem 5.1 in [6], in which it
is considered the particular case N =1 and f(x,u,z) = f(|z]), where f :[0,4+00) — [0, 4+00)

is convet, increasing and limy_, y o @ =1, that is f*(x,u, z) = |z|. In Section 4.1.1, under
these assumptions on f and for all N > 1, we will show that K(x,,a,b,v) = g(|b—a|), where
g :[0,400) — [0,400) is the concave function defined in [6] by

g(t) := reiI[%)f:l} {w(r)t + 4/711 VW i(s) ds} . (4.1.13)

So we recover the results of [6] also in the vector-valued setting.



Remark 4.1.6 Let us notice that by a comparison argument and by the I'-convergence result
of [6], we immediately derive a bound for the lower and upper T'-limits of the family (F:).
Indeed, consider the scalar functional

IDul(@\S.) + [ g —ul) an'ifue GBV(@),

I (u,v) = v=1a.e. inQ

400 otherwise,

g being given by (4.1.13). Then, by the growth condition (4.1.2) and by virtue of Theorem
5.1 [6], there exist three positive constants cg, ¢1 and co such that

N
a1 Z I (uj,v) —co < F—lienig)rlf F. (u,v)
i=1

N
< I-limsup F; (u,v) < co Zl(ui,v) + ca.
e—0F i=1
In particular, we deduce that the domains of the lower and upper T'-limits of the family (Fy)
coincide and are contained in (GBV (Q))".

Remark 4.1.7 We provide an equivalent characterization of the jump energy density K
defined in (4.1.9) which will be useful in the sequel (see Section 4.1.1).

Let K be the function obtained by substituting in the minimization formula (4.1.9) defin-
ing K the class A(a,b,v) with

A(a,b,v) = {(u,v) € VVlloc1 (S,,;RNH) : (u,v) 1-periodic in v;,1 <i<n-—1,

(uvv) = (a7 1) on (aj,y> = _%7 (u,v) = (b, 1) on <x,1/> = %}

where S, = {:17 e RN : |(z,v)]| < %} (see [30]).

Then, since A(a,b,v) C A(a,b,v) we have K < K. The opposite inequality can be proved
by exploiting the same arguments we will use in Lemma 4.2.2. However, we will obtain it as
a consequence of Proposition 4.2.1 and inequality (4.3.6) in the proof of Proposition 4.3.35.

First notice that assumption (f5) implies that with fized (z,,a,b,v) € QxRN xRN x8§n~1
and n > 0 there exists § > 0 such that

K(xy,a,b,v) — K(z,a,b,v) < nK(z,a,b,v) (4.1.14)

for every x € Q with |x — x,| <.

Let uqyp, be the function defined in (4.1.11), then by (4.1.14), Proposition 4.2.1 and

inequality (4.5.6), we get
1

1
——K(x0,a,b,v) < liminf —

K(z,a,b,v)dH" !
1+7n 60+ on—1 /(zo+Hu)m(mo+5Qu) ( )

1 ~
<limsup — (F— lm Fy (ugp, (- — x0), 1520 + (5@,,)) < K(xy,a,b,v).
s_o+ O e—07F 7



The conclusion then follows by letting n — 0.

Remark 4.1.8 Assumption (f4) can be dropped in order to state the T'-convergence of the
family (Fy). Indeed, by exploiting the same arguments of Theorem 4.1.2 below, and with
obvious changes in Subsection 4.2.2 and Proposition 4.3.3, one can prove the I'-convergence

of (F¢) to the functional F defined in (4.1.7), with the formula (4.1.9) defining the surface
energy density K substituted by

K (zo,a,b,v) :=
lim sup (inf{/@u <w(v)tf (mo,u, %Vu) +LW(v)+ %\V?)P) dy :

t—0t

(u,v) € A(a,b,v), L > O}) . (4.1.15)

Let us introduce the localized versions of the approximating and limiting functionals.
For every A € A(Q) set

Fu;A) ifue(GBV(AYY, v=1aec inA
F(u,v;A) :==
+00 otherwise in L' (A; RN+1),

where F (-; A) is defined as F(-) in (4.1.1) by taking A as domain of integration in place of

Q. Moreover, let

[ e (w0), V) de it (o) € WH (RN,
A
— 0<v<1lae in{

F. (u,v; A)
+00 otherwise in L? (Q; RN+1),
and
1
/ (gW(U) +e€ |Vv|2) dr if ve WhHi(Q),
A
Ge (v A) == 0<wv<Tlae in

+00 otherwise in L(Q).
Eventually, with fixed z, € Q, denote by F_ (xo;-,; A), F° (203, -; A) the functionals defined

analogously to Fy (-,+; A) and obtained by substituting in the definition of f. the function f
with f(zo,-,"), (o, ", "), respectively. With this notation we get

K (zy,a,b,v) = inf {FiO (To;u,v;Qy) : (u,v) € A(a,b,v), L > O} . (4.1.16)
L



4.1.1 Properties of the surface density function

Before proving Theorem 4.1.2 we state some properties of the surface energy density K, we
will need in the sequel, and we show a more explicit characterization of it in some particular
cases. The proofs are in the spirit of the papers [29],[30],[68],[69].

Lemma 4.1.9 Let K : Q x RY x RY x 8"~1 — [0, +00) be defined as in (4.1.9), then
(a) for every (zo,a,b,v), (x,,a’,b',v) € A x RNV x RY x 8"~ there holds
|K (20, a,b,v) — K (x5, b, V)| < c(la—d|+|b=V]);
(b) for every (z,,a,b,v) € Q x RY x RN x 8"~ there holds
19 (|b —al) < K (20,a,b,v) < cag (|b—al).
where c1, co are positive constants, and g is given by (4.1.13).

Proof. (a) We use the different characterization of K discussed in Remark 4.1.7. Let (u,v) €
A(a,b,v), let ¢ € C*°(R) be a function such that 0 < ¢ <1, p =1 for t < i, p = 0 for
t> %, then define

p(—z-v)(a, 1)+ (1—¢(-z-v)(d,1) f-i<z-v<-—1
(5,9) (2) 1= { (u(22),0(22)) iz ] < 1
oz-v)(b,)+(1—-p(x-v))®,1) ifl<z-v<i
Then (@,7) € A(d’,V,v) and, for L > 0, we get
x07a b/ )<F1 (xoﬂlaf);Qu)

_ / (0(22)) f*° (20, u(22), 2Vu(22)) da

Q.N{|z- u\< }

4 2
/Qm{|:c vl<2 }<LW( v(2z ))+E|V1}(2x)| > dz
(oo (2 )b+ (1= 9 )V, (b~ V) @ ¢ (x-v)v) da

+

+

Xz, o (x-v)a+(1—g@(x-v))d,(d —a)@¢ (z -v)v)dr.

/Vﬂ{ <zv<s }

Q,,ﬂ{ <zv<i}
Since the periodicity of (u,v) and by the growth assumption (4.1.6), there follows

K (z,,d',b',v) < F%O (o3 u,v;Qu) + ¢ (la—d |+ |b—1b)

and so by taking the infimum on (u,v) € A (a,b,v) and L > 0 we conclude that

K (z0,d",V,v) < K (zp,a,b,v) +c(la—d|+ |b-V]).



Analogously, we can prove the opposite inequality.

(b) Use the growth condition (4.1.6) and consider the characterization of K given by Lemma
4.1.10 (b) and Remark 4.1.11 below when f*(z,u, z) = |z|. |

In the following we characterize the function K under isotropy assumptions on f*°. In
such a case we show that K can be calculated by restricting the infimum to functions (u,v)
with one-dimensional profile. For instance, isotropy always occours in the unidimensional
case.

Lemma 4.1.10 Let K : © x RV x RN x §"~! — [0, +00) and g : [0,+00) — [0, +00) be
defined by (4.1.9) and (4.1.13), respectively. Then

(a) for every (zo,a,b,v) € Q@ x RY x RN x 8"~ there holds
K(xo,a,b,u) é g(Kf (ﬂﬁ‘o,a,b,l/)),
where Ky : Q x RY x RN x 8771 — [0, 4+00) is defined by
K¢ (z0,a,b,v) := inf{ 0 f (zo,u, Vu) dy : u e WhHt (Q,,;RN) ,

U= Ugp,y ON GQV}; (4.1.17)

(b) if £ is isotropic, i.e., for every (zo,u,z) € X x RN x RNX" and v € 8"~ there holds
foo (:EO)u)ZV@V) é foo (ZEO,’LL,Z),
then K = g (Ky).

Proof. (a) With fixed r € [0,1) and n > 0, let T, > 0, v, € W1 (0,7;,) be such that
vy(0) =7, v, (1)) =1 and

/OT77 (W(vn) + |v;7|2) dt < 2/711 \VWi(s)ds +mn.

Then define
”77(%) —%Sy-l/<—aL
onL(y) =497 ly-vl<ag ;
vn(y'”ﬁ;f%) ozL<y-1/§%
where «, is any positive infinitesimal as L — 400, and [, := %;:L If » = 1 simply take

Un,L = 1.



Let u be admissible for Ky and extend it by periodicity to R", then set

a —%Sy-u<—aL
ur(y) := u(ﬁ) ly-v| < ap
b ar <y ugé

Notice that (ur, v, 1) € A(a,b,v). Let us compute F® (ur,vr; Q). Let R¥ be a rotation
B

L
such that R¥Q = @,. Then, since f*° (x,u,-) is positively one-homogeneous, we get by simple
changes of variables and by Fubini’s Theorem

/Q P(or) F (o, ur, Vur) dy

QV {‘y V‘<QL} L 2: L 2CKL
y

=i [y (oo (520)) ¥ (e (550))) o

_— /Q £ (20, u(BYy), Vu(R"y)) dy + o(1)

=1(r) . I (o, uly), Vu(y)) dy + o(1),

where the last equality follows by Riemann-Lebesgue’s Lemma. Moreover, there holds

otowin= [ (0 (n(52)) ol (52 o
e [ (v (o (52) s (52 )
= 2/0Tn (W(vn) + ‘7}1/7’2) dt +o(1) < 4/T1 \/%ds +cen +o(1).

Hence, there follows

K (zo,a,b,v) < F;ﬁ (ur,vy,L; Qv)
1
<) [ 1 o uly), Vu(w) dy +4 [ Wi ds +en +o(1),

and so by letting L — +oo, n — 07 and by passing to the infimum on u we get for every
r € [0,1]

K (xo,a,b,v) < Y(r)Ks (x0,a,b,v) —1—4/1 VW (s)ds.



Finally, the desired inequality follows by the very definition of g.
(b) Following [21] define

Dy (z0,a,b,v) == inf{ (2o, u, V) dy : u € WHt (QV;RN) ,
Qu

1 1
uw) =€w-n.¢ (-3) —at(3) =0}
— inf / fo° (a: ¢, §®V)dt cewht ((—1 1) RN)
-1 ’ 272
1 1
(-3) =) =0
then it is obvious that K < Dy. Moreover, in case f is isotropic, Dy = K (see Proposition

2.6 [69]). Hence, by (a), we have to prove only that K > g (Dy).
The isotropy condition on f°° implies that for every (u,v) € A(a,b,v), L > 0 there holds

F5 (0,05Q,) > 1(,:Q,)
_/ ( (o, u, Vuv @ v) + 24/ W \Vvy®ul> dy.

For every y' € Q) and t € [—3, 2], let as usual, (u,, (1), v, (1) = (u(y' +tv),v(y + tv)),
then by Fubini’s Theorem there holds

I(u,v;Qy)

/r dy’ / 1 < (Vo) £2° (Tos Uy Uy @ V) +2\/ W (o) |i}'/’y/‘> at,
3

and thus

\ (w (€2) ° (w0, &1, 61 @ 1) + 20/ W (&) ‘g'gD dt -

1
2

@& ew ((—5.3) R @& (-3) = @ @8 (5) = 6.0}

In order to conclude, with fixed (£1,&2) as above, let m = inf[_%é] &9, then

[ (s 1 (i érov) +2/W @) f&]) a
w(m)/_%l 1 (20,61, &1 @) dt+4/nj\/W<s>ds
> (m)Dy (xo,a,b,v) + 4/7: \VW(s)ds > g(Df (z0,a,b,v)).

K (zo,a,b,v) > inf{/

Nl

1
2



Remark 4.1.11 The characterization of K in the isotropic case, given in Lemma 4.1.10 (b),
is relevant when an explicit expression of Ky is given, for instance in the autonomous and
scalar case.
Indeed, if f = f(x,z) then Ky (z,,a,b,v) = f> (20, (b —a) ®v) (see Remark 2.17 [68]).
In the scalar setting N = 1, since f satisfies conditions (f1), (f4)-(f6), Corollary 1.4 and
Theorem 1.10 [66] (see also [54]) yield the equality

/ < (xo,u,v) du  ifa>b
Kf (‘Touaa b7 V) == bb .
fOO(w()’u’_V) d’LL 'lfa<b

a

In particular, if f(z) = |z| then K (z,,a,b,v) = g(|b — al), thus we recover the surface
energy density of [6].

4.2 Lower bound inequality

In this section we establish the lower bound inequality when restricting the target functional
to BV (Q; RN ) x L'(Q). We treat separately the diffuse and jump part. Indeed, we recover
straightforward the estimate on the diffuse part by using the semicontinuity result Theorem
2.6.18, while we apply the blow-up argument of Fonseca-Miiller to estimate the surface energy
density.

Proposition 4.2.1 For every (u,v) € BV (Q; RN) x L'()) we have

r (Ll) -liminf F; (u,v) > F (u,v).

e—0t
Proof. Let ¢; — 0T and (uj,v;) — (u,v) in L (Q;RN+1). Without loss of generality we
may assume the inferior limit liminf; F, (u;,v;) to be finite and to be a limit. Then, we get
hmjlnf/Q W (vj)dx < hmjlnf (engj (vy3 Q)) =0,
so that by Fatou’s lemma there follows
W (v) < liminf W(v;) =0

j

for a.e. z € , and then v =1 for a.e. z € Q.

Since fej > 0, up to passing to a subsequence, we may assume that there exists a
non-negative finite Radon measure p on §2 such that

faj('v (uj(')a Uj(’))a V(U](), ’U]())En L Q— 0

weakly * in the sense of measures. Using the Radon-Nikodym’s Theorem we decompose p in
the sum of four mutually orthogonal measures

= paL" + prel| DCul| + plu® —u” [H T Ty A+ ps,



we claim that
pa(xo) > f (20, u(x,), Vu(z,)) (4.2.1)

for a.e. x, € €

pe(wo) 2 1 (0,1(z,), %m)) (1.22)
for ||[DCul| a.e. z, € €
x ! T, (20),u” (20), vy (T
(o) > ‘u+(%)_u_(%)‘K( 0 U (o), 4™ (o), vu (o)) (4.2.3)

for |ut —u”|H" 1 J, ae. x, € Q.

Assuming the previous inequalities shown, to conclude consider an increasing sequence
of smooth cut-off functions (¢;) C C5° () such that 0 < ¢; < 1 and sup; ;(z) = 1 on £,
then for every ¢ € N we have

lim Fy; (uj,v5; ) > lim.inf/ fe; (x, (ug,v5), V(ug,v5)) @i dx
J J Q

dDu

= id 2/ x,u, Vu ,-dx—i—/ 00(3;7@77) d|| Dy
/Qso nz | S )@ ! D)) ¥ [ Dl

+ [ K (z,uu,v) o dHYL
Ju

Eventually, let i — +00 and apply the Monotone Convergence Theorem. _

In the following subsections we prove (4.2.1), (4.2.2), (4.2.3).

4.2.1 The density of the diffuse part

Consider the auxiliary function @ : [0, 1] — [0, +00) defined by

(1) = 2 /0 " Wis) ds, (4.2.4)

then notice that @ is increasing, ®(t) = 0 if and only if ¢ = 0 and ® € W ([0, 1]).
Define the function f: Q x RN+1 x RWV+Dxn [0, +00) by

Fl, (), (2,0) =9 (@7 (0 VO AB(1)) (F(w,u,2) +[C]),
then notice that for every (u,v) € Wh! (Q; RN+1), e>0and A € A(Q) Young’s inequality

yields
G.(v; A) > 2/A\/W(v)|W| dﬂc:/A|V(<I>(v))| d,

from which we infer that

FL(u,0: A) > /Af(x, (u, D(v)), V(u, B(v))) da.



It can be easily seen, by the hypotheses on f and 1, that f satisfies all the assumptions of
Theorem 2.6.18.

Moreover, if v; — 1in L' (Q;[0,1]), then ® (v;) — ®(1) in L* (€25 [0, ®(1)]). Hence, given
(uj,v;) as in the proof of Proposition 4.2.1, for every A € A(2) there holds

lim_inf Fe, (uj,v5;A) > lim_inf/ f (@, (uj, @ (v))), V(uj, ® (v))) d
> [ Flo o), Ve W) do+ [ (@@ (1) dD"w, ® (1))
:/f x,u, Vu) da;—i—/foo (x,u,dDu) .
A A
From this, it is easy to infer (4.2.1) and (4.2.2).

