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Abstract. De Giorgi’s Γ-convergence is a variational theory mod-
elled upon the convergence of families of (perturbed) minimum
problems and of the corresponding minimizers.

In these notes, after reviewing briefly the basic theory and ac-
counting for some recent new insights, we discuss three examples
of static mechanical models which can be analyzed by means of
Γ-convergence arguments.

1. Introduction

A recurrent question arising in several fields is the determination of
sufficient conditions, hopefully necessary as well, ensuring the conver-
gence of sequences of minimum problems and of the related minimizers.
In these notes we shall be interested mainly into static variational mod-
els in mechanics for which some examples of the issue raised above are
listed in what follows:

(i) Homogenization of composites : in this setting two (or more)
materials are finely mixed in a way that several physical proper-
ties of the microscopically heterogeneous medium behave macro-
scopically like those of a ‘fictitious’ homogeneous one when look-
ing at samples of the body much bigger than the singular con-
stituents (see Figure 1). Mathematically, this problem corre-
sponds to analysing PDEs with rapidly oscillating coefficients
such as, for instance,

−div (Bj∇w) = f Ln a.e. (0, 1)3, with w ∈ W 1,2
0 ((0, 1)3),

with f ∈ L2(Ω) and Bj ∈ L∞(Ω,Rn×n), and try to deter-
mine the asymptotic behaviour of the corresponding solutions
as j ↑ +∞. If the Bj’s are symmetric and equi-coercive, those
problems can be equivalently reformulated as determining the
limit behaviour of the minimizers of

min
W 1,2

0 ((0,1)3)

ˆ
(0,1)3

(〈Bj∇u,∇u〉 − f u) dx.
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Figure 1. A periodic arrangement of two materials.

(ii) Derivation of linearized elasticity : the usual argument used to
deduce such a theory from finite elasticity hinges upon a Taylor
expansion around the identity for Lipschitz deformations in case
of (suitably) imposed small external loads. More precisely, for
a homogeneous and hyper-elastic body occupying the reference
configuration Ω ⊆ R3 and with stored energyˆ

Ω

W (∇v)dx,

v : Ω→ R3 being the elastic deformation, we assume the body
to be at equilibrium when no external loads are applied and that
the energy density W is frame indifferent (see Section 4 for the
precise assumptions on W ). It is then natural to expect small
displacements εju if small external loads εj`, ` ∈ L2(Ω,R3),
are imposed (εj ↓ 0+). Supposing W to be smooth close to
the identity and the deformation v = x + εjv to be Lipschitz
continuous, one finds

W (Id3 + εj∇u) = ε2
jD

2W (Id3)[e(u), e(u)] + o(ε2
j)

with e(u) = (∇u +∇tu)/2 the linearized strain of u. In turn,
the latter formula implies as εj ↓ 0+

1

ε2
j

(ˆ
Ω

W (Id3 + εj∇u)dx− ε2
j

ˆ
Ω

` · u dx
)

=

ˆ
Ω

(
D2W (Id3)[e(u), e(u)]− ` · u

)
dx+ o(1). (1.1)

This argument is commonly taken as a justification of lin-
earized elasticity. Note that it does not supply any piece of
information on the behaviour of the stable states of the ener-
gies on the left hand side of (1.1) with respect to those on the
right hand side there.
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(iii) Obstacle problems for nonlocal energies : let us consider a prob-
lem of diffusion through semipermeable membranes as described
in [37]. Given a cell, whose membrane is modeled by the sur-
face z = 0, the outside concentration of molecules of some sub-
stance is represented by ψ, the transport of molecules through
the membrane is possible only across some given channels (rep-
resented, for instance, by the set Tj ⊆ {z = 0} in Figure 1,
see Section 5 for details), and only from the outside toward the
inside, R3

+ = {(x, y, z) ∈ R3 : z > 0}, of the cell. At equilib-
rium, the concentration inside the cell is the unique function
u ∈ W 1,2(R3

+) satisfying
−4u(x, y, z) = 0 (x, y, z) ∈ R3

+

u(x, y, 0) ≥ ψ(x, y) (x, y) ∈ Tj
∂zu(x, y, 0) ≤ 0 (x, y) ∈ R3

∂zu(x, y, 0) = 0 (x, y) ∈ R3 \ Tj, x ∈ Tj ∩ {u(·, 0) > ψ}.