4.2.2 The density of the jump part

To prove (4.2.3) recall that (2.5.3), Lemma 2.6.11, Remark 2.6.10 and Radon-Nikodym’s
Theorem yield for H" ! a.e. z, € J,

1
lim —/ ut dH™ 1 u" (zo) —u” (xo)], 4.2.5
t—0t tn1 un(xo+tou(zo))| @)= )l = [ (o) (@)l ( )
1 4
lim —/ |u(z) — u™(z,)| dz =0, (4.2.6)
t—0+ tn mo‘l’to (z0)

(4.2.7)

o n (:170 + tQuu(xo))
wy(ze) = tl_l)%l+ lut — u| Hn—1 (Ju N (xo + tQuu(ﬂco)))

exists and is finite.

By (4.2.5) and (4.2.7), and since the function X Dy (o0

with compact support in € if ¢ is sufficiently small, Proposition 2.2.2 (2) yields

is upper semicontinuous and

o o) (o) sleo) = Jim o [ (o)

vy (zo)

1
> hmsuphmsup =) / fe; (@, (ug,05), V(ug,v5)) dz
t—0+ j ToF+tQuy (z0)

= lim sup lim sup/ tfe; (w0 +ty, (uj,vj)(zo + ty), V(uj, v;) (w0 + ty)) dy

t—0t J Quu(zo)
¢ t Lot
= lim sup lim sup/ ty (v](y)) flwo+ty,us(y), ZVuj(y)
t—0t+ J vy (zo)
4 2
+ ]W( (y )) + TJ ’va(y)’ ) dy, (4.2.8)

where (u}(y), vi(y)) := (uj(zo + ty), vj(z, + ty)). Notice that (uf(y), vi(y)) — (u(z, +ty), 1)

in ! (Qyu(mo);RNH) as j — +oo, and by (4.2.6) there follows (u(x, + ty),1) — (uy(x),1)



in L' (Qyu(xo); RN+1) ast — 0%, where

Up(T) 1=

{ ut(zo) (T — 2o, vu(T0)) >0

u(xo) (T — To, (o)) <O

With fixed n > 0, let 6, L > 0 be given by (f4) and (f5). Then, by (4.1.4) of (f4), if t < £ A \/2—5
we get

L o (sw) i (m+ ), 1V 0)) do

0 J VACAIN

1

= W) £ (o + ty,uf t o
- 1+n‘/éuu(zo)¢(vj(y)) f (:E + yyu](y),vu](y)) daj 1+T,

vy (zo)

On the other hand, by (4.1.5) of (f5) there follows

L () 1 (o + tr ), Vi) dy

vy (zo)

1 t 00
> m/@yﬂ(mw (050)) £ (w0, (9), Vil (v) ) dy.

Therefore, letting n — 0, from (4.2.8) we obtain

[t (20) — u™ ()| (o)

> lim sup lim sup /
t—0t J

(4 (250) £ (0, 0. Vi )

vu(zo)
+ 2w () + 2 (w5t ) an

= lim sup lim sup Fs (JEO;u;,U;; Quu(%)) . (4.2.9)
t—0t J
By using a diagonal argument for every h € N there exist indexes j, € N and t;, € (0, +00)
such that v, := ?—hh < %, the sequence (uz’;, ;”;) — (ug, 1) in Lt (Q,,u(xo);RN“), and
[t (o) = u™ (20)| () > lim F? (2ol 0113 Qua)) - (4.2.10)

In order to establish (4.2.3) and to take into account the definition of K, we need to modify
(uz’; ) U;Z) near 00, (z,) Without increasing the energy in the limit and in such a way that the
new sequence belongs to A (u™(z,),u™ (z,), V4 (T0)). Assuming Lemma 4.2.2 below proved,

we are done. _

Let us prove the following De Giorgi’s type averaging-slicing lemma.



Lemma 4.2.2 For every z, € €, (a,b,v) € RY x RN x 8" ~; — 0, (uj,v;) —
(tapy,1) in L (Q,,; RN+1) there exists (u;,0;) € A(a,b,v) such that (4j,0;) — (Ugpy,1) in
! (Q,,;RNH) and

limjsup F,Y"Jo (03U, 05;Qy) < limjinf F%O (o3 uj,v55Qy) (4.2.11)
Proof. Without loss of generality we may assume the inferior limit in (4.2.11) to be finite
and to be a limit. Moreover, we denote by ¢ a generic positive constant which may vary from
line to line.

Let (w;) ¢ Whi (Ql,; RN) be such that w; — gy, in L! (Ql,; RN), Wj = Ugpy 0N 0Q)
and || Dwj|| (Qv) — [[Duqp.|| (Qv), which is provided by Lemma 2.6.4.
Let a; — 0%, b; € N to be chosen suitably and such that s; := Z—j — 0, then set Q) :=
(1—aj+is;)Qu, 0 < i < b;. Let (p;) C C§° (Q%Y), 1 < i < bj, be a family of cut-off functions
such that 0 < ¢;,; <1, ¢j; =1 on Q41 IVejillLeq,) = O(Sj_l). Define

wj = pjimuy + (L= gjimn)wss vj = g0+ (1— 950),

YR
1 € N. Moreover

then (ul vi-) € A(a,b,v) and converges to (ugp,,1) in L! (Q;RN+1) as j — +oo for every

00 N 00 . - (OI2
F’Yj (xO,Uj,Uj,QV) S F’Yj (x07uj7vj7Q.17/ )

+ /Q,’)il\Qi’iQ P(v;) (2o, ué—, Vu;) dzx + G, (vj; Q1N Qi)

i . -7- .7._1
+ Q\Q ! W (U;) [(wo; wj, Vwy) dx + G-yj (1);.; QI QI ) ' (4.2.12)

We estimate separately the terms appearing above. To begin with, we have that
Y (a:o;uj,vj; Qi’i_z) + Gy (053 QU Q%) < FX (0, uj,055Qu). (4.2.13)

Moreover, since Vué- = @ji-1Vu; + (1 — ¢ji—1)Vwj + Vy;i-1 ® (u; — w;), by the growth
condition (4.1.2) we have

/ oo gprs O o V)
<cf i gpone V) Vsl + V3l 4 (Vi g = wy) d

o0
< C/QJ;’il\Q’;’iz Y(v) [ (20, uj, Vuy) do + C/QJ;Z'I\QJ;Z'Q |Vw;| dz
c

+3_j Q{/,i71\QJV',i,2 ‘uj - wj" (4.2.14)

Analogously, there follows

/CQV\Qi,il G (Uj) [ (o, wj, Vwj) do < C/QV\QJ;“ |Vw;| dx. (4.2.15)



In addition, since Vv§ = ¢;iVv; + (v; — 1)V, ;, we get

. . - 1 9 o
Gy (v QI Q) < C/j,i\Qj,H (— +95 [V |* + 5 lv; - 1\2> da

Q Vi S5
E pn(piin oii-1 g\ Odi—1 Vi 12
< ’Y]ﬁ (QV \ QI/ ) +c G'Yj (U]7 QI/ \QV ) + CS? Q{,’i\Q{,’i71 ‘U] 1‘ dz.

(4.2.16)

By collecting (4.2.13), (4.2.14), (4.2.15) and (4.2.16) in (4.2.12) above, by adding up on i and
averaging, we have that there exists an index i; € N, 2 <i4; < b;, such that

(=

(3 (3
FfYDJO (IIZ‘O;U]-J,’UjJ;Qy) < — E F%O ($0;U},U;§Qu)
J 1=2

C
< (1 + F) F (@05 uj, v5; Qu)
J

C
+c/ | Vwj|dx + — u; — wj|de
AQ aj Joa@i0 T
¢ i 303 2
+—C v (Q,\ If +c—/ v — 12 d. 1217
- (@ \ @) 2 Jongue (4.2.17)

1 1
Eventually, choose a; = |lu; — ijzl(Q,,;RN) + [Jv; — 1”22(@”), b = [’yj_l} and set (;,0;) =
j ’ j . .
noticing that £ (Q, \ @Q4°) = O(a;) and ||Dw;|| (Q, \ @%°) — 0. The last assertion follows

since (||Dwj;||) weakly * converges to |[Dugp,|| in the sense of measures, ||Dw;|| (Q,) —
| Duapy| (Qy) and || Dugp, || (0Q%°) = 0 for every j € N. n

(uij fuij). The conclusion then follows by passing to the limit on j — 400 in (4.2.17), and

4.3 Upper bound inequality

In order to prove Theorem 4.1.2 for functions u in BV (Q; RV ), we follow an abstract ap-

proach (see [16],[53]). Indeed, first we prove that for any I' (L') -converging subsequence of
(F:), the limit, as a set function, is a Borel measure and, by Proposition 2.3.9, coincides
with its [-limit. Then, by using Theorems 2.6.20 and 2.6.15, we provide, in Proposition 4.3.3
in the sequel, an upper estimate of the limiting functional, which, combined with the lower
estimate of Proposition 4.2.1, allows us to conclude that the I" (Ll) -limit does not depend on
the chosen subsequence and it is equal to F'. Hence, by Urysohn’s property (see Proposition
2.3.4), the whole family (F.) T' (L') -converges to F.

As a first step we prove the following crucial lemma, in which we establish the so called
weak subadditivity for F”(u,1,-) (see [53],[55]).

The argument used is a careful modification of well known techniques in this kind of
problems, and it is strictly related to the ones exploited in Lemma 4.2.2.



Lemma 4.3.1 Let u € BV (Q; RN), let A, A, B € A(Q) with A" CC A, then
F" (u,1; A" UB) < F"(u,1; A) + F" (u,1; B) ..

Proof. Let (w;) C C* (Q;RN) be strictly converging to u, i.e., such that w; — w in
L (Q;RN) and || Dw;||(2) — ||Dul|(£2), and let ( j‘, ]A) (uf, f) be converging to (u,1)
in L! (Q; RN+1) and such that

lim sup F, (u] ,vﬁA) = F"(u,1; 4),
J

limsup Ft; (u ( ;B, f,B) = F"(u,1; B),
J
respectively. Set ¢ := d (A’,0A), let M € N and define
A ={reAid@A) < i} 1<i<M
A = A |

Let (y;) C C’O (AMY 1 < < M be a family of cut-off functions such that 0 < ¢; < 1,
@i =1on AM |, |[Ve;||[(a) < 2L, Define

picud + (1 —piw;  AM,
ul = w; AMAN\ AM
(1= pir)uf + @ipiw; @\ AY

and
vl =i + (1 — @i)oy,
then (u],fu]) — (u,1) in L! (Q; RN+1) for every 1 < i < M. Moreover, there follows

VAR E
—i—/(AM a )mb (Uf) f (x,u],Vu ) dr + G, (1)3-4; (A%l \m) OB)
+o /(AM\AM oo 1 1P e+ iy (25 (4 BT 5)
7 i—1
g ey ()1 (8 e, (50 ) )

I ( Uj s U5 ’B\Az+1)

Faj(u vl A'UB) (], ],A )




Let us estimate only the terms above depending on the superscript A, analogous computations
holds for the one with B. First, it is easy to check that

Fe; (“fv vt A )+Gej(vf;(z4§‘f1\z4 )ﬂB)<FaJ(], j‘,A), (4.3.1)

and

/( T )OBQ,Z) (U]A) f (x,u],Vu )d:p <cl (uf,vf; (A%l \m) N B)

|Vpi_i] ’uf - wj’ dx.

+ / 1+ [Vuy|) da + / .
‘ (Af.‘/fl\Af.VfQ)ﬂB( [Vuwgl) de (Aif‘{l\AfV£2)ﬂB
(4.3.2)
Moreover, there holds
Ge, (vi; (A \A))) 0 B) (4.3.3)

<G, (v (AM\AM) N B) + G, (of; (AN AY, ) 0 B)
. 12 — 0B de 4 Son ((AM N\ AT
+cej /(AM\A.TIl)ﬁB Vil ’fuj v; ‘ dx + gjll ((AZ \Ai_l) ﬁB) .
Then, from (4.3.1), (4.3.2), (4.3.3), by adding up on 7 and averaging, there exists an index
2 <i; < M — 1 such that

M-1
F,. (u vl A'UB)

379

< (10 5) (5 () 1, o)

cM A B
= / u; — wj da:—i—/ u; —wj| dx
(M —2)o < (A\A’)OB‘ / ]’ (A\A’)OB’ ! ]‘ )

~
[|
¥

cejM? c
+]7/ v — 0B dx + Vw;| dx
(M —2)52 (A\A’)OB’ I ‘ M —2 (A\A’)OB‘ i
c
———— " ((A\A)NB).
b (AN A) )
Now choose M; = [ H — UB‘ ;2( )], then by passing to the superior limit on j — +o0
and by the definition of F” we get the conclusion. _

By virtue of Lemma 4.3.1 we get the following.

Corollary 4.3.2 Assume that (Fej) T (L') -converges to F, then for everyu € BV (Q; RN)

the set function F(u, 1;+) is a Borel measure.



Moreover, for every A € A(Q)
F(u,1;4) < ¢(L(A) + || Dul|(4)) ,

and )
F(u,1;A) =T (Ll) -lim £ (u, 1; A).
J

Proof. It suffices to take into account that the growth assumptions (4.1.2) on f and to apply

Propositions 2.3.8 and 2.3.9.

We now are able to prove Theorem 4.1.2 in the BV case.

Proposition 4.3.3 For every u € BV (Q; RN) we have

U (L') - lim F.(u,1) = F (u,1).

e—0t

-

Proof. Let ¢; — 0T be such that for every v € BV (Q;RN) and A € A(Q) there exists

F(u,1; A) := T (L") - lim; F.; (u,v; A).
Then, by Proposition 4.2.1, we are done if we show that

F(u,1;9) < F(u,1).

Since by Corollary 4.3.2 F (u, 1;-) is a Borel measure, it suffices to prove that

F(u,l;Q\Ju)g/Qf(a;,u,Vu) dx—l—/gfoo(a:,ﬂ,chu),

and
F(u,1;Jy,) §/ K (z,u™ u™,v,) dH™ L

To prove (4.3.4), note that for every j € N
st (’LL, 1; A) = Fo(’LL7 A)7
with

/ f(z,u,Vu) dx if u € Wht (Q; RN)
Fy(u; A) = ¢ 74
+o0 if ue LY RYN)\ W (RY).

Hence, for every B € B(Q2) A
F(u,1; B) < Fo(u; B).

By Theorems 2.6.18 and 2.6.20, we get that for every u € BV (Q; RN)

Fo (u;Q\ ) = /Q f (@0, V) do + /Q % (2,8, dD) |

(4.3.4)

(4.3.5)



from which (4.3.4) is easily deduced.
By virtue of (2.6.2) of Theorem 2.6.15, to prove (4.3.5), it suffices to show that for every
(z0,a,b,v) € A x RV x RN x §»~!
F A o 1 o 14
limsup (ua,b,u( x )71 Y +5Q )
6—07t on

< K(zo,a,b,v). (4.3.6)

Without loss of generality we prove (4.3.6) assuming xz, = 0 and v = e, (recall that Q., is
denoted by Q).
With given v > 0, let (u,v) € A(a,b,e,) and L > 0 be such that

F?O(07U7U7Q) é K(07a7 bv en) +77

L

and define (uj,v;) € Wh! (Q;RNH) by

. iL
(bv 1) if Tp > ejT
(ujv) (@) = 3 (u,0) () if [wa] <
. iL
(a71) if p, _EJT

where (u,v) is extended to R" by periodicity. Hence, (u;,v;) — (ugpe,,1) in Lt (Q; RN+1),
and thus

F(Ua,b,en, 1;0Q) < limsup F, (uj,v5;0Q) . (4.3.7)
J

Set Q} = 0Q N {|an| < -} and Q4 = Q N {, = 0}, then we have

F, (u]',vj;5Q):/5Qm{ ) SjL}f(:L',a,O)dl'
Tn<——5
" 2

The change of variables t = E”i—”L yields for j large
I, (ujv”ﬁQg) =
/_11//22 stdt/% v <v <;:—/L,t>> f ((:E',stt) U (%,t) ,(SJLLVu <;:—/L,t>> dx’
+/1/2 dt/ (LW(U(x—,,t>>+l 2) da’
—1/2 Q) g;L L

=I5+ 15 (4.3.9)




With fixed n > 0, by (4.1.4), we can choose § small enough such that for j large we have

1 n—
Il5 < =7 <n5 1 (4.3.10)

/11//22 dt/Q < < e;L )) = <($/’51Lt) ,U <;%IL,t> ,Vu <;—/L’t>> dx’) ,

Now consider the Yosida’s Transform of f°° defined, for A > 0, as

(@, u,2) o= sup {f*(y,u, 2) — Aly — o}
yeR™®

Recall that
[z, u,2) < f(w,u,2) < fo(w,u,2) (4.3.11)

if 0 < A2 < Ay and, since f*°(-,u,z) is upper semicontinuous, f9°(-,u,z) — f(-,u,z2)
pointwise as A — +o00. Moreover, f{° is A-Lipschitz, i.e.,

| (x1,u,2) — [0 (z2,u, 2)| < A|zp — 22 (4.3.12)
and, by (4.1.2), for every z € R there holds
0 < f(x,u,2) < e(l+[2]).

Thus, given A > 0, by (4.3.10), (4.3.11) and (4.3.12), we get

1
]1,6 S T (7’]6”_1 + 2)\(5”

Sl G o))

Let now j — +o0 in (4.3.8) and take into account the inequalities (4.3.9) and (4.3.13); then
by virtue of the Riemann-Lebesgue’s Lemma we have

limsup F; (uj,v5;0Q) < —5” 1/ V() X (0,u, Vu) dx
J

+5"—1/ (LW( )+ —|W|2) i+ e (%w)a
g —

Thus, by (4.3.7), we get

F (tapen 136 1
lim sup (ta, = Q) < / () f{°(0,u, Vu) dx
6—0+ on—t 1—mn Q

1
+/ (LW(v) + —]Vv]2> dx + L
Q L 1-—




Eventually, by letting n — 07 and A — +oo, by Lebesgue’s Theorem we get

. F (ua,b,eny 1; 5@)
lim sup =)
6—0+ on

< [ (9011 0.0V + LW (0) + £IVol ) da
= F(0;u,v;Q) < K(0,a,b,e,) + 7,

and by the arbitrariness of 7 > 0 we obtain (4.3.6). ]

4.4 The GBYV case

In this section we prove the full result stated in Theorem 4.1.2. We recall that we have already
shown the I'-convergence result if the target function u € BV (Q; RN ), here we extend the

proof to all functions u € L! (Q; RN ), and we identify the domain of the limit functional in

a subset of (GBV (Q))™ x {1}.
We first state and prove a preliminary lemma on the continuity of F'(-,1) with respect
to truncations. To do that consider the auxiliary functions ¥; defined by

u if Ju| <a;
Ui(u) = , (4.4.1)
0 if \u! > Ai4+1

where (a;) C (0,400) is a strictly increasing and diverging sequence, and for every i € N
U, e C! (RN;RN) and || VO, oo grvpren) < 1.

Lemma 4.4.1 Let u € (GBV(Q)Y with F(u,1;Q) < 400 and let u' := ;(u), i € N. Then
lim FF (u 1) = F(u,1).

Proof. We prove separately the convergence of the different terms of F'.
Since Vu(x) = Vu'(x) for a.e. z € Q; := {x € Q: |u(z)| < a;}, we have

/f(:n,ui,Vui)dx:/ flx,u, Vu)dz + f(z,u', Vu') dz.

By the growth assumption (4.1.2), we get

‘/Q\Qi f (a:,ui,Vui) dx

and so, being the term on the right hand side above infinitesimal, we deduce that

§c/ (1+|Vul) dz,
0\Q;

lim/ f(z,u', Vu') dx :/ f(z,u, Vu) dz.
g Q Q



Let us prove the convergence of the Cantor part of the energy. Since the measures Du’
are absolutely continuous with respect to ||Dul| and D’ Q; = Dul_;, we have

. dDC Z
7 (i dD%u) /f°°< i )chu
/ dDe ) 41Dl

:/ £ (z, a, chu)—l—/ oz, @ dDu d|| D ul| . (4.4.2)
2 \Q; " d|[Deul|

Moreover, by (4.1.6), we have

- dDy!
®|z,a, ———7 | d||D
foio? ( dIIDCuH> 2%

and thus, since || Du|| (2 \ €;) — 0 as i — 400, from (4.4.2) we conclude that

< c|| Dl (2\ i),

lim/ f (m,&i,chui) = / 1 (z,a,dD).
i JQ Q

Furthermore, for what the surface energy is concerned, note that H" ™! (J°) = 0 (see
Theorem 2.7.7, Remark 2.7.8 and Remark 4.1.6) and J,;; C J,, for every i € N with v,; = 1,
for H" ! a.e. x € J,i. Then, (u’)i — ut, Xy, — &y, for H*" ! ae x € J, as i — +o0.
Hence, there follows

lign/ . K (x, (u’)Jr , (u’)_ ,l/ui) dH" !
= lim / < (u)_ ,uu) Xy dH"!

_/ K (z,u™u™,v,) dH" Y,

by Lebesgue’s Theorem and taking into account properties (a) and (b) of Lemma 4.1.9. L

The idea of the proof of the I-liminf inequality in the next proposition is based again
on De Giorgi’s averaging-slicing method but now the truncations are performed on the range
rather than on the domain (see Lemma 3.7 [29], Lemma 3.5 [42]).

Proposition 4.4.2 For every (u,v) € L' (Q; RN+1) we have

F( )—hmF( v) = F (u,v).

e—0t

Proof. We divide the proof in two steps, dealing with the I'-liminf and the I'-limsup inequality
separately.
Step 1:(Lower Bound inequality): for every (u,v) € L (Q; RN+1) there holds

r (Ll) - liagégf F. (u,v) > F (u,v). (4.4.3)



Let (uj,v;) — (u,v) in L! (Q;RN+1) be such that
lim ., (uj,v;) = T (L') -liminf ., (u,0). (4.4.4)
j j

We may also assume such a limit to be finite; hence, as already shown in Proposition 4.2.1,
we have that v; — 1 in L!(£2), and, as observed in Remark 4.1.6, u € (GBV ().

Define u; = U, (u;), u' := U;(u), where ¥; are the auxiliary functions in (4.4.1), then
u; e whi (Q; RN), ut € BV (Q; RN) and u; — utin L1 (Q; RN) for every ¢ € N. Moreover,
notice that

F, (u;'»,vj) = /QT[) (v;) f (:E,ué»,Vu?-) dr + Ge; (v5;92). (4.4.5)

Fix 7 € N, then we have
/ Y (vj) f (:L",u;,Vu;‘-) dx :/ Y (vj) f(x,uj, Vuj) do
Q {lujl<ai}

i /{ai<uj|<ai+1} Vi) f (x7 u;, Vu;) dr + ¥ (v;) f (,0,0) dz

{luj|>ait1}
< [ @) f (@ V) dote | ¥ () (1+ V) do
Q {ai<|uj|<ait1}
el ({fug] > aisa})

With fixed nn > 0 there exists i, € N, i, > %, such that c£™ ({Juj| > a;,}) <n. Let M € N,
then for every j € N there exists i; € {ip, i+ 1,...,9 + M — 1} such that

to+M—1

’ij ij 1 7 7
[ s (e, vu)) do < 57 by [ o)1 (2,0, Vus) da
< J ) £ g, V) de ko [ () (4 Vg de
< /Qw (v3) [ (2, uj, Vug) da + 2n, (4.4.6)

by (4.1.2), (4.4.4) and by choosing M € N suitably. Note that M is independent of j and
depends only on 7. Moreover, (4.4.5) and (4.4.6) yield

Fe, (uf,v) < F (uj,05) + 20, (4.4.7)
Since i; € {40, +1,...,7o+ M — 1} for every j € N, up to extracting a subsequence not
relabelled for convenience, we may assume i; = i, to be constant. Hence, u;-” — u' in

L (Q; RN) and so by (4.4.4), (4.4.7) and Subsection 4.2.1 there follows
F (ui",fu) < li}n F, (u;" vj)

<T (Ll) -liminf F;; (u,v) + 2n. (4.4.8)
j



Eventually, letting n — 0% in (4.4.8), by Lemma 4.4.1 we obtain (4.4.3).
Step 2: (Upper Bound inequality): for every (u,v) € L (Q; RN+1) we have

r (Ll) -limsup F; (u,v) < F (u,v). (4.4.9)

e—0t

It suffices to prove (4.4.9) for u € (GBV(Q))" with F(u,1) < +00 and v = 1. Let u’ be the
truncation of u defined before, then, since u* € BV (Q; RN ), Proposition 4.3.3 yields

r (Ll) -lim sup F; (ui, 1) =F (ui, 1) . (4.4.10)

e—0t

Letting ¢ — +o0 in (4.4.10), the conclusion follows by Lemma 4.4.1 and the lower semicon-
tinuity of I' (L1) -limsup,_,o+ Fv. L

4.5 Compactness and Convergence of Minimizers

Let us state an equicoercivity result for the approximating functionals defined in (4.1.8).

Lemma 4.5.1 Let (uj,v;) € L (Q; RN+1) be such that
lim inf (FEJ. (uj,v5) +/ |u;|? dw) < 400, (4.5.1)
J Q
with ¢ € (1,400). Then there ezists a subsequence (u;,,v;, ) and u € (GBV ()Y such that
(uj, ,vj,) — (u,1) in L (Q;RN+1).

Proof. By arguing exactly as in the proof of Lemma 3.4.1 we deduce that there exist a
subsequence (uj, ,vj,) and a function u € B (Q; RN) such that (uj,,vj,) — (u,1) in measure
on ().

Moreover, since g € (1,400), by (4.5.1) we have that the sequence (u;) is equi-integrable
and so the strong L' (Q; RN +1) convergence follows by Vitali’s Theorem.

By (4.5.1) and by Remark 4.1.6 we deduce that u € (GBV ()" L

We are now able to state the following result on the convergence of minimum problems.

Theorem 4.5.2 For every g € L4 (Q; RN), q € (1,400), and every v > 0, define

me = inf {F6 (u,v) —1—7/ lu —g|? dz : (u,v) € L (Q;RNH)} ,
Q
and let (uz,ve:) be asymptotically minimizing, i.e.,
F. (ug,ve) —me — 0.

Then, every cluster point of (uz) is a solution of the minimum problem
m := inf {f(u) + ’y/ lu—g|?tdx:ue (GBV(Q))N} ,
Q

and m. — m as e — 0T



4.6 Generalizations

In this section we discuss further extensions of the model obtained by slightly varying the
approximating functionals (4.1.8).

4.6.1 Anisotropic singular perturbations

In this subsection we consider spatially and directionally anisotropic singular perturbation
terms in the definition of the approximating functionals (4.1.8), and we obtain a generalization
of Theorem 4.1.2.

With fixed p € (1,+00), let h: Q x R™ — [0,400) be a Borel integrand satisfying the
following set of assumptions:

(h1) there exist three constants c¢3 > 0 and ¢4, ¢5 > 0 such that

ca|Cl—es < h(z,¢) < es([¢]+1)
for every (z,() € @ x R™;
(h2) h(z,-) is locally Lipschitz for every = € ;

(h3) for every x, €  and for every n > 0 there exists 6 > 0, depending on x, and 7, such
that
[(A>°)P (20, ¢) — ()" (z, Q)] < 0 (h™)" (,()

for every x € Q with |z — z,| < 0 and for every ( € R™;

(h4) for every z, € Q and for every n > 0 there exist §, L > 0, depending on x, and 7, such

that
P (z,t¢) )

()" (2, ¢) = M} §n<1+ "

P
for every ¢t > L and x € Q with |z — z,| < 0 and for every ( € R".

Let )

W (v eP~

/( ) + —h (:Ev C) )

pe p

with f, ¢ and W as in Section 4.1, p’ = %. Then, consider the family of functionals

H.:IL! (Q; RN+1) — [0, 400] defined by

hE(:Ev (u’v)’ (Z, C)) = T/J(U)f (ar;,u, Z) +

[ e ), () do i (,0) € W (RN
- Q

H. (u,v) : 0<v<1a.e.,

400 otherwise.

The proof of the I'-convergence for the family (H.) follows by exploiting the same argu-
ments used to prove Theorem 4.1.2 with some minor changes.



Theorem 4.6.1 Let (H.) be as above, then (H.) T'-converges with respect to the strong
L' (Q;RN+1) convergence to the functional F defined in (4.1.7) with surface energy den-
sity K : Q x RN x RN x 81 — [0, +00) given by

K (zy,a,b,v) :=
inf {/ (1/1(v)f°° (o, u, Vu) + ]% W(v) + pLi’—l ()P (x,, Vv)) dy :

v

(u,v) € A(a,b,v),L > 0}. (4.6.1)

Let us remark that Lemma 4.1.9 still holds true. Moreover, (a) of Lemma 4.1.10 is valid
provided the function g appearing in the statement is substituted by

1 1
gn (o, v, t) == Tei]&)f:l} {w(r)t + (% (x0,v) + h> (20, —1/))/T (Wi(s))? ds} .

Eventually, in case f*° is isotropic assume, in addition, either h*° to be isotropic or h*°(z, -)
to be a norm for every x € Q. Then K can be characterized as in Lemma 4.1.10 (b) with the
function g substituted by g5, defined above. Indeed, the first claim follows by using the isotropy
assumption on f*° and h* to reduce the minimization formula (4.6.1) to one-dimensional
profile functions; while the second by using the characterization of a norm via its dual norm
(see formula (3.2.9)).

4.6.2 Approximation of superlinear energies via linear ones

In this subsection we use the results of Theorem 4.6.1 to approximate energies with superlinear
bulk term, as considered in (3.1.1) of Chapter 3, by linear functionals as in (4.1.8).

For the sake of simplicity we deal only with the autonomous case, from which one can
recover the general one of an integrand f = f(x,u, z) satisfying (£3), by applying the blow-up
method.

Thus, we consider f : RV*™ — R such that for some co > 0, ¢1, c2 > 0 and p € (1, 400)

alzlP —co < f(2) <ca(|zP — 1) (4.6.2)

holds for all z.

We recall the following approximation result proved by Kristensen [78], which shows
that quasiconvex functions with linear growth play in the quasiconvex setting the same role
of affine functions in the convex case.

Lemma 4.6.2 Let f: RN*" — R be a quasiconvex function, satisfying (4.6.2).
Then there ewist fj : RN*" — R that are quasiconvexr and satisfy

(1) fi(2) < fita(2);

(2) fi(z) = f(2) as j — 400;



(3) there exists aj,r; > 0, bj € R such that if |z| > r;
fi(z) = [77(2) = ajlz[ + bj,
where f7* denotes the convex envelope of f;.

Let (¢;) be a positive infinitesimal sequence, then set

i(z, (u,v), (2 = h(v) s (2 M £
h]( 7( ’ )7( 7()) —¢( )f]()+ p’aj + »

¥’ (C),

with f a quasiconvex function satisfying (4.6.2), ¢» and W as in Section 4.1, p € (1,400)

and p/ = 1%’ and ¢ : R — [0,400) a norm. Consider the family of functionals H; :

I (Q; RN+1) — [0, 400] defined by

/ hi (z, (u,v), V(u,v)) dz  if (u,v) € Wht (Q;RN+1)
e

H; (u,v) : 0<wv<1la.e. inQ, (4.6.3)

+00 otherwise.

Theorem 4.6.3 (H;) I'-converges with respect to the ! (Q; RN+1) convergence to the func-
tional H : L' (Q;RN+1) — [0, +00] defined by

n—1 . » N
H(u,v) = /Qf(Vu) dz + cw /Ju o(vu) dH if u € (GSBVP(Q))

+00 otherwise
where cy = 2[01(W(s))P_I’ ds.
Proof. Without loss of generality assume (u,v) € Lt (Q; RN +1) to be such that
- limjinf Hj(u,v) < 400.

To prove the lower bound inequality, with fixed & € N, consider the functions

v p—1
h;g(x7 (’LL,’U), (Z, ()) = T/)(’U)fk (z) + m + E]_

D
Ve, P (€),

and the corresponding functionals H ]k obtained by substituting h; with h;? in (4.6.3). Then,
since H; > ij for j > k, Theorem 4.6.1 yields for any k € N

I'-lim inf H;(u,v) > Fj(u,v),
j

F}, being the I'-limit of (ij) Hence, u € (GBV(Q))Y and v =1 a.e. in Q.



Moreover, Lemma 4.6.2 (2) implies that (F}) is increasing, so that

I'-lim inf H;(u,v) > sup Fj(u,v). (4.6.4)
J k

By Lemma 4.6.2 (3) fi°(2) = ax|2|, and thus there follows

Fy.(u,v) :/ fr (Vu) dx + ag||Dul|(£2) —i—/ K (z,u™ 0™, v,) dH L, (4.6.5)
Q Ju
where
K b,v) := inf \Y, L w L Vo) | dy :
k (xoa a, 7V) =1m /QV akw(v)‘ u’ + ]? (U) + pr_1(,0 ( U) Yy

(u,v) € A(a,b,v), L > O}.