Equivalently, in terms of the boundary trace v(x, y) = u(x, y, 0)
the previous problem translates into

(−4)1/2v(x, y) ≥ 0 x ∈ R2

(−4)1/2v(x, y) = 0 x ∈ R2 \ Tj, and (x, y) ∈ Tj ∩ {v > ψ}
v(x, y) ≥ 0 x ∈ Tj

(1.2)

that is v is the minimizer among H1/2-functions of the energy

Fj(w) =

ˆ
R2×R2

|w(x)− w(y)|2

|x− y|3
dxdy

under the condition w ≥ ψ on Tj. Here, (−4)1/2 is the 1/2-
fractional Laplace operator (see Section 5 for the definition).

Assuming that the size of each channel vanishes as j ↑ +∞,
we want to determine the limits of the solutions of the minimum
problems related to the Fj’s, one reason being that if j is very
big the presence of many channel renders the use of numerical
analysis tools prohibitive. A limit substitute problem is then
looked for, in order to infer qualitative properties of solutions
of (1.2) for j big but finite.

In all the previous examples the asymptotic behaviour of minimizers
of a family of variational problems depending on a vanishing parameter
is under study. In a simplified setting, we can take energies Fj and
F defined on a Hilbert space X with values into the extended real
line R ∪ {±∞}, and try to define a notion of convergence of (Fj)j∈N
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Figure 2. The set Tj is the union of the circles.

to F , indicated in this introduction as Fj � F , ensuring both the
convergence of minimum values

min
X

Fj → min
X

F , (1.3)

and that of the corresponding minimizers (assuming that they exist)

xj → x, with xj ∈ argminXFj and x ∈ argminXF . (1.4)

In view of applications, it is also reasonable to require both properties
(1.3) and (1.4) to be stable under the addition of continuous perturba-
tions, that is if Fj � F , then Fj + G � F + G for all G : X → R
continuous, and

lim
j

min
X
{Fj + G } = min

X
{F + G } (1.5)

together with the convergence of minimizers. Clearly, an interplay
with the topology of the ambient space X is necessary to guarantee
under mild structural assumptions on the functions Fj the existence
of minimizers for the minimum problems in (1.3) and (1.5).

A prototypical setting for which a necessary and sufficient condition
for the convergence of minimizers can be devised is that of quadratic
forms satisfying a uniform coercivity hypothesis, i.e., there is some
λ > 0 such that for all j ∈ N and x ∈ X

Fj(x) = 〈Ajx, x〉 ≥ λ‖x‖2, and F (x) = 〈Ax, x〉 ≥ λ‖x‖2.

In such a case we claim that condition (1.5) is equivalent to

lim inf
j

Fj(xj) ≥ F (x), for all (xj)j∈N weakly converging to x,

(1.6)
and

lim sup
j

Fj(yj) ≤ F (x), for some (yj)j∈N weakly converging to x.

(1.7)
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for all x ∈ X.1
The derivation of inequalities (1.6) and (1.7) from (1.5) relies on

the simple observation that, with fixed a generic point x ∈ X, the
continuous linear perturbation G (y) = −2〈Ax, y〉 renders x the global
minimizer of the energy F + G , so that one can estimate the values
Fj(xj), (xj)j∈N as in (1.6), as follows:

Fj(xj) = Fj(xj)−2〈Ax, xj〉+2〈Ax, xj〉 ≥ min
X
{Fj(y)−2〈Ax, y〉}+2〈Ax, xj〉.

Since (1.5) holds true, (1.6) is deduced straightforwardly from the weak
convergence of (xj)j∈N to x, i.e.

lim inf
j

Fj(xj) ≥ lim
j

min
X
{Fj(y)− 2〈Ax, y〉}+ 2 lim

j
〈Ax, xj〉

= min
X
{F (y)−2〈Ax, y〉}+2〈Ax, x〉 = F (x)−2〈Ax, x〉+2〈Ax, x〉 = F (x).

(1.8)

Actually, the inequality above turns into an equality for the sequence
(yj)j∈N of minimizers of minX{Fj(y) − 2〈Ax, y〉} provided we show
that it converges weakly to x. To infer this property, we note that
the uniform coercivity condition on the Fj’s implies that supj ‖yj‖ <
+∞, thus a subsequence (yjk)k∈N converges weakly to some point z.
Therefore, the argument leading to (1.8) yields

F (z) ≤ lim
k

Fjk(yjk)

= min
X
{F (y)− 2〈Ax, y〉}+ 2〈Ax, z〉 = F (x)− 2〈Ax, x〉+ 2〈Ax, z〉.