It is easy to check that ay — +o0o as k — +o00, so that by passing to the supremum on k&, by
(4.6.4) and (4.6.5), we infer that ||[Du () = 0 and then u € (GSBV(22))". Moreover, the
final remarks in Subsection 4.6.1 yield

Ko (20,0,b.0) = ax min {¢(r)|z| + 2 (aik) /Tl(W(s))ﬁ ds} .

rel0,1
Hence, there follows

1

lilrfn Ky (zo,a,b,v) = 2(,0(V)/ (W(S))ﬁ ds = cwp(v). (4.6.6)

0

By Lemma 4.6.2 (1), we can apply the Monotone Convergence Theorem and deduce from
(4.6.4), (4.6.5) and (4.6.6) the lower bound inequality and u € (GSBV?(Q))V.
To prove the upper bound inequality it suffices to notice that

Hj(u,v) < Fj(u,v),
where Fj is obtained by substituting in definition (4.6.3) the function h; with

p—l
W) L5 (o),

file, (u,0),(2,0)) = ¢(v) f (2) + Pe; T p

and then to apply arguments analogous to those used in Section 3.3 to conclude. r



Chapter 5

Finite Differences Approximation of
Energies in Fracture Mechanics

5.1 Statement of the I'-convergence result

In this Chapter' we provide a discrete and continuous approximation of linearized-elasticity
energies for brittle materials, i.e., defined on SBD(Q2) by

u/ Eu(x)|? da + %/ (div u(z)[? do + ~HL (T2, (5.1.1)
Q Q

in dimension n = 2,3. Let us notice that since our analysis will be restricted to bounded
deformations, i.e., u € L (Q; R™), J, = J (see the discussion after Definition 2.5.2). Hence,
in the sequel we will use the symbol J, for the sake of simplicity.

We introduce first a discretization of the divergence. If £ = (¢1,¢2) € R2, we denote by
¢ the vector in R? orthogonal to ¢ defined by &+ := (—¢2,¢1). Fix €,¢ € R?\ {0}; for ¢ > 0
and for any v : R? — R? define

Dfu(z) := (u(z + &) — u(x), £),
div&Su(x) := Déu(z) + Déu(z),
1D cu(@)[? := [DEu(@) 2 + |D=Cu() ?, (5.1.2)
[Dive u(@)[* := |divE u(@)* + [divE ™ u(z)]?
+ \divgg’gLu(x)\Q + ]diva_g’_eu(x)\?
Starting from this definition we will provide discrete and continuous approximation results for

functionals of type (5.1.1). We underline that this is only one possible definition of discretized
divergence that seems to agree with mechanical models of neighbouring atomic interactions.

!The contents of this Chapter were obtained by the Author in collaboration with R. Alicandro and M.S.
Gelli, and are contained in the paper Finite-difference approrimation of energies in fracture mechanics, pub-
lished on Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), 671-709.
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We can give also the following alternative definition
Déu(x) := (u(x + £€) — u(w - £€),£),
Deu(w)? := 5| Déu(a)]? (5.1.3)
Div. eu()[* = [DSu(x) + DE u(w)].

This second definition can be motivated by the fact that from a numerical point of view it
gives a more accurate approximation of the divergence as ¢ — 0T, although the centered
differences usually have other drawbacks.

For the sake of simplicity, in the proofs of Sections 5.3 and 5.4, we will assume that
the “finite-difference terms” involved in the approximating functionals are defined by (5.1.2).
The arguments we will use can be easily adapted when considering definition (5.1.3).

5.1.1 Discrete approximation result

Let Q be a bounded open set of R? and, for ¢ > 0, define
A (Q) = {u :Q—R?: u=const on (a+[0,6)*)NQ for any o € €Z2}.

Let f:]0,+00) — [0,+00) be an increasing function, such that a,b > 0 exist with

a:= lim @, b= tlizloof(t) (5.1.4)

and f(t) < (at) A b for any t > 0. For u € A.(Q) and £ € Z2, set
1 .
Fié(w) = Y ef (2 (IDacula) + ODivecue)l) ). (5.15)
aeRg

where 6 is a strictly positive parameter and
RS = {a €eZ?: [a—ef,a+ef|Ula—ett a+ett] C Q}
Then consider the functional F¢ : L'(Q; R?) — [0, +oc] defined as

- > pOFH () fue A(Q) 516
u) = { €22 1.
400 otherwise

where p : Z2 — [0, +00) is such that 3 [¢]2p(€) < 400 and p(€) > 0 for € € {e1,e1 + ea}.
£ez?

Theorem 5.1.1 Let Q be a convex bounded open set of R?. Then, (Fed) I'-converges on
L>® (Q; R?) to the functional F®: L (Q;R?) — [0, +0o0] given by

(SO fuesBDO
F(u) = { ¢ez? (5.1.7)

+o00 otherwise



with respect to both the L'(Q; R?)-convergence and the convergence in measure, where

Fe(u) = 2a/ﬂ|<€u(:n)£,£>|2dx+4a9|£|4/ﬂ|divu(m)|2dx

+2b | (uT —uT,v,) dHY,
Ju

with the function ®¢ : R? — [0, +00) defined by
B¢ (z,v) 1= 4 (2,0) VU (2,0),
where for n € R?

[(v,m)| if (z,m) #0
Y(z,v) ==

0 otherwise.

The proof of the theorem above will be given in Section 5.3, as a consequence of some
propositions, which deal with lower and upper I'-limits separately.

Remark 5.1.2 Notice that the surface term can be written explicitly as

O (uT —uT, ) dH = /

1
et |V, &) dH (5.1.8)

Ju

L M [ 10V I, ) R
Ja \J. JenJs

u

Remark 5.1.3 We point out that the assumption Q convex will be used only in the proof of
the T'-lim sup inequality. This assumption can be weakened (see Remark 5.3.5).

Remark 5.1.4 Notice that the domain of F® is L™ (Q; R?) N SBD?(Q). Indeed, taking into
account the assumption on p, an easy computation shows that

Fi)z Y 07wz e( [ leu@Pdo+ 1),

§=e1,e1te2

Remark 5.1.5 Note that, by a suitable choice of the discrete function p, the limit functional
1s isotropic in the volume term, i.e.,

Fé(u) :m/ |5u(x)|2d:r+)\1/ |divu(:13)|2d:1:+/ Ot —u ) dH.  (5.1.9)
Q Q Ju

Choose, for example, p(e1) = p(e2) = 2p(ea £ e1) # 0 and p(§) = 0 elsewhere. Moreover, for
suitable choices of f and 0, it is possible to approximate functionals of type (5.1.9) for any
strictly positive pq, A.



By dropping the divergence term in (5.1.5) (i.e. 8 = 0), one can consider the functional
G4 LY (Q;R?) — [0, +00] defined as

1
3 f(=IDecu(@)?) if ue A(Q
Gl(u) = gezz:2p( )é; (5| w )|) A (5.1.10)

400 otherwise,

where Eg ={a €eZ?: [a—ef a+ef] C Q} and pis as above and satisfies also the condition

p(e2) # 0.

Theorem 5.1.6 Let Q be a convex bounded open set of R?. Then (Gg) I'-converges on
L>® (Q;R?) to the functional G : L (Q; R?) — [0, +0oc] given by
> p(§)G(u) if u € SBD(Q)
G4(u) = { cez2 (5.1.11)
400 otherwise

with respect to both the L'(Q; R?)-convergence and the convergence in measure, where
GE (u) == 2a/ \(5u(m)§,§>]2dx+2b/§ (v, €)] M.
Q Jz

The proof of this theorem can be recovered from the proof of Theorem 5.1.1, up to slight
modifications. We only remark that the further hypothesis p(es) # 0 is needed in order to
have good coercivity properties of the family G¢.

Remark 5.1.7 Notice that, although the definition of Gg corresponds in some sense to taking
0 =0 in (5.1.6), its T-limit G differs from F® for § = 0 in the surface term.

5.1.2 Continuous approximation result

Let © be a bounded open set of R? and let f : [0,400) — [0,400) be as in the previous
section.
For € > 0, define F¢ : L}(Q; R?) — [0, +00] as

= [, & FE () de.
R2
where
1 1

Ff(w) = /Q ¥ (g (ID-cu(@)? + 0|Div€7§u(:1:)|2)> dz (5.1.12)
with

0f = {x eR?: [z —cf,x+ef]Ulz—ettz4et] C Q},
6 > 0 and p(¢) = ¥(|¢|) where ¢ : [0,400) — [0,+00) is such that for some M > 0

ess infy<ps () > 0 and f S (t) dt < +oo.



Theorem 5.1.8 (FY) I'-converges on L™ (£; Rz) with respect to the L' (€2; R?)-convergence
to the functional F©: L* (Q;R?) — [0, +00] given by

M/ |5u(x)|2dm—|—)\/ \divu(@)? de +vH (1)) if u e SBD(Q)
F(u) := Q Q

400 otherwise,

where
= / ) (Il = 49393) dy,
= / ) (401yl* + 2y393) dy,

=2 [ o) (] V lel) dy

Moreover, FE converges to F'° pointwise on L™ (£); R2).
The proof of the theorem above will be consequence of propositions in Sections 5.3 and 5.4.

Remark 5.1.9 Notice that p = a [g2 p(y) (y% — y%)2 dy, so that p, A and ~ are all positive.
Moreover, the summability assumption on Y easily yields the finiteness of such constants.

Remark 5.1.10 We underline that for any positive coefficients p, A and v, we can choose
f,p and 0 such that the limit functional has the form

M/ |€u(x)|2d:r—|—)\/ (div (@) dz +~H (J).
Q Q

Analogously to the discrete case, we may drop in (5.1.12) the divergence term and
consider the sequence of functionals G¢ : L!(2; R?) — [0, +00] defined by

Gy = [ o) [ 1 (ZID-qu)) drdg

with Qf := {z € R?: [z — €,z + €] € Q} and p as above. By applying the same slicing
techniques of [75] the following result can be proved.

Theorem 5.1.11 (G¢) I'-converges on L™ (£2; R2) with respect to the L'(Q; R?)-convergen-
ce to the functional G°: L*° (Q; R?) — [0, +00] given by

,u'/ﬂ|€u(:n)|2dx—I—)\'/Q|divu(x)|2dx A HA(T)
G(u) == if u e SBD()

400 otherwise,



where
. 4 2,2

o= a/ o) (Jyl" — 4yiv3) dy,
R2

N = 2a / p(y)yiys dy,
R2

~ = 2b/ p(y)ly1| dy.
R2

Remark 5.1.12 As in the discrete case, the I'-limit G¢ does not correspond to F¢ for 8 = 0.

Remark 5.1.13 The restriction to L™ (Q;Rz) in Theorems 5.1.1 and 5.1.8 is technical in
order to characterize the T-limit. For a function u in L'(;R?)\ L*™ (;R?), by following
the procedure of the proof of Proposition 5.3.1 below, one can deduce from the finiteness of the
['-limits that the one-dimensional sections of u belong to S BV(Qg). Anyway, since condition
(2.8.1) of Theorem 2.8.5 is not satisfied in general, one cannot conclude that u € SBD(S).
On the other hand this condition is satisfied if u € BD()), so that Theorems 5.1.1, 5.1.6,
5.1.8, 5.1.11 still hold if we replace L*° (;R?) by BD(Q) and J, by J;.

5.1.3 Discrete functions and their continuous counterparts

In the previous sections, in order to study the I'-convergence of discrete energies, we have
identified a function u defined on a lattice with a suitable “piecewise-constant” interpolation,
i.e., a function which takes on each cell of the lattice the value of w in one node of the cell
itself. Then, fixed a discretization step length, we treated the convergence (in measure or L!
strong) of discrete functions through this association.

This choice is not arbitrarily done. Indeed, the convergence of piecewise-constant inter-
polations ensures the convergence of any other “piecewise-affine” ones, the values of which
on each cell are obtained as a convex combination of the values of the discrete function in
the nodes of the cell itself. Actually, the converse result also holds true, as the following
proposition shows.

Proposition 5.1.14 Let ¢ be a positive parameter tending to 0 and let T. = (T%)ien be
a family of n-simplices in R™ such that int (T2) Nint (T2) = 0 if i # j, U; 7! = R™ and
assume also that sup; diam T! — 0 as ¢ — 0. Let u. € L*(R™) be a family of functions which
are affine on the interior of each simplex T¢. Consider the two piecewise constant functions
u., U € LY(R™), defined on every simplex T by

U := ess-inf piue, Ug 1= €SS-SUP Tille.

Then, ue — u in L' (R™) implies u.,w. — u in L'(R™). The same holds if L*(R™) convergence

s replaced by L%OC(R") convergence or local convergence in measure.

Proof. We prove the result for the L'(R™) convergence. With fixed ¢ and i € N let u.; :
T! — R be the unique continuous extension of Ue|ing (i) tO the closed simplex T, 7 and let
Yeis y: ; be two vertices of T! such that

UM(yg_z) = H%lzn Ue i Uaz(y;) = II;?;X Ug ;.

€ €



If u.,; is constant on 77, we suppose in addition that Yei 7 y:Z and define 7! := y:Z — Yo
Let Al the n-simplex homothetic to 77 of ratio # and with homothety center in Y., and let
Bl = Al + %Tg It is easy to see that B. C TV

We will proceed as follows: first we will construct a function v, on B := U;enB? which
is affine on the interior of each set Bi and whose distance from u in the L!(B.)-norm tends

to 0. Afterwards we will estimate two particular convex combinations of u, and @, that will
allow us to estimate the oscillation %, — u.. Let v be defined in z € int (BY) as u. (a: — %Té)
In order to prove that

lim |ve —uldz =0, (5.1.13)
e—=0./pB,

3/,

This would be trivial if u were continuous with compact support, and can be proved by a
standard approximation argument for a general u € L!'(R™). Then we have

Z/é\va(m)—u(fﬂ)‘dm:Z/é
<X o) - wtode+ X [

which proves (5.1.13).
We note that %y; + %y:
on B. This gives

we observe that
dr = 0.

u(z) —u (x + %Té)

1.
ue(z) —u (a: + 57';)’ dx

1.
u(w)—u(m—i-gﬂ)‘ dx — 0,

; Is a maximum point of u. ; on A, and a minimum point of w. ;
b b

2 _ 1 .
ve < Jue(yz) + gue(yl) < ue on B,
Hence 5 )
gus(ygi) + gue(y;i) —u| < max{|us — ul,|ve —u|} on B,

and

limZ/ gu —i—lﬂ —u|dr=0

e—0 - é 3—6 3 € — U.
By a similar argument, we may prove also that

limZ/ —u —i—gﬂ —u|dr=0

e—0 — JBi 37¢ ' 3" o

Since 7. and u, are constant on each simplex T/, and |B| = 37"|T?|, we conclude that

e—0

. _ on . _ B
lim Rn|u€—g€|dx—3 zi:hgl/Bgme u.ldr =0

and, finally, by using the following inequalities,

|@5_u|§|ﬂ5_u€|+|u€_u|§|ﬂ5_ﬂs|+|ue_uy



we get that u. — u in L'(R"™) and analogously for ..

If u. — win LL _(R™) or locally in measure, it suffices to repeat the constructions and
arguments above, localizing each integral. For the local convergence in measure, one has also
to replace the L! norm with the distance in (2.1.1) inducing the convergence in measure on
a bounded set. r

Remark 5.1.15 The functions u., u. of Proposition 5.1.14 don’t coincide with the piecewise-
constant ones we considered in Subsections 5.1.1,5.1.2. Nevertheless, from Proposition 5.1.14,
one can easily deduce that the convergence (L'(R™), L} .(R™) or locally in measure) of
piecewise-affine functions implies the convergence of the piecewise-constant ones in A ().

5.2 Preliminary lemmata

In this subsection we state and prove some preliminary results, that will be used in the sequel.
Let B := {&1,...,&,} an orthogonal basis of R™. Then for any measurable function
u:R"— R"and y € R™\ {0} define

Tya’Bu(a:) =u (&?y +e¢ E} B) (5.2.1)

where [z]5 := z_:l [ﬂi’jﬂ &;.

n
Notice that TyavBu is constant on each cell a+eQp, a € ¢ @ &Z, where Qp := {x € R™:
i=1

0 < (z,&) < |&]?}. The following result generalizes Lemma 3.36 in [37].

Lemma 5.2.1 Let u. — u in L} (R™R"), then for any compact set K of R™ it holds

loc

lim [ |75 Pue — ul| g rey dy = 0. (5.2.2)
e—0 Qs ’
Proof. For the sake of simplicity we assume B = {ey,...,e,}. With fixed a compact set

K, call I. the double integral in (5.2.2). By Fubini’s Theorem and the change of variable

Ey+€[§]3—>ywe get
Ue <€y+a E] > —u(x)
B

=),
K Jo,1)n

1
<[ =] e (y) — u()] dy da
K€" Jzte(—-1,1)n

1
= /K en /x+e(—1,1)n (fue(y) — ue(@)] + Jue(2) — u(2)]) dy da.

dy dz

The further change of variable y — z 4 ey and Fubini’s Theorem yield

L[ o e tey) - w@ldrdy + 2" [ Juslo) - u@) do,
(-1, JK K



thus the conclusion follows by the uniform continuity of the translation operator for strongly
converging families in L}, (R"; R"). |

Remark 5.2.2 Let C. C Qg a family of sets such that

liminf £"(C.) > ¢ > 0. (5.2.3)

e—0t

Then under the hypothesis of the previous lemma, for any compact set K of R™ we can choose
ye € C. such that TQjE’Bu6 —w in L' (K;R™). Indeed, by the Mean Value Theorem, there exist
ye € C. such that

T35 Pue — ull g e rmy £7(C2) <

S e — sy dy < TP = ull s

B

Then the conclusion easily follows from (5.2.2) and (5.2.3). This property will be used in the
proof of Propositions 5.3.4 and 5.4.1.

In the sequel for n = 2, ¢ € R?\ {0} and B = {¢,£1}, we will denote the operators T;vB
and [-]p by Ty€’§ and [-]¢, respectively.

Lemma 5.2.3 Let J be a countably H" ™' rectifiable set and define

Jo={z e R": x =y+1t with t € (—¢,¢) and y € J} (5.2.4)
for £ e R™ and
JEkr = | J JE (5.2.5)
i=1

fOT 617"' & € R, r e N. Then, Zan_l(J) < 400

lim sup £ (ng""&')

<2 [ sup (s, &) dH . (526)
e—0 € J i

where vy(x) is the unitary normal vector to J at x, according to Lemma 2.4.2.

Proof. First note that by Fubini’s Theorem and Lemma 2.4.2
() < 2&:/ HO () drr () = 25/ (v, €)] dHP, (5.2.7)
Je J

hence
T

L" (ng""&) < 25/ Z (g, &) dH™ 1 < 2resup |&H (). (5.2.8)
7= i



By the very definition of rectifiability there exist countably many compact subsets K; of C!
graphs such that

i>1

H (J\ U K) =0,
and H"~Y(K; N K;) = 0 for i # j. Thus, by (5.2.8) for any M € N we have
Ln (ng,..,&) L ((Kz’)gl""&)

= X

1<i<M

€

+2rsqp]&\H"_1 (J\ U KZ) ,

1<i<M
hence, first letting € — 0 and then M — +o0 it follows

e—0 €

L ()

< Z lim sup
i>1 €0 €

Thus, it suffices to prove (5.2.6) for J compact subset of a C'! graph. Up to an outer approx-
imation with open sets we may assume J open. Furthermore, splitting J into its connected
components, we can reduce ourselves to prove the inequality for J connected. For such a J
(5.2.6) follows by an easy computation. L

5.3 The discrete case

In this section we will prove Theorem 5.1.1. In the sequel we need to “localize” the functionals
FAE as

Pl A)i= Y ef (2 (IDecul) + olDiv.u(a)]) )

a€RS(A)

for any A € A(Q) and u € A.(f2), where
RS(A) = {a €eZ?: [a—et,a+eflUja—ett atett] C A} .
Proposition 5.3.1 For any u € L™ (; R?),

I'(meas)-lim i(I)lf Fl(u) > Fi(u).
E—

Proof. Step 1: Let us first prove the inequality in the case f(t) = (at) Ab. Let ¢; — 0,
u; € A;;(R) and u € L™ (2; R?) be such that u; — u in measure. We can suppose that
lim inf}; ng(uj) = lim; Fadj (uj) < +oc. In particular, for any & € Z? such that p(¢) # 0,
lim inf fgf(uj) < +o00. Using this estimate for £ € {e1,e; + ez}, we will deduce that u €
SBD(Q) and we will obtain the required inequality by proving that, for any ¢ € Z? such that

p(§) # 0,




limj inf F25 (uy) > F(u). (5.3.1)

To this aim, as in Theorem 4.1 of [44], we will proceed by splitting the lattice Z2 into
similar sub-lattices and reducing ourselves to study the limit of functionals defined on one
of these sub-lattices. Indeed, fixed & € Z2 such that p(¢) # 0, we split Z2 into an union of
disjoint copies of |¢|Z? as

€1
72* = (= + Z¢ © Z8T),
i=1
where
{zri=1 P} ={acZ? 1 0< (&) <], 0< (o eh) < e}
Then, for any A € A(Q), we write

€]
.7-"d5 (uj, A Z]—"dﬁlu],
where
fgfv"(uj,A) = Z 5Jf< (|Dag,€u3( ) +0|D1V5j7€uj(a)|2)>
Ry N\

with jo(A) = jo (A) Nej(z + ZE ® Z&L). We split as well the lattice Z¢& @ ZEL into an
union of disjoint sub-lattices as

ZEDZEL = 25U (ZE+ O U(ZE + e u (28 + (e +¢h)
where Z¢ := 2Z¢ @ 2Z£1. We confine now our attention to the sequence
1 .
Fi(d) =3 eif = (IDe, eus(@)P + 6Dive, cuj(0) )
€Z:(A) €
acZ;

where Z;(A) := jo(A) Ne;Z8. Set

I = {oz € R5 |D5j7§uj(oz)|2 + 0|Div cuj(a)

b
25 2.
>asj}

and let (v;) be the sequence in SBV (€; R?), whose components are piecewise affine, uniquely
determined by

(uj(a —€56),8) r e (a+eQe)NQ
o€ Est N Ij

| (@, 6+ SEDE @@ — a8 2 € (@+50e) N0
<Uj(x)7§> T aEEjZE\Ij

(143(0), ) + e Dzfus(0) (@ — 0,) @ € (a+ Qe )N
OéG€jZ£\Ij




(uj(a —egiEt), ) z € (a+tejQe)NQ
a€e;Z5NI;

(uj(@), &+) + e DS, uja) (@ — o, 65)

BIEE

. Ly . r € (a+ejQer ) NQ

(01(a), €4 1= RS,

_ el
(@), €5) + D€ wj(a)(x — 0,€5)

€ (a+ejQer_)NQ

a € <€jZ5 \ I;,

where

Qe ={r e R : [(z,)| < &P, (6] < |}
Qex={7 € Q¢ : £(z,§) > 0}.
1,2

In order to clarify this construction, we note that, in the case { = ey, v; = (vj,vj) is the

sequence whose component fug» is piecewise affine along the direction e; and piecewise constant
along the orthogonal direction, for ¢ = 1, 2.

It is easy to check that v; still converges to u in measure. Let us fix > 0 and consider
Ay, ={z € A : dist (z, R*\ A) > n}. Note that, by construction, for j large we have

Z a (|D5j,5uj(oz)|2 —|—9|Div€j,guj(oz)|2)
a€Z; (AN

> s [, NEw@EOP dr +ablel® [ [aivvy(a) de

A, Ay

and
be;#{Z;(A) N I;}

b
= Wmax{/ﬁ A, |<ij(y)a£>|d7'(1(y),/ N |<ij(y),£L>| dHl(y)}

5 ij NA,

Then, for j large and for any fixed § € [0, 1],

FiA) = Y a(IDeeui(@)? + 0|Dive, euj()[?)
a€Z;(A\L;

+be;#{Z;(A) N 1;}
> s [, NEw@EOP dr +ablel® [ faivvy(a) de

Ay An
b

1
+W§ /JSj NA, (v (), ) dH (y)

b
+W(1 _5) /JSJ-_ﬂAn |<ij(y)7£l>|dHl(y). (532)

J



In particular by applying a slicing argument and taking into account the notation used in
Theorem 2.8.5, by Fatou’s lemma, we get

+oo > liminf F;(A)
j

! .. .
> oo |2 dt b0< ﬁA) T,
% e e (a/mg (05717 dt + VR e N Ay ) | dH(y)

(5.3.3)

Note that, even if p(é+) = 0, taking into account also the divergence term and the second
surface term in (5.3.2), we can obtain an analogue of the inequality (5.3.3) for £&+. By the
closure and lower semicontinuity Theorem 2.7.10 we deduce that uY € SBV((An)g), and

since u € L* (Q; R?) we get
e [ IDuI((4,)5) dw) (53.4)

for ¢ = &, &4, Recall that by assumption p(ey), p(e; +e2) # 0, thus (5.3.4) holds in particular
for ¢ = er,e2,e1 4 e3. Then by Theorem 2.8.5, we get that u € SBD(A,) for any n > 0.
Moreover, since the estimate in (5.3.4) is uniform with respect to 7, we conclude that u €
SBD(A).

Going back to (5.3.2), by applying Theorem 2.8.7 and then letting n — 0, we get

hmlnf]:( > 2|£|2/ [(Eu(x 55>|2d:ﬂ+a9|§|2/ \div u(z |2dx
b L L
TGE (5/IEOA\<VU,§>\dH +(1 5)/J§QA’<”“’5 >\dH),

for any § € [0, 1].
Note that, using the inequality above with A = €, £ = e, e1 +e9, it can be easily checked
that Eu € L*(Q; R?*?) and H!'(J,) < +o0. Then, by Lemma 2.2.4 applied with

A(A) = lim inf F;(A),
j

b
LQ+—H'L J,,
2\6!2 2|¢?

(I{Eu(@)€, )1 + 0l¢PIdivu(z)[?)  on @\ Jy

Sn| (1, €)] on J§\ J§

W=

(1= 6)| (v, €1 on J§\ J§

Sul (1 ) 4+ (1 = 0p) (s €1 on JEN TS,



with §, € QN [0, 1], we get

lim inf F;(Q) > 2|£|2/|5u z)E, €)|? dw—l—a9|§|2/ |div u(z)|? dz
j

b . L
+2‘§,2(/J§\J§L [(vu, §)| dH +LSL\J£|<VU,5 )| dH
+~/J§OJSL ’<Vu7§>‘ \ ’<Vu7€l>‘ dHl)

Finally, since the argument above is not affected by the choice of the sub-lattices in which
Z? has been split with respect to &, we obtain (5.3.1). The thesis follows by summing over
¢ ecZ

Step 2: If f is any increasing positive function satisfying (5.1.4), we can find two se-
quences of positive numbers (a;) and (b;) such that sup; a; = a, sup; b; = b and f(t) > (a;t)A\b;
for any t > 0. By Step 1 we have that F(meas)—ligii(l]af F(u) is finite only if F%(u) is finite

and

['(meas)- hmmfF Z p(& (2ai/9|<€u(:r)£,£>|2 dx

YA

+4ai6]§\4/ \div ()2 da + 2b; @5(u+—u_,uu)dH1>.
Q Ju

Then the thesis follows as above from Lemma 2.2.4. r

The following proposition will be crucial for the proof of the I'-limsup inequality in both
the discrete and the continuous case.

Proposition 5.3.2 Let u € SBD? () N L™ (Q,R?), then

lim sup F&¢ (u) < F&(u).

e—0
Proof. Using the notation of Lemma 5.2.3, set

T2 = (VIS U (V) U (s s

)

Since f(t) < b, by Lemma 5.2.3 there follows

L2 (JE
lim sup F&¢(u) < limsup F&* (u, 8\ Ji) + blim sup i w)

e—0 e—0 e—0

< lim sup F&¢ (u, 08\ Ji)

e—0

+2b (/JE\JSJ_ |<Vua£>|dHl +/J§J_\J§ |<Vu,£J_>|dHl

Uu

1 1
[ eIV ) ).

u u



Let us prove that for a.e. 2 € Q5 \ JE and for ¢ € {£&, +£+}

Déu(a) = (u(w + =) = u(@),¢) = [ (Eula +5¢)¢,) ds.

€
0

(5.3.5)

Let, for instance, ¢ = &, then using the notation of Theorem 2.8.5 if x € Q&\ JZ and = y+t¢,

with y € II¢, we get
(u(x 4 €€) —u(x), &) = usY(t +¢) — ug’y(t).

Since u € SBD (Q), for H! a.e. y € 11 we have that u&Y € SBV ((Qg)s), usY(t) =
y

(Euly + t&)E, &) for LY ae. t € (Qg)g and Jey = (JS)S. Thus
y y

w(e+e) — () = [ (Euly +50)6€) ds

w2 () - () ) smiew)

se ()

and, since (J5)£ N[t,t+e] =0, (5.3.5) follows.
y
Moreover, Jensen’s inequality, Fubini’s Theorem and (5.3.5) yield

1
2 Jag\ e

E\Ju
01 C— é.

Let us also prove that

¢ 2
Dzu(x) ‘ dx =

2
dr < [ |(Eu@) OF da.
Q

/Oe(é'u(x + 5¢)(, () ds

1
timsup = [ JdivE uf do < ¢! [ Jdiva(o)] do.
€% Jas\Jg Q

e—0

Setting
g(x) := |¢PPdivu(z)
and
1 . ggL
g=(x) := gdlva’ u(x)XQE\Jﬁ (x),

(5.3.8) follows if we prove prove that

19 — gellz2() — 0.
Note that
g(x) = (Eu(@), &) + (Eulz)er, €1),
and that by (5.3.5) on Q5 \ J: we have

divE$ u(z) = /0 C(Eulx + SE)E,€) + (Eulx + sEL)EL €5 ds.

(5.3.6)

(5.3.7)

(5.3.8)

(5.3.9)

(5.3.10)

(5.3.11)



Thus, by absolute continuity and Jensen’s inequality we get
1 €
9= 9:la@) < o) +2¢l" [ = [ leu(e +5) — Eu@) dsda
1 £
+2|5|4/ _/ Eu(z + s61) — Eulz)[? ds da.
ot € Jo
Applying Fubini’s Theorem and then extending Eu to 0 outside 2 yield

1 S
g = g2 < o)+ 2602 [ [ 1Euta +56) =~ Eu@)l? de ds

+2[§\4§ /08/Q \Eu(x + s&1) — Eu(x)? dx ds,

and so (5.3.9) follows by the continuity of the traslation operator in L?(Q2; R?*?).
Of course, by using the same argument, we can claim that the analogous inequalities of

(5.3.8), obtained by replacing ({, §L) by one among the pairs (5, —{L), (—5, {L), (—5, —{L),
hold true.
Eventually, since f(t) < at, by (5.3.7) and (5.3.8) we get

lim sup F&¢ (u, Qg\Ji) < 2a/ [(Eu(x)E, €2 dw+4a9\§]4/ |div u(z)|? de
Q Q

e—0

and the conclusion follows. r

Remark 5.3.3 Arguing as in the proof of Proposition 5.3.2 we infer that the functionals
defined by

Giu) == [ g (ZIDocu@]P) d.

E €

where g(t) := (at) A\ b, satisfy the estimate

Gi(w) < 20 [ [(Eu@), O dz+2b [ | €)lart,

for any uw € SBD(S2).
Moreover, by the subadditivity of g and since f(t) < g(t) by hypothesis, there holds

Fet(u) < e (Gu) + G5 (w) < eFé(u). (5.3.12)

Now we are going to prove the ['-limsup inequality that concludes the proof of Theorem
5.1.1. We will obtain the recovery sequence for u € L (€; R2) as suitable interpolations of
the function w itself.

Proposition 5.3.4 For any u € L™ (; R?),

D(LY)-limsup Fé(u) < F(u).

e—0



Proof. It suffices to prove the inequality above for v € SBD?(Q). Up to a translation
argument we may assume that 0 € Q. Let A € (0,1) and define uy(z) := u(A\x) for z €
Q) := A7'Q. Notice that Q cC Qy and uy € SBD?*(Q,). It is easy to check that uy — u in
LY(;R?) as A — 1 and

)1\1_)H11 Flluy, Q) = F(u).

Then, by the lower semicontinuity of I'-limsup._,o F, it suffices to prove that

D(LY)-limsup Fe(uy) < Fuy, ),
e—0

for any A € (0,1).
We now generalize an argument used in [49],[37]. Let ¢; — 0 and consider uy extended to
0 outside Q. Notice that for o € eZ? and ¢ € Z? we have ¢ [%}el =qaande [%} = a+et,
ey

£

thus we get

/(0’1)2 Fedj (T;jux) dy

=00 [ 5 (2 (1D emnlem + ol + 00Dt ur(esy + )l )

g
€ez2 eRE, J

where T is given by (5.2.1) for B = {e1, ea2}.
Then, using the change of variable €;y + o — y, we obtain

/(0’1)2 Fedj (T;jux) dy

1 1 .
=00 X [ (1D en oD cn ) ) dy
£ez? aERg. ¢ "
J
< D pOF ().
£ez2

In particular, by Proposition 5.3.2 and Remark 5.3.3, there holds

1imsup/ FA(Ty uy) dy (5.3.13)
i Jon

< Z p(€) lim_sup]-"g]’,5 (uy, Qy) < Fhluy, Qy) < +00.
§€Z2 J

Fix 6 > 0 and set
Jo._ 2., d € d €j
C] = {z €(0,1)" : FZ, ( P u,\) < /(0’1)2 I (Ty uA) dy—|-5}.