Being x is the unique minimizer of y → F (y) − 2〈Ax, y〉 by strict
convexity of F , the latter inequality implies z = x. In turn, from this
we deduce that any weakly convergent subsequence has x as limit, so
that the whole sequence (yj)j∈N converges weakly to x, and (1.7) is
established at once.

On the other way round, (1.6) and (1.7) implies the validity of (1.5).
Indeed, given any G linear and continuous, the minimizer xj of Fj +
G satisfies supj ‖xj‖ < +∞. In particular, a subsequence (xjk)k∈N
converges weakly to some x ∈ X, so that by (1.6)

lim inf
k

min
X
{Fjk+G } = lim inf

k
(Fjk(xjk) + G (xjk)) ≥ F (x)+G (x) ≥ min

X
{F+G }.

1Given a sequence of real numbers (αj)j∈N its inferior/superior limits are defined
respectively as lim infj αj := supk infj≥k αj , lim supj αj := infk supj≥k αj . We refer
to subsection 1.1 for the notation adopted throughout the paper.
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By taking into account that for some sequence (yj)j∈N weakly converg-
ing to x inequality (1.7) holds true, we have

F (x) + G (x) = lim sup
j

(Fj(yj) + G (yj)) ≥ lim sup
k

min
X
{Fjk + G }.

In particular,

F (x) + G (x) = lim
k

min
X
{Fjk + G },

and actually by repeating the same argument for any weakly convergent
subsequence of (xj)j∈N, we infer that (xj)j∈N itself converges to x and
then the validity of (1.3).

Note that in the last derivation we have not used the specific struc-
ture of the problem, i.e. neither that the relevant energies Fj, F are
quadratic forms nor their regularity properties used to infer that the
corresponding (global) minimizers satisfy some Euler-Lagrange equa-
tions.

Only inequalities (1.6) and (1.7) have played a role, together with
the uniform coercivity condition on the Fj’s in order to guarantee pre-
compactness for the sequence of minimizers and uniqueness of the limit
point.

Hence, inequalities (1.6) and (1.7), if satisfied, identify a functional
convergence implying (1.5) (provided some additional assumption guar-
antees the existence of minimizers), this convergence is known in liter-
ature as Γ-convergence.

Γ-convergence was introduced systematically in 1975 (in the general
setting of topological spaces) by De Giorgi and Franzoni [31] building
upon a previous contribution by De Giorgi himself studying the varia-
tional limits of families of area-type functionals [28] (see also [29, 30]).
Γ-convergence reduces to inequalities (1.6) and (1.7) in case of metric
spaces endowed with the distance topology, it is a variational con-
vergence tailor made to deal with the description of the asymptotic
behaviour of the global minimizers of family of energies depending on
parameters of different nature (geometric, constitutive, and so on).

It provides a unified framework summarizing several notions intro-
duced for different purposes in unrelated fields almost contemporarily:

(a) Wijsman’s infimal convergence characterizing the continuity of
Fenchel conjugate in finite dimensional spaces (see [72, 73]),

(b) Spagnolo’s G-convergence theory investigating the asymptotics
of families of solutions to (equi-uniformly) elliptic (and para-
bolic) PDEs (see [66, 67, 68]),

(c) Mosco’s convergence determining the limits of variational in-
equalities and characterizing the continuity of Fenchel conjugate
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in infinite dimensional spaces (see [57, 58] and the contribution
by Joly [45]),

(d) Marcellini’s G-convergence extending the notions by Spagnolo
and Mosco quoted above to the (nonlinear) convex setting (see
[49, 8]),

(e) Zolezzi’s variational convergence studying stability issues in
mathematical optimization (see [74]),

Despite some of the theories quoted above are more effective in spe-
cific problems, Γ-convergence has attracted the attention of many re-
searchers since its introduction and has found interesting application
in several fields: homogenization of composites, discrete-to-continuum
limits to validate continuum mechanical theories both in static and
evolutionary settings, dimension reduction problems in mechanics, ap-
proximation of variational models in image segmentation and in frac-
ture mechanics, obstacle problems for local and fractional operators
and many others. All these results show the flexibility of the theory
and its effectiveness to study families of variational problems and the
behaviour of the corresponding global minimizers.