By (5.3.13), we have for j large

£ ((0,1)*\¢3) <



which implies
£ (Cd)>1-c>0.
Then, by Remark 5.2.2, for any j € N we can choose z; € Cg such that TZUA — uy in

L'(©;R?) and

d €j <
FEj (TZJ UA) — ‘/(0’1)2

Hence, by (5.3.13) and (5.3.14), there holds

Fe (T3 uy) dy + 6. (5.3.14)

lim sup FEdj (Tzajju,\) < Fluy, Q) + 6,
J

from which we infer

['(LY)-lim sup FEdj (uy) < F(uy,Qy) + 6
J

and letting § — 0 we get the conclusion. L

Remark 5.3.5 In the proof of the previous proposition the convexity assumption on § is
used only to ensure that for any A > 1 Q CC Q). This condition is needed in order to justify
the ezistence of some kind of extension of a SBD function outside of ) with controlled energy.
An alternative approach would involve the use of an extension theorem in SBD analogous to
the one holding true in SBV (see Theorem 2.6.14). So far, such a result has not been proved.

Thus, Proposition 5.53.4 and Theorem 5.1.1 can be stated for open sets sharing one of
the previous properties.

5.4 The continuous case

In this section we will prove Theorem 5.1.8. We “localize” the functionals F&¢ as

C. 1 1 1
fg’g(ua A) = g \/;45 f <g (|D57£u($)|2 + 9|D1V€7§u($>|2)> dx’

for any v € L'(2;R?), A € A(Q), with
A :={r cR®: [z —et,x+e€]U [z —ett x4+ 6] C A}
Proposition 5.4.1 For any u € L* (; R?),
r(z) -lim inf FE(u) > F*(u).

Proof. Step 1: Let us first assume f(t) = (at)Ab. Let £; — 0, u; € L'(;R?), u € L™ (; R?)
be such that u; — w in L!(£; R?) and lim inf; F¢ (uj) = lim; F¥ (u;) < +o0. In particular for

a.e. £ € R? such that p(¢) # 0 lim inf; fg;g(uj) < +o0. Fix such a ¢ € R? and A € A(Q). Up




to passing to a subsequence we may assume that lim inf; fgf(u]', A) = lim; fecf(uj, A) < 4o0.
We now adapt to our case a “discretization” argument used in the proof of Proposition 3.38
of [37]. In what follows, when needed, we will consider u; and u extended to 0 outside 2. If
we define

f (% (’Dsj,guj(a:)lz + 6]Div€j,5uj(a:)]2)) ifze Agj

gj(x) ==
0 otherwise in R?,

we can write

. 1
fef(uj,A):;/2gj(x)da:=; > / _ gj(x)dz
jIR T ace, (zewzet) T OTeIe

- ¥ [oabraw= [ o

K ace; (zewzet) Y%
where
pj(x) = Z gjgi(ejr + ),
ace;(ZEDZEL)
Qe = {r € R*: 0 < (2,€) < [¢[,0 < (2,&") < [¢7P}.

Fix § > 0, then, arguing as in the proof of Proposition 5.3.4, by using Remark 5.2.2, for
any j € N we can find z; € Q)¢ such that Ti}’guj — u in LY(Q; R?) and

Fot(uj, A) + 6 > €[ pj(x))

1 .
> |¢)Pe; > f (E— (!ng,guj(a—l—ijj)\Q +9‘D1V€j7§Uj(a+ijj)’2)>
acej(zenzel) J
aGASj —&

T

)

Now we point out that the functionals on the right hand side is of the same type of those
defined in (5.1.5). Hence, up to slight modifications, we can proceed as in the proof of Propo-
sition 5.3.1 to obtain that u € SBD(2) and

hm'inffgf(u].) = 2a/ [(Eu(@)g, ) dz + 4‘19|5|4/ |div u(z)|? de
J 0 i
1 N .
1 1
+/Jsme [ 1V (v, €5 dH).

Uu u

Finally, recalling that H!'(.J, \ J§) = 0 for a.e. £ € R2, by integrating with respect to ¢ and
by Fatou’s lemma, we get

lim inf F* () > / p(€) lim inf F&& (u;) dé
J J R?2 J J



> /R2 p(€) (/Q 2al(Eu(x)E, &)[* + 4af|¢]*|div u(x)[? dx) de
+ [, 200 ([ 108 VI €11 de

= [ ([, o(©) (20liguterc. P+ sasiel v ute)?) de) da
+ [ (L 2@ € v 6 ) ar

The expressions for u, A,y follow after a simple computation.
Step 2: If f is any, arguing as in Step 2 of the proof of Proposition 5.3.1, we have that

[ (LY) -liminf._ FS(u) is finite only if F¢(u) is finite and
r (Ll) —liIEIl_}(I]lf Ff(u) > Mi/g \Eu(z)|® dx + \; /Q |div u(z)|? do +vH ()

with sup; u; = p, sup; \; = A and sup;y; = 7. The thesis follows using once more Lemma
2.2.4. r

Let us now prove the I'-limsup inequality which easily follows by Proposition 5.3.2 and
Remark 5.3.3.

Proposition 5.4.2 For any u € L™ (; R?),
D(LY-limsup FS(u) < F¢(u).

e—0

Proof. As usual we can reduce ourselves to prove the inequality for u € SBD?(2). For such
a u the recovery sequence is provided by the function itself. Indeed, by Proposition 5.3.2,
estimate (5.3.12) and Fatou’s lemma, we get

lim sup Fy(u) < /R2 p(€) limsup F&4 (u) df < /R2 p(6)FE (u) dé = F(u).

e—0 e—0

5.5 Convergence of minimum problems in the discrete case

5.5.1 A compactness lemma

The following lemma will be crucial to derive the convergence of the minimum problems
treated in the next section.

Lemma 5.5.1 Let f, p, 4 be as in Theorem 5.1.1; assume in addition that Q is a bounded
Lipschitz open set. Let (uj) be a sequence in A, () such that

sup(F2 (uj) + [[uj]| Lo (ymr2)) < +00. (5.5.1)
J

Then there exists a subsequence (uj,) converging in L'(Q; R?) to a function u € SBD?(Q).



Proof. Without loss of generality we may assume f(t) = (at) A b. Set

Ci= Y &f (Eing;uj(a)r?) + D &t (%\Dsiujm)\?)

aERE; aeRf;?
+ Y a]f< | D2 (o )\2> + > ng< | D2 (a)!2>,
0161‘%el+e2 aeR T2
J

then the monotonicity and subadditivity of f yield

supC; < ¢ supFadj (uj) < 4o0. (5.5.2)
J J
Let
Mj(a) = max { | Du;()*; [DEuj(e)*; |DEuj(a + ejez) s
|DE2uj(a + gjer)[*; [DEFus(@)’; [DE™uj(a + gjen)|*}
and
Rj = R OB 0 (R = gjer) 1 (B2 = gjer) 0 (R —gjeq)

then set

I; —{O‘GR 1 Mj(a) < 951}

Consider the (piecewise affine) functions v; = (v} v}, ]) defined on o + €;[0,1)?, a € I;, as

€j
+2 (ul(a +sje2> —ul(0)) (w2 — as) ve(ateT)NQ
U= ulat gjen + e2)) + LD uja + jea)(an — a1 — )
j J\¢1 2 &j €j’LLj a €j€2)(T1 o gj
+€% ((Uj(a +ej(er +e)) —uj(o+ Ejel)) (2 — ag — ;)
ze(a+eTT)NQ
u?(a) + %ngu] (a)(x2 — ag)
+2 (u3(a +ejer) — (@) (@1 — on) ze(a+eT7)NQ
’U?(%) =

ui(a+ejer +e)) + iDgiuj(a +eje1)(Ty —ag — ;)
+1 (( Sla+ejer +e2)) —ui(a+ 6j€2)) (1 — 1 — ;)
€ (a+eTT)NQ

where 7% = {z € (0,1)?: £(z1+22—1) >0} and z; = (z,¢;), i = 1,2, and v; =
elsewhere in €. Notice that on each triangle o + zszjE v; is an affine interpolation of the
values of u; on the vertices of the triangle.



By direct computation it is easily seen that for any o € I; and € o + €;(0, 1)2 there holds
2
9 1
[Evj (@) < e — | Mj(a),
J

hence, by taking into account (5.5.2) and the subadditivity of f, we get

sup/ |Evj(z)|? dr < ¢ supCj < +oo. (5.5.3)
j Ja J

Now, we provide an estimate for H?! (ij). Let

Aji={a€egZ?: a+ei(0,1)2NQ# D},
Dj:={z € R?: d(z,0Q) < 2¢;},

and note that

U (a+50,1)?) CD;

OJEAJ'\RJ'
By the Lipschitz regularity assumption on €2, it follows
n . 1
L™ (Djy) <e H' (09)

# (4, \ Rj) < - -,

)
and thus we get

HY (o) < 4ei# (45\ 1)) (5.5.4)

= de;# (Aj \ R)) +4e;# (Rj\ I;) < c {H' (0Q) + C;} < c.
Since (v;) C SBD(Q) is bounded in L% (Q;R?) and by taking into account (5.5.3) and
(5.5.4), Theorem 2.8.6 yields the existence of a subsequence (v;,) converging in L' (£; R?) to

a function u € SBD?(). The thesis follows noticing that by Proposition 5.1.14 (u;,) is also
converging to u in L' (Q; R?). r

Thanks to Lemma 5.5.1 and by taking into account Theorems 5.1.1 and 2.3.2, we have
the following convergence result for obstacle problems with Neumann boundary conditions.

Theorem 5.5.2 Let K be a compact subset of R? and let h € L'(Q; R?). Then the minimum
values

min {Fed(u) - /Q(h,u> dr: ue LNQ;R?), ue K a.e.} , (5.5.5)
converge to the minimum value

min {Fd(u) - /Q(h,u> de: uwe L'(Q;R?), uec K a.e.} , (5.5.6)
Moreover, for any family of minimizers (uz) for (5.5.5) and for any sequence (¢;) of posi-

tive numbers converging to 0, there evists a subsequence (not relabeled) uc; converging to a
minimizer of (5.5.6).



5.5.2 Boundary value problems

In this section we deal with boundary value problems for discrete energies. Following [44], we
separate ‘interior interactions’ from those ‘crossing the boundary’. Let  C R? be a convex
set such that 0 € Q, let n > 0 and denote by €, the open set {z € R?: dist (x,00) < n}.
Let ¢ : 09 — R? and py,...,py € 0N such that ¢ is Lipschitz on each connected component
of O\ {p1, ....pn}. Then define for n < dist (0,99) the function ¢ : Q, — R? by

p(x) =@ (1),

where 7 > 0 is such that {rz} = {tx};>¢ N .

We remark that ¢ € WHe° (Qn \UX, {tpitiso: R2) and Jg = UN, {tpi};>0 Ny The
function ¢ is a possible extension of ¢ to 2,. Other extensions are possible which, under
regularity assumptions, yield the same result. Here we examine this ‘radial’ extension only,

for the sake of simplicity.
With given u € SBD((2), let

u(z) ifxef
u¥(x) == {
o(x) ifxeQy\Q,

then u¥ € SBD(Q,) and Jye = J, U Js U {x € 00 : v(u)(x) # ¢(x)}, where v(u) denotes
the inner trace of u with respect to 9€2. Finally, we define a suitable discretization of ¢ by

@la) ifa€eZ?nQ,
Pe(a) =

0 ifa¢5Z2ﬁQn.

Let f,p, F? be as in Theorem 5.1.1 and assume in addition that p(¢) = 0 for |¢] > M,
with M > 2. Let Be(u) := F4(u) + F2¥(u), where

Z p(&) Z ef <§ (|D€7§u%(a)|2+9|Diva,§u%(a)|2))

|§l<M aeRE(69)
if ue A (Q)

400 otherwise
with
RS(9Q) :={a € eZ>\ R{(Q): [a —ef,a+ef]U[a—et,a+ e NnQ £ 0}

and
u(a) ifa€eZ?n
u@s (Oé) —
ve(a) if adeZ?NQ.

RE(09) represents that part of the lattice RS underlying interactions among pairs of points
of ©,), one inside and the other outside €2 (interactions through the boundary).



Proposition 5.5.3 (B.) I'-converges on L> (;R?) to the functional B : L™ (;R?) —
[0, +00] given by

F(u) + 2b ¢ (y(u) — p,vpq) dH'  if u e SBD(Q
B(u) := (u) + EgMp(f) /Juwﬂém (v(u) — ¢, vo0) fu e Q)

400 otherwise

with respect to both the L'(Q; R?)-convergence and the convergence in measure, where vaq is
the inner unit normal to O and the function ®¢ : R? — [0, +00) is defined by

B (2,v) = 98 (2,0) VU (2,v),

with for n € R?
{ [(v,m)| if (z,m) #0

Y1(z,v) =

0 otherwise.

Proof. Note that if ¢ is sufficiently small, for every v € A.(£2) we have

B(v) > FY (097, QU Q) - FY (¢.,0,\ Q) . (5.5.7)
Moreover, the regularity of ¢ and the assumptions on f yield
lim sup F2 (gpg, Q, \ﬁ) <c|Q\ Q4+ cH (3N (2 \ Q). (5.5.8)
e—0

Let u. — u in measure on {2, then ufs — u? in measure on 2 U (},. Thus, by Theorem 5.1.1
and inequalities (5.5.7) and (5.5.8), we get

lim inf B (ue) > F4(u?, QU Q) — w(n) > Blu) - w(n),
with lim,_ow(n) = 0. Then the I'-liminf inequality follows by letting 1 — 0.
Let u € L™ (Q; R?) N SBD?*(Q), fix A € (0,1) and define uf € SBD*((,,) as
u(Alz) e
{ o(x) z e Q,\ A\,

then uf — u in LY(;R?) and F? (uf, Q) — B(u) for A — 1.
Hence, to prove the I'-lim sup inequality, it suffices to show that

I-limsup B: (uf) < F? (uf,Q). (5.5.9)

e—0

Fix 6 > 0, arguing as in the proof of Proposition 5.3.4, we can find v of the form u{ (- + 7.),
with 7. < ce and v, — uf in L}(; R?) as € — 0, such that

limsup F2 (ve, Q) < F (uf, Q) + 6. (5.5.10)

e—0



Note that if 8 = o, + €, a £ e+ with a € RS (99), for £ small we have

P(B+T1) ifBeEeZ2NQ
Ufs(ﬁ)—{

() if & eZ?NA.
Then, by the regularity of ¢, it can be proved that

F%(v:) = O(e),
hence, by (5.5.10),

limsup B: (ve) < F? (uf, Q) + 4.

e—0
Then, inequality (5.5.9) follows letting § — 0. _

As a consequence of Lemma 5.5.1 and Proposition 5.5.3, we get the following convergence
result for boundary value problems.

Theorem 5.5.4 Let K be a compact set of R? and let B. be as in Proposition 5.5.3. Then
the minimum values
min{B.(u) : u € K a.e.} (5.5.11)

converge to the minimum value
min{B(u) : u € K a.e.}. (5.5.12)

Moreover, for any family of minimizers (uz) for (5.5.11) and for any sequence (¢;) of posi-
tive numbers converging to 0, there erists a subsequence (not relabeled) uc; converging to a
minimizer of (5.5.12).

Proof. It easily follows from Lemma 5.5.1, Proposition 5.5.3 and Theorem 2.3.2. 7

5.6 Generalizations

By following the approach of Section 5.1, different generalizations to higher dimension can be
proposed. We present here one possible extension of the discrete model in R? which provides
as well an approximation of energies of type (5.1.1).

For any orthogonal pair (£,¢) € R\ {0} and for any v : R® — R3 define

Déu(z) = (u(z + e€) — u(), ),
| D eu(z)]? := | Dfu(x)|* + | D u()[?,
| Dz cu(z)]* == | Dz eu(x)]? + | Dz cu(x)]?,
|Div5,§7<u(:1:)|2 =
1 01§ 1 o2¢
> WDE u(z) + WDe u(z) +
(01,02,03)e{1,—1}3

1 2
)



where £ x ¢ denotes the external product of £ and (.
Let © be a bounded open set of R3 and A2(Q2) := {u: Q — R3 : u = const on (a +
[0,£)3) N Q for any « € €Z3}. Then set

S = {(e1,e2), (e1,e3), (e2, €3), (e1 + e2,e1 — €2), (e1 + e3,e1 —e3), (e2 + e3,e2 —€3)}
and consider the sequence of functionals F%3 : L1(Q; R?) — [0, +00] defined by

> > f(3 (\De,s,cu(a)\2+9!DiVe,§,cu(a)!2)> if u € A(Q)

Fu = { (608 qeré®
400 otherwise,
with
R§’< ={aeceZ?: [a—ct,a+ef]Ula—eC,a+eC]U[a—ef x Ca+ef x (] CQ}

and f,0 as in Section 5.1.