The treatise [25] and the books [7], [11] and [9] are classical refer-
ences for this subject covering a wide variety of topics and providing
very detailed list of references. The aim of the present notes is much
more modest: we give to the readers only the essential tools to un-
derstand the analysis of the examples mentioned at the beginning of
this introduction, so that we survey only on the basic results of the
theory. Despite this, we complement the material in the standard ref-
erences quoted above by including some new theoretical insights, and
discussing some recent applications to static mechanical problems.

Let us also point out that we have confined the exposition to static
problems, we shall not cover the connections between Γ-convergence of
a sequence of functionals and the convergence of the solutions to the
corresponding evolution equations, for which we refer to the papers
[63], [65] and [22] for what limits of gradient-flows are concerned, to
[54] and [53] for limits of rate-independent systems, and to [52] for
limits of Hamiltonian systems.

An outline of the paper is as follows. In Section 2 the basics of
the abstract theory of Γ-convergence in metric spaces are worked out.
We shall not give full proofs of most of the results referring to the
books quoted above (giving precise references), but rather comple-
ment the classical material including new outcomes on asymptotic Γ-
development and the convergence of local minimizers.
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In Sections 3-5 we provide three examples of application of Γ-conver-
gence to the analysis of static mechanical models.

Section 3 deals with a classical problem in the theory of compos-
ites: the homogenization of equi-uniformly elliptic quadratic forms on
Sobolev spaces or equivalently the determination of the asymptotic be-
haviour of the solutions of the corresponding Euler-Lagrange elliptic
PDEs. We shall present only the statements of the abstract theory
without providing the proofs referring for them mainly to the books
[25, Chapter 13], [11, Chapter 3]. On the other hand, we shall discuss
how the analogous problem for non-variational PDEs, related to non-
self-adjoint operators, can be recasted into the variational framework
of Γ-convergence. Moreover, we shall also highlight an extension to
nonlinear elliptic problems and hint to some further generalizations.
Links with recent proposals for ‘dynamical’ versions of Γ-convergence
shall also be underlined.

The second example, discussed in Section 4, falls into an intensive
field of research: the rigorous mathematical, or better variational,
derivation of mechanical theories from nonlinear continuum models.
The research in this direction has found a renewed impulse in the last
years thanks to the geometric rigidity estimate by Friesecke, James
and Müller (see [41, 42] and [48] for an account of many results of this
kind and related references). In this presentation we shall only deal
with the variational derivation of linearized elasticity from finite elas-
ticity, following the work by Dal Maso, Negri and Percivale [27] and
the subsequent developments in [3].

The last example in Section 5 is related to the asymptotics of obsta-
cle problems for quadratic forms. This was one of the first topics in
which Γ-convergence theory was successfully applied in the late ’70’s.
Here, we shall consider the case of nonlocal energies, a setting that has
recently attracted the attention of many researchers.

We warn the reader that in this notes Γ-convergence analysis is ap-
plied mainly to problems involving quadratic forms, this is by no means
a limitation of the theory but only a matter of taste of the Author, es-
sentially adopted for presentation purposes. Finally, the bibliography
reported at the end of the paper is systematic for the topics exposed
here, and has no claim of completeness.

1.1. Notations. We recall briefly the main notations recurrently used
in the whole paper, quoting this subsection for reminders throughout
the text. Instead, specific symbols, of use only in some sections, shall
be indicated directly there.
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Inferior and superior limits of a real sequence (αj)j∈N are defined
respectively as

lim inf
j

αj := sup
k

inf
j≥k

αj, lim sup
j

αj := inf
k

sup
j≥k

αj.

Recall that they represent the smallest and biggest cluster point of
(αj)j∈N.

Metric, Banach, Hilbert spaces shall be all denoted generically by the
letter X, the precise role of the symbol shall be specified in the context
of use. In the former case, the related distance shall be indicated by d,
in the other two cases the norm by ‖ · ‖, and in the latter 〈·, ·〉 shall be
the corresponding scalar product. In addition, we shall use the same
symbol for the duality pairing between X and its dual space X∗. More
precisely, in the Hilbertian setting we shall often identify X and X∗ in
view of Riesz’s representation theorem.