Theorem 5.6.1 Let Q) be convex. Then (Fed’?’) I'-converges on L™= (2; R3) to the functional
F&3 . L(Q; R?) — [0, +00] given by

Sa/ |€u(:1:)|2dx+4(1+29)a/ div u(z)[? dz
Q Q

Fl(u) = +20 Y / OEC(ut —u,vy) dH? if u € SBD(Q)
(€.0es

400 otherwise

with respect to both the L'(; R3)-convergence and the convergence in measure, where ®5¢ :
R3? — [0, +00) is defined by

(2, v) == 98 (2,0) V ¢S (2,0) VU (2,p),
with for n € R3
{ [(v,m)| i (z.m) #0
(2, v) =

0 otherwise.

Proof. It suffices to proceed as in the proof of Theorem 5.1.1, by extending all the arguments
to dimension 3 and taking into account Lemmas 5.2.1 and 5.2.3, that are stated in any
dimension. r



Chapter 6

Approximation Results by
Difference Schemes of Fracture
Energies in the Vectorial Case

6.1 Statement of the I'-convergence result

In this Chapter' we provide a variational approximation, in the three-dimensional case, of
energies which takes the form on (GSBVP(Q))Y

/w(Vu) dx +/ g (Wt —u,v,) dH?,
Q Su

with

(h1) ¢ : RV>*3 — [0,4+00) a quasiconvex function with superlinear growth, i.e., there exist
p € (1,400) and C1,Cy > 0 such that for every X € RVX3

O1IXIP <9 (X) < Co(1+|XP); (6.1.1)

g: RN x 8% — [0, 400) defined by

3
9(z,v) ::Zgﬂ (2) v, ee,)] (6.1.2)
(=1

where

(h2) g, is a symmetric, subadditive, lower semicontinuous function such that infg~\ (o g¢ >
0;

(h3) g is an upper semicontinuous function bounded in a neighbourhood of z = 0.

!The contents of this Chapter were obtained by the Author in collaboration with M.S. Gelli, and are
contained in the paper Approzimation Results by Difference Schemes of Fracture Energies: the Vectorial Case,
to appear on NoDEA. The paper is also downloadable at http://cvgnt.sns.it/papers/focgel00.
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Notice that the subadditivity and the local boundedness assumptions on g; imply the existence
of a positive constant ¢z such that for every z € RV \ {0} and for £ = 1,2, 3 there holds

1 < gi(2) < o1+ 2]), (6.1.3)

where ¢; = ming{infg v\ (0} g¢}-
Let up := ((=1) A (u,ex) VT);_; .y, and assume that

(h4) for every u € (GSBVP(Q))Y there exists a sequence (Tj) C [0,+00) with Tj — +oco
such that

timsup [ ge ([ur,]) [0 el a1 = | g0 () e are.

J

Notice that this technical condition is fulfilled in case all the gy are bounded on RY \ {0}.
We will make further comments on this assumption in Remark 6.1.2 and Remark 6.1.6.

Let Q = [0,1]® and consider the triangulation given by the six congruent simplices T},
r=1,...,6, defined by

T = 00{0,61,63,62 + 63}, Ty = co{e1,61 +eg,e0 +e3,e1 + €2 + 63},
Ty = co{er,es,e; +es,ea +e3}, Ts5=cofer,e; +e3,ea+e3,e1 +ex+es},
T3 = co{0,e1,e3,e2 +e3}, Tg = cof{er,ez,e1 +e2,e2+e3},

N N

(see Figure 6.1 below).

Figure 6.1: the partition (73),=1,.. ¢ of the unitary cube

Let 2 C R? be a bounded open set, for every subset A C  and for » = 1,...,6 define
the sets of tetrahedra

T(A):={a+eT, :a+eT, C A, aceZ),
TI(A) ={a+eT: (a+eT,)NA#D, a € eZ},



which identify the simplices properly contained in A and those intersecting A, respectively.
Notice that US_;T"(A) D A D US_,7(A). In case A = we will drop the dependence on
in the definitions above.

Moreover, denote by A, (Q;RN ) the set of functions u : @ — RY such that u is
continuous on € and affine on each simplex belonging to US_, 77

Let us introduce the approximating functionals. First, extend g, to R" setting g,(0) = 0,
thus preserving its lower semicontinuity property, then define v : RN>*3 — [0, 4-00) as

¥ (X) if | X] < A

P9 (X) = (6.1.4)

13
- Z ge (eXey) otherwise,
€=

where (\;) C [0, +0o0) is such that A\ — 400 as e — 07 and sup,~o (eA?) < +o0. Consider
the family of functionals F¢ : L (Q; RN) — [0, +0o0] given by

FI(u) = /uf% - Y (Vu(z))de ifue A; (Q;RN)

+00 otherwise.

Then the following result holds.

Theorem 6.1.1 Let Q C R3? be a bounded open set with Lipschitz boundary and assume
(h1)-(h4). Then, (F¢) I'-converges with respect to both the convergence in measure and strong

L' (Q;RN) to the functional F9 : L (Q;RN) — [0, +00] defined by
/ Y(Vu)dz —I—/ g (Wt —u" ) dH? ifu e (GSBVP(Q)Y
400 otherwise,

where g : RN x 82 — [0, +00) is defined in (6.1.2).
Remark 6.1.2 For instance, if we assume that

h(lz]) vV er < go(2) < ea (14 h([2])) (6.1.5)

with h : [0, +00) — [0, +00) an increasing function and c1, co positive constants, then (h4) is
satisfied.

In case h(t) =t the control from above in (6.1.5) is automatically satisfied as noticed
in (6.1.3). Moreover, the additional control from below implies that the domain of the limit

functional F9 is contained in SBV?P (Q; RN).



6.1.1 Lower bound inequality

In this subsection we prove the lower bound inequality for Theorem 6.1.1. It will be deduced by
a more general result, proved in Proposition 6.1.3 below, holding true in case the functions gy,
used in the definition of the functionals F¢, all satisfy the following milder growth condition:

(h5) g¢, £ =1,2,3, is a lower semicontinuous, symmetric and subadditive function such that
for every z € RV \ {0}

90(2) =2 7(|2]), (6.1.6)

where v : (0,+00) — (0,400] is a lower semicontinuous, increasing and subadditive
function satisfying

)
lim —= = . 6.1.7
i = e 17
Notice that we recover (h2) choosing 7 in (h5) to be constant.

Let us then prove a lower bound inequality in case the functions g, satisfy (h5) instead
of (h2).

Proposition 6.1.3 Let Q C R? be a bounded open set, assume (h1) and (h5). Then, for any
ue L' (%RY)

I'(meas)-lim i(I]lf FI(u) > FI(u).
e—

Proof. Let (u;) C A, (Q;RN) and u € L' (Q;RN) be such that v; — u in measure.
Moreover, assume that liminf; 9 (u;) = lim; F¢ (u;) < 4o00. Consider the sets NI C 7

J J J J
defined by

N = {(a+eT) € T2+ [Vslliare,n) > Aey s (6.1.8)

then, by taking into account the growth condition (6.1.5), the subadditivity and the mono-
tonicity of v we get

6
> sup (E% (Ej)\aj) #N;) < +o0. (6.1.9)
r=1 J
In order to prove the I'-liminf inequality we will show that the sets ./\/Z’J in (6.1.8) detect the

jump set of u. Thus, we will divide ,7-"59], into two terms contributing separately to the bulk
and surface energies of the limit functional.

Step 1:(Bulk energy inequality) According to the scheme stated above we construct a

sequence (vj) C SBV (Q;RN) such that v; — w in measure, (v;) satisfies locally all the
assumptions of Theorem 2.7.10 and, with fixed n > 0, we have

9 . _
/U?—l(ﬁg\/\/;j) vg, (Vu;(@)) de > /Qn $(Vv;) dz + o(1) (6.1.10)



for j sufficiently large. Indeed, let v; : Q@ — RY be the function whose components are
piecewise affine, uniquely determined by

usw) @ ¢ WA,

@)=Y ya) zeateT, (6.1.11)

(a+&;T7) € U ML

It is easy to check that v; — u in measure and that there holds

3

08 (Vus(o)) do = [ 0(Voy(a)) do — LYORUNE).
) us_ T

r=1 gy

/6 r T
LS (T2 \WE,

Since, for j sufficiently large, €, C U?:lTe;’ by taking into account (6.1.9), the superlinearity
of 7 in 0 and the choice of ¢, we get (6.1.10).
Conditions (6.1.1) and (6.1.10) yield

/ |V, dz < eFE (uy), (6.1.12)
Qy

for some positive constant c¢. Moreover, notice that

Jy, CUS_, Unz, O(a + &)

and that (v;r — v]_) ‘(a+ejTr) is a convex combination of the finite-differences computed in

the nodes of the tetrahedron (o + ¢;7;) belonging to N .
Therefore, by using the subadditivity and the monotonicity of -, it is easy to check that

L b dwe < 72 ) (6.1.13)
QN

for some positive constant c. Hence, the sequences ((vj,e)), k = 1,..., N, satisfy all the
assumptions of Theorem 2.7.10 on (2, so that u € (GSBV(QW))N for every n > 0 and there
holds

/ |VulP dx §liminf/ |Vl de,
Q, i Ja,

[ e <timin [ (gl ar
QnﬂJu J Qnﬁjvj

The last two inequalities and conditions (6.1.12), (6.1.13) yield u € (GSBV?(Q))™ .
Eventually, by applying the lower semicontinuity result of Theorem 2.7.17 in (6.1.10),
and then by passing to the limit on n — 0T, we get

lim inf 9 (Vu(zx)) de > / Y (Vu) dx. (6.1.14)
oo (Tm\wr Q



Step 2:(Surface energy inequality) With fixed ¢ = 1,2,3 we will prove the following
inequality

1
lim inf —/ ge (ejVu(x)er) dx > / ge ([u]) [(vu, eg)| dH2. (6.1.15)
J g uﬁ,lj\/gj Ju

To this aim, for any r = 1,...,6, we construct a sequence (vﬁ’r) C SBV (Q; RN) with
one-dimensional profile along ey, which is locally pre-compact in SBV in this given direction,
but in general not globally in GSBV. More precisely, let p;, be the unique vertex in 7. such
that pg, + e, € T, and define

uj(a+e5pes) z € (a+¢0,1)%)NQ
(a+eTr) € NI

V5T () = { uglat gjpey) + Vg (x)eg(r — o — €jpor, eg)

z € (a+¢0,1)%)NQ
(a+eT) ¢ N,

then (vf’r) C SBV (Q; RN) and vf’r — w in measure. With fixed > 0, notice that by (6.1.1)
L |P

we get
/ Ov;
Qy

86@

dz < cFZ (uj), (6.1.16)

for some positive constant c. Moreover, since v, ¢, € {e1,e2,e3} H? a.e. in J er there holds
j i

1 1 l,r 2

- Vu, dz > = / , venld

€j NETJ o (E] uj(x)eg) v 6 QnﬂJvl,r 9 ([U] i|) ’<Vv§ GZH "
J

- é e & /Qnﬁ(Jué,r)gef 9 ([(”ﬁr)ol’y]) dn’, (6.1.17)
J

where the last equality follows by using the characterization of BV functions through their
one-dimensional sections (see Theorem 2.7.6) and the generalized coarea formula for rectifi-
able sets (see (2.4.1) of Lemma 2.4.2). By passing to the limit on j — +o0 in (6.1.17) and by
applying Fatou’s lemma we have

1
lim inf —/ ge (e;Vuj(z)ey) dx
7 &5 INE
1 . . Vi €0,y
> - dH?lim inf dH°,
= 6 Jmee lmjm QN o)yt ge ([(Uﬂ ) D

from which we infer that for H? a.e. y € II* there holds

lim inf o oo ¥ ([(vi7)™"]) ar® < +o0. (6.1.18)
J



Thus, for H? a.e. y € II°, up to extracting subsequences depending on such a fixed y, we

e ’ . . . . . . . .
may assume (vﬁ’r) “Y 4 in measure on (Qn)zl, the inferior limit in (6.1.18) to be a limit
and, by taking into account (6.1.16), also that

sup / .
i ()
. S72¢) . e .
Hence, the slices ((vj ) ) satisfy on (Qn)y‘Z all the assumptions of Theorem 2.7.10, so that,

by Theorem 2.7.20, we have

()" dt < +oo.

lr

1
liminf—/ e;Vu(x)ep) dx
P e g (£ Vu(x)er)

1 .. r\ &
> 6 Jugee dH> hmjlnf a1 ge ([(Uf ) ¢ y]) dH°
i

1 1
2o oo [ e =5 [ g () el aH
6 Jrree QN (Ju)5t 6 Ja,nJ.

We deduce (6.1.15) passing to the limit on 7 — 0" and using the subadditivity of the inferior
limit.
To conclude it suffices to collect (6.1.14) and (6.1.15). m

Remark 6.1.4 We claim that, by proceeding as in Step 1 of the proof of Proposition 6.1.3,
one can prove that the families of functions (u:) C A (Q; RN) such that

sup (F2(ue) + [lucl|p e ) < +00
e>0

are pre-compact in L' (Q; RN). Indeed, to get the result it suffices to apply the GSBV Com-
pactness theorem (see Theorem 2.7.11) to the family (ve) constructed in (6.1.11).

6.1.2 Upper bound inequality

In this subsection we prove the upper bound inequality for Theorem 6.1.1.

Proposition 6.1.5 Let Q C R? be a bounded open set with Lipschitz boundary, assume
(h1)-(h4). Then, for any u € L (Q; RN),

r (Ll) -limsup FZ(u) < FI(u).

e—0t

Proof. It suffices to prove the inequality above for u € (GSBVP(Q))Y. We will first prove
the inequality for a class of more regular functions.

Step 1: Let € be an open set such that Q' DD Q and suppose u € W (Q’; RN).



Let us first fix some notations. With fixed m € N \ {0}, let

J = {x € Jy: |ut(z) —u (z)] > l}7

m

then (J;') is an increasing family of sets such that J, = Upenj01Jy" and so

lim  H2(J") = H2(J.).

m——+o0o

Moreover, let J := J, and define the sets
jgr = U€=1,2,3 {Oé + ETT IS EZ37 o+ E[pf,r;p@,r + e@] nJ 7é (b} )

and
j,’;b’e = Ur=123 {a +eT, :a el a+ Epers Doy + e NI # @} ,

for m € N\ {0}, where the points py, have been defined in the proof of Proposition 6.1.3.
Up to infinitesimal traslations we may assume that J N eZ3 = ) for every £ > 0, then let u.
be the continuous piecewise affine interpolation of the values u(a) with a € eZ3 N Q. Notice

that u. € A (Q; RN ) and u. — u strongly in L' (Q; RN ) Denote as usual

NI = {(a+eD) € T+ Vel |(aser,) > Ac }-
By taking into account Theorem 2.7.6 we have for £ = 1,2,3 and for z € (a 4 €7;,)

eVue(z)ep = u(a + epy; + eeg) — u(a + epyy) (6.1.19)

&€
= / Vu (o + epey + teg) epdt + > [u](y)sgn ((vu(y),er)) -
0 yE€JuN(ote[pe,rpe,rter))

Thus, if («+¢€T,) € 77\ J7, for any x € (a + £7T}), we have
15
eVue(r)ep = / Vu (o + epyr + teg) epdt, (6.1.20)
0

for £ = 1,2, 3, from which it follows [Vuc||(ate1,) < [[Vl| Lo (or;rnx3). Define the vector fields
W, :Q — RN*3 by

1 €
W.(x) = (— / Vu (o +epgr +teg) e dt) ,
€ Jo ’ 0=1,2,3

if 2 € US_ 7. Then, W. — Vu strongly in L? (©;RY*?) and by (6.1.20) there follows

lim sup Y (We(z)) do

/ Y? (Vue(x)) de = limsup
e—0t JUS_ (T\ITT)

e—0t /U?._1(Tsr\\75r)
< lim /Q b (We(z)) do = /Q b (Vu(z)) de, (6.1.21)

e—0t



the last equality holding by the growth condition (6.1.1).
Consider the decomposition J! = (J7 NNI) U (JZ \ N7), then it follows

/Ug_ljs'r ’lzz)g (vue diU = Z / (]Tﬂj\/"f €VU€( )eé) dfl}‘
WP (TE\WT)

Let us estimate separately the two terms in (6.1.22) above.
Let B := E(O,IIVHIILOO then, since supz g¢ < +00, for every m €
N\ {0} it follows

(Q;RNx3)+2M”u”Loo (Q,RN)) ’

Z /UG (TN 9o (eVue()er) dw (6.1.23)
< Cgﬁg (L : dist (2,7 \ J2") < V3e}) < M2 (TN T77) + (1),

the last term being infinitesimal as m — 4o00.
Moreover, let wy, : [0,+00) — [0,+00) be the maximum of the moduli of continuity of
ge, £ =1,2,3, on the compact set B\ B(o 1y, then for e small enough we get by (6.1.19)

1
- eVus(x)ep) dx
6/6 (J,;srwwgg( “(e)er)

_z 3 / » (J ( ) g0 ([u] <y>>) da

r=1T% . N(a+e[pe,rpe,r+ee))
82 6 T
Fwm (EllVullooor) 5 # (Urzljmva) : (6.1.24)

the last inequality holding by the subadditivity and the symmetry of gy, £ = 1,2, 3. It can be
proved that, by the regularity assumptions (i)-(iii) on u and the continuity of g, on R™ \ {0},
we have

( > ge ([u] (y))) dx

1
lim sup —
+ €
e=0 I \yeJun(atelpe,peer))

<& [ a0t lsen are. (6.1.25)

Hence, by (6.1.24) and (6.1.25) we infer

hmsupZ Sy oy T < [ gl ) e

e—0t u

(6.1.26)



By collecting (6.1.23), (6.1.26) and since H? (J_u \ Ju) = 0 by passing to the limit on m — 400
we get

lim supz /Uﬁl(jgn/\fg')gg (eVue(x)ey) dr < / g ([u],vy) dH>. (6.1.27)

e—0t u

In order to estimate the second term in (6.1.22), notice that by (6.1.1) there holds
3
€
de < Cy— (1+ A AN
Lo oy ¥ (Fl)) e < CoT (142 4 (T \AD).

and the term on the right hand side above is infinitesimal as ¢ — 0. Indeed, with fixed
m € N\ {0}, arguing as in (6.1.23) we deduce

limsup 24 (J7 \ N7) < limsup e2# (jr \ «7;;,5) <cH* (T ( w \ J{ﬁ) . (6.1.28)

e—0t e—0t

Hence, by assumption sup,-q (eA?) < 400, (6.1.28) and by letting m — 400, we have that

e—0t

lim sup/ P (Vug(x)) de =0 (6.1.29)
01 (TI\WNT)
Finally, by collecting (6.1.21), (6.1.27) and (6.1.29) we get the conclusion, i.e.,

lim sup F? (u.) /w (Vu(z dx—i—/ V) dH2

e—0t

Step 2: Assume u € SBVP N L™ (Q; RN ) By taking into account the SBV Extension
Theorem (see Theorem 2.6.14), with fixed an open and bounded set ' with lipschitz boundary
and such that @ DD Q, there exists a function 4 € SBV N L™ (Q’; RN) such that | = u,

Vi € LP (3 RN?), H2 (J;) < +oo and H2 (92N Jg) =0
By Theorem 2.7.14 there exists a sequence (uj) C W (Q/;RN) such that u; — @ in
Lt (Q’ ‘RN ) and, since the continuity and local boundedness of g, there holds
lim wi|, dH2:/ ul,vy) dH2.
I Jon, 9 (0l ) 9 (] )

Hence, by Step 1 and the lower semicontinuity of the upper I'-limit we conclude.
Step 3: Let u € (GSBVP(Q))", then for every T > 0 the truncated functions up =

(=T) A (u,ex) VT)_y,  y arein SBVP N L™ (Q; RN) and Jy, C J,.
Moreover, by Theorem 2.7.7 there holds

H? ({x € Jy : [ut(z)] = +o0}) = 0.

Hence, im7_ o g¢ ([ur] () = g¢ ([u] () for H? a.e. € J,,, £ = 1,2,3. Then by assumption
(h4) we may apply the Dominated Convergence Theorem, Step 2 and the lower semicontinuity
of the upper I'-limit to conclude. L



Remark 6.1.6 Let us point out that the assumption (h4) is technical and needed only to
recover the limsup estimate on (GSBV?(Q))" \ SBV (Q; RN).

Indeed, assume v € SBV (Q; RN) to be such that F9(u) < 400, by following the nota-
tions of Step 3 in Proposition 6.1.5 above and by taking into account (6.1.3) we get

c1 < g([ur], vuy) < 2c2 (14 |[u]]) -

Moreover, since u € SBV (Q; RN) implies |[u]] € L* (Ju; H?) we have

lim g([uT],yuT)dH2:/ g ([u], v) dH.
T——+o0 Ju ”

Hence, in this case (h4) is automatically satisfied.

6.2 Discrete approximations in dimension 2

In this section we treat the two dimensional case. We provide two different approximation
results. The first one is the transposition of Theorem 6.1.1 in dimension n = 2 for a fixed
regular partition of the square [0, 1]2. The proof works using the same techniques of Theorem
6.1.1. Actually, the result is independent on the choice of the regular triangulation, indeed
one may assign on each square o + ¢[0,1]?, o € £Z?, one among the two possible partitions
(see Figure 6.2 below).

Figure 6.2: a random triangulation of R?

The second result is a slight variant of Theorem 6.1.1, but the surface term depends
heavily on the assigned triangulation (for simplicity we choose the one in Figure 6.3 below).

The anisotropy induced by the model can be computed by means of the function ¢ of
Lemma 6.2.4. To deal with this model more sophisticated tools need to be used.

Let us fix some definitions. Let S7 := co{0,e1,e2}, S2 := co{ei,es,e1 + e2} and define
forr=1,2
T'(A) :=={a+eS,:a+eS, C A, accZ?},

£



Figure 6.3: regular partition of the square

for A € A(Q) and Q a bounded open subset of R2. In case A = 2 we will drop the dependence
on {2 in the definition above.

In the following we will use the same notations and assumptions (h1)-(h4) of Section 6.1
suitably changed according to the two dimensional setting.

Consider the family of functionals F¢ : L! (Q; RN ) — [0, 400] given by

fg(u) = /;;1U7;2 (0 ( U(ﬂ?)) x ifu 6 ( )
oo otherwise.

Then the following result holds.

Theorem 6.2.1 Let Q C R? be a bounded open set with Lipschitz boundary and assume
(h1)-(h4). Then (FY) I'-converges with respect to both the convergence in measure and strong

! (Q;RN) to the functional F9 : L (Q;RN) — [0, 4+00] defined by

_ L .
F(u) = /Qw(VU)da;—l—/Jug(qu —u", 1) dHY ifu € (GSBVP(Q))
+oo

otherwise,
where g : RN x 8! — [0, 400) is defined by
9(z,v) = g1 (2) (v, e1)| + g2 (2) [(v, €2)]
Let us consider now the function 12 : R¥*2 — [0, +00) defined by
(X)) i | X] < A
2 (X) = {

1 .
=Y otherwise,

where (3 is a positive constant. Note that even in case g = g5 = g the functions ¥¢, ¢ are
different, since ¢ takes into account the values Xe;, Xey separately. If in the definition of
the family F9, 19 is substituted by 12, we prove the following result for the corresponding
family of functionals (F7).

Theorem 6.2.2 Let Q C R? be a bounded open set with Lipschitz boundary and assume
(h1). Then (FP) T-converges with respect to both the convergence in measure and strong

! (Q;RN) to the functional F° : L' (Q;RN) — [0, +00] defined by

/ W(Vu)dz + 8 / o) dH' ifu e (GSBVP(Q)N
= Q Ju

F(u) (6.2.1)

400 otherwise,



where ¢ : St — [0, +00) is given by

’<V7el>’v’<y762>’ ’if<1/,€1><1/,€2>20
o) = { (6.2.2)

l(v,e1)| + [(v,e2)| if (v,e1)(v,e2) <O.

We now prove the lower semicontinuity inequality for the family of functionals (.7-"65 ) To

this aim we need to ‘localize’ the functionals F2. For every A € A(Q) and u € A. (Q; RN )
let
U2 (Vu(z))de ifue A (RN
F(u, A) = /7;1 (AUT2(4) - )
+o00 otherwise.
We obtain separate estimates on the bulk and on the surface terms which we ’glue’ together by
means of Lemma 2.2.4. Besides using the same techniques applied in the proof of Proposition

6.1.3 in the two dimensional case, we will perform an additional construction with profile
along the diagonal direction es — €.

Proposition 6.2.3 Let Q C R? be a bounded open set, assume (hl). Then, for any u €
I (Q;RN),
I'(meas)-lim iélf FPu) > FO(u).
E—>
Proof. Let (u;) C A, (Q;RN) and u € L' (Q;RN) be such that u; — w in measure. By

using analogous arguments of those of Proposition 6.1.3 it is possible to show that for every
A € A(R) the following inequalities hold true:

lim inf Y2 (Vu(x)) dz > / Y(Vu(z)) dz (6.2.3)
J U (T ()W) A
and
lim inf Be;# (77 (A) NNZ) > 3 (v, e0)| dHY, (6.2.4)
J ’ ANJ,
for v, = 1,2. Thus to conclude it suffices to show that there holds for r = 1,2
lim inf Be;# (77 (A) NAZ) > A (v, €2 — €1)| dHL. (6.2.5)
J ! ANy

Indeed, for £ = 1,2, let (5£)h =QnN[0,1], 8} 4+ 62 <1, then by using Lemma 2.2.4 with

p(A) := liminf; ffj (uj, A),
A= L2 (Q\ Ju) +HUL Jy,
P(Vu) on 1\ J,

h(T) =0 5 s ex)] + 62w )
(1= 8L~ 82) (e — o)) om Ja,



the statement follows by noticing that if x € J,, is such that (v, (z),e1) (v, (x),e2) > 0, then
[(vu(z), €2 —er)| < [{vu,en)| V [(vu, €2)],

and if z € J, is such that (v, (x),e1)(vy(x),e2) < 0, then
[(vu(z), e2 —e1)| = [{vu(®), e1)] + [(vu(2), e2)| = [{vu, e1)| V [(va, €2)]

To prove (6.2.5) we will construct, for r = 1,2, a sequence (wj) C SBV (Q;RN) with
one-dimensional profile in es — e; which is locally pre-compact in SBV in this given direction,
but not in general globally in GSBV. Suppose lim inf; .7-"653_ (uj) = lim; ffj (uj) < 400, consider
the sets of triangles N7 := {(a +¢;5;) € T, ¢ |VUjll(ase;s,) > A}, for 7 = 1,2, then we
get

, 1 2
sup e;# (Naj U./\/'Ej) < +00. (6.2.6)
J

Let

P, =g {m €R?:z = \—e) +ples —e1), \,p € [0, 1)} ,
and define for 7 = 1,2 the sequence
uj () x € (oz—l—ng)ﬂQ
uj(or) + %Vuj(x)(eg —e1)(r —a,e9 —eyq)

x € (a+P€j) nea
(Oé+€j5r) ¢N€TJ

T

Notice the analogy with the construction of vf’ in Proposition 6.1.3: in this case the cubic

cell £4[0,1)? is replaced by the slanted one P.,.

We have that (w}) C SBV (Q;RN), wj; — u in measure and, for every n > 0 and

A € A(Q), by the growth condition of ¥ there holds

I,

for some positive constant c. Moreover, since Ut € {ea,e1 +ea} H! a.e. in Jw; we have

/AnﬂJwr_'
J

Notice that (6.2.6) together with (6.2.7), (6.2.8) for A = Q assure that for H! a.e. y € IT°27°1,

p

"
d dx < cfaﬁj (uj, A), (6.2.7)

J

8(62 — 61)

(v €2 — e1>‘ dH' < ;% (T (A) m\/) : (6.2.8)

up to subsequences depending on such a fixed y, the slices <(w§)ez _ehy) satisfy on (Qn)zrol



assumption (2.7.6) of Theorem 2.7.10. Thus, by taking into account Fatou’s lemma and
Theorem 2.7.20, by passing to the inferior limit on j — 400 in (6.2.8), we get

s lim inf e;# (’ZZ(A) ﬂ/\/;) > 5 | (v, €2 — €1)| dH®. (6.2.9)
2 J 7 J ApNdy

1

The following result will be used in the proof of the limsup inequality. Notice that the
ideas and strategy used in the proof are strongly related to the regularity assumptions on the
set J.

Lemma 6.2.4 Let £ = (&1,&) € R?\ {0} and denote by &+ := (—&2,&1). Let v € St and let
J CTI” be a closed set with H1(J) < +oc. Define

J§” = {a+€S§:a€sZ2, (a—l—sSﬁ)ﬂJ#@},

where Sf = co{0,&,61) and Sg = co{&, &5, 64+ €L}, Then, forr =1,2, we get

lim sup M

e—0t 9

< 1/90(1/) dH',
2y

where ¢ : St — [0, +00) is defined as in (6.2.2).

Proof. Let J" := {x € IIV : d(z, J) < n}, then there exists a sequence (n;) C (0,1) such that
nj — 07 and HY(JW) = H? (W) — H(J). Tt suffices then to prove the assertion for an
open set A C II” essentially closed, i.e., H'(A) = H! (Z) < +o0.

Let A = Ug>1A,, where A, are the connected components of A in II”; since for every
MeN

£ (A8) < fj £2 ((A)57) + £2 (U m AT, (6.2.10)
s=1
we have that
lim sup al (Ag’r) < i/[: lim sup M + 2V2|¢|H! (USZMAS) ) (6.2.11)
e—0*t € s—1 €—07t

being the estimate on the second term in (6.2.10) due to a Minkowski’s content argument
(see [20]). Since A is supposed to be essentially closed there follows

Hl (USZMAS) - Hl (USZMAS) .
Hence,

sup H' (Usznids) =0,



and, by passing to the supremum on M in (6.2.11), we get
£ (Ag) £2((4,)8)
< Z limsup ———=~.

lim sup ——~
e—0t € s>1 e—0t

Thus, we may assume A to be an open interval in I and, without loss of generality, we may

also assume £ = eq. For £ = 1,2 let us define
jf’r(A) = {oz +e85:aeeZ? o + elper, oy + el N A # (z)} ,

where the points py, are defined as in the proof of Proposition 6.1.3. Notice that in case

n = 2 the points py, satisfy p;; =0 for £ =1,2, p1 2 = e and pa o = €.
Then it can be easily proved that (see Figure 6.4 (i),(ii))
e# T (A) < HY(A)|(v, )| + 2¢. (6.2.12)
€
A
J J
H'(J)|<v,e,>| ~ HW@)|<ve,>|
-
H'WJ)|<v,e,>| Hid|<ve,>|

(ii) case (v,e1)(v,e2) >0

Figure 6.4: (i) case (v,e1)(v,e2) <0

Note that if (v,e1)(v,e2) < 0, then JI" N J2" = ), while if (v,e1)(v,e2) > 0, then either
) = [, e2)].

(v,e2) < 0, then

JLr C 2" or J2T C JIT, according to the cases |(v,e2)| > [(v,e1)], [{v,e1
Hence, we will treat separately the two cases. Assume first that (v, e;)

by (6.2.12)
HH(A)p(v) +o(1)

DO | =

2 AeT
B _ 2 (p () + #727(4) <

If, instead, (v,e1){v,es) > 0 and |(v,e2)| > |(v,e1)], then 1" C J2" and by (6.2.12)

N | ™

and the thesis follows.
H' (A)p(v) + o(1)

N =

L2(AZT) e o
= — ) A <
=) = SpA) <
and the thesis follows. Analogously, we infer the thesis in case (v, e;)(v,e2) > 0 and |[(v,e1)| >
-

(v, e2)].



Proposition 6.2.5 Let Q C R? be a bounded open set with Lipschitz boundary, assume (h1).
Then, for any v € L (Q; RN),

r (Ll) ~lim sup FP (u) < FP(u).

e—0t

Proof. Let u € (GSBV?(Q))" be such that F7(u) < +o0. Let us first prove the inequality
for regular functions. Let ' be an open set such that Q' D Q and suppose u regular as in
Step 1 of Proposition 6.1.5. By using analogous notation, the set J now equals to

Ur=12 {a + 68 a € el atelpry, oy e NJ # @} ,

and the points py ., in this case satisfy p,; = 0 for £ = 1,2, p1 o = ez and py 2 = ey.
Hence, we get

lim sup/ V2 (Vue(z)) dz = lim sup/ Yo (We(x)) da
e—0t JUI_(TI\TY) e—0t JUI_ (TX\JY)
< lim / b (We(z)) dx = / b (Vu(z)) da. (6.2.13)
e—01T JQ Q

By the very definition of /¢ and N we have

Loy 22 (T de = 35 (3 (7 )+ # (72 0 A2))

<2 (e (@) <2 (@)7)),

and then by Lemma 6.2.4

lim sup/ Y2 (Vue(x)) doz < 3 o(vy) dH . (6.2.14)
e—0t JU2_, (JIrnNT) QNJy

Moreover, by taking into account (6.1.1), we get

2

£ T T
/Ui_l(Jg'Wg') e (Vue(a)) do < Ca (14 20) # (U2 (97 \ AT)). (6.2.15)

the term on the right hand side above being infinitesimal as proved in (6.1.28) of Proposition
6.1.5. Furthermore, by collecting (6.2.13), (6.2.14) and (6.2.15) we get

lim sup FP (u.) < /Q¢(Vu) dx —I—ﬁ/J (vy) dHL.

e—0t

To infer the result for every v € L! (Q; RV ) it suffices to argue like in Step 2 and Step
8 of the proof of Proposition 6.1.5. m
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