Given a set A its characteristic function 1A is defined by 1A(x) = 1 if
x ∈ A and 0 otherwise; instead its indicator function χA by χA(x) = 0
if x ∈ A and +∞ otherwise.

The letter Ω shall always denote a bounded, smooth and connected
open set of an Euclidean space, denoted by Rn (or Rm), endowed with
the corresponding Lebesgue measure Ln (Lm), and Hausdorff measure
Hn−1 (Hm−1). The real line is simply denoted by R, the extended real
line, R ∪ {±∞}, by R.

With fixed p ∈ [1,+∞], we use standard notations for Lebesgue
spaces Lp(Ω,Rm) and Sobolev spaces W 1,p(Ω,Rm), referring mainly to
[14] for the needed (basic) prerequisites. If m = 1 we shall only write
Lp(Ω) and W 1,p(Ω).

We shall also consider Sobolev-Slobodeckij spacesW s,2(Ω), s ∈ (0, 1),
for which we refer to the notes [1] and to the book [71] as main sources
of references; the recent hitchhicker’s guide [36] provides a friendly in-
troduction.

2. Working out the basics

In this section we shall focus on the classical theory of Γ-convergence
developing the rudiments. We shall not deal neither with the most gen-
eral framework, having confined the exposition to metric spaces since
in that setting Γ-convergence can be checked sequentially (as it is well-
known for several other topological properties), nor with refined tools
such as the localization method (termed in literature Γ-convergence
theory) nor with the blow-up techniques for integral functionals.

Our choice is motivated both for the sake of conciseness and in view
of the applications in the following sections. It is evident that those
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aspects should not be neglected by an interested reader in order to gain
further insight on the theory, and to learn very useful technical tools.
We refer to the texts quoted in the Introduction for a comprehensive
exposition complemented with several examples.

On the other hand, we shall discuss some recent proposals to in-
clude in the theory the convergence of (stable) local minimizers and a
discussion of several aspects of the asymptotic Γ-development.

In what follows (X, d) will always denote a metric space.

2.1. Recalling Tonelli’s direct method. Modern Calculus of Vari-
ations is based essentially on the so called Tonelli’s direct method to
establish the existence of solutions to minimum problem under mild
assumptions. Before stating the main result we introduce necessary
definitions.

Definition 2.1. A function F : X → R is d-lower semicontinuous
provided

F (x) ≤ lim inf
j

F (xj) for all xj
d→ x.

F is called d-coercive on X if for all t > 0 the set {F ≤ t} is sequen-
tially compact.

F is called d-mildly coercive on X if there is a sequentially compact
subset K 6= ∅ such that infX F = infK F .

We are now ready to state the main result on which Tonelli’s direct
method is based.

Theorem 2.2 (Weierstrass’ theorem). Let F : X → R be a d-lower
semicontinuous and d-mildly coercive function such that infX F >
−∞, then F admits a minimizer on X.

Proof. The role of d-mild coercivity is to extract a converging subse-
quence from any minimizing sequence. More precisely, if (xj)j∈N is a
sequence such that limj F (xj) = infX F , by assumption there is no loss
in generality supposing that it belongs to a sequentially compact set
K as in Definition 2.1. Hence, we can extract a subsequence (xjk)k∈N
converging to some x̄ ∈ K. Finally, the d-lower semicontinuty of F
assures that

F (x̄) ≤ lim inf
k

F (xjk) = inf
X

F =⇒ F (x) = min
X

F .

�

Clearly, when studying a specific problem the main issue to follow the
procedure outlined above is to select a suitable metric d ensuring both
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lower semicontinuity and d-(mild) coercivity of the relevant function
F .

On one hand, d-coercivity is more easily fulfilled if the topology
induced by d is ‘poor’ of open sets, on the other hand d-lower semicon-
tinuity calls for ‘many’ open sets to have ‘few’ converging sequences to
test the required inequality. The balance of these two opposite needs
is the essential (and only) criterion to select the appropriate metric d
with which the space X has to be endowed.

Dealing with a generic function F : X → R it is extremely useful to
introduce its lower semicontinuous envelope or relaxation defined for
all x ∈ X as

F (x) = sup{G (x) : G d-lower semicontinuous, G ≤ F}.

By the very definition, F is the biggest d-lower semicontinuous func-
tion less than F , so that F = F if and only if F itself is d-lower
semicontinuous.

Since on metric spaces d-lower semicontinuity can be qualified se-
quentially, the relaxation of F can be characterized via the equality

F (x) = inf{lim inf
j

F (xj) : xj
d→ x}. (2.1)

A diagonal argument actually shows that the infimum on the right hand
side above is a minimum. Hence, formula (2.1) can be equivalently
expressed as

F (x) ≤ lim inf
j

F (xj) for every sequence xj
d→ x, (2.2)

F (x) ≥ lim sup
j

F (yj) for some sequence yj
d→ x. (2.3)

In particular, noting that F is d-coercive, provided F is d-coercive (see
[25, Proposition 7.7]), from the latter characterization and Theorem 2.2
we infer that

min
X

F = inf
X

F .

In conclusion, the relaxation of a function F is extremely useful to
analyze the behaviour of the minimizing sequences of F itself. More
precisely, if F is d-coercive the cluster points of the minimizing se-
quences of F are exactly the minimizers of F .

2.2. Basics of Γ-convergence. We start off with the definition build-
ing upon inequalities (2.2) and (2.3).

Definition 2.3. A sequence Fj : X → R Γ(d)-converges to F : X →
R, in short we write F = Γ(d)- limj Fj, if for all x ∈ X it holds
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(LB) Lower Bound inequality:

F (x) ≤ lim inf
j

Fj(xj) for every sequence xj
d→ x; (2.4)

(UB) Upper Bound inequality:

F (x) ≥ lim sup
j

Fj(yj) for some sequence yj
d→ x. (2.5)

The function F is uniquely determined by the two conditions (LB) and
(UB), and it is called the Γ(d)-limit of (Fj)j∈N.

In what follows, we shall not highlight the dependence on the metric
d of the Γ-limit if no confusion may arise. Clearly, different metrics
may give different asymptotic behaviours (see Remark 2.14 for more
details).

One of the most considerable issues of Definition 2.3 is that the Γ-
limit is selected via an optimization process with no a priori ansatz on
its form. Indeed, if on one hand inequality (2.4) requires the search of
an asymptotic local lower bound for the family of energies (Fj)j∈N, on
the other hand in (2.5) such a bound is optimized.

In particular, each sequence (yj)j∈N for which (2.5) holds is termed
a recovery sequence (for the relevant point x), in that satisfying both
inequalities (2.4) and (2.5) the limit energy computed in x is ‘recovered’
by the approximating ones computed on the converging points yj, that
is

F (x) = lim
j

Fj (yj) .

We work out next few elementary but nontrivial examples of Γ-
convergent sequences. Differences between Γ-limits and pointwise lim-
its will also be highlighted. We consider the most elementary setting
with ambient space X = R endowed with the Euclidean metric. Fur-
ther examples shall be provided at the end of the section (see Examples
2.21, 2.22 and 2.23).

Example 2.4. Suppose that (Fj)j∈N converges locally uniformly on R
to F , then Γ- limj Fj = F , where F denotes the relaxation of F .

Let us first check (LB) inequality: given x ∈ R and (xj)j∈R converg-
ing to x we have

Fj(xj) ≥ F (xj)− sup
y∈[x−1,x+1]

|Fj(y)−F (y)| (2.2)
=⇒ lim inf

j
Fj(xj) ≥ F (x).

Instead, to enforce (UB) inequality take any sequence (yj)j∈N converg-
ing to x and such that (F (yj))j∈N converges to F (x), then arguing as
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before

Fj(yj) ≤ F (yj)+ sup
y∈[x−1,x+1]

|Fj(y)−F (y)| (2.3)
=⇒ lim sup

j
Fj(yj) ≤ F (x).

Example 2.5. Let us now discuss Γ-limits of monotone sequences of
real functions Fj : R→ R, with pointwise limit denoted by F : R→ R.

We start with the monotone increasing case, i.e., Fj ≤ Fj+1 ≤ F ,
we claim that Γ- limj Fj = supj Fj. To check (LB) inequality, given
any point x and a sequence (xj)j∈N converging to it, note that for every
k ≤ j we have Fj(xj) ≥ Fk(xj), so that

lim inf
j

Fj(xj) ≥ lim inf
j

Fk(xj)
(2.2)
≥ Fk(x)⇒ lim inf

j
Fj(xj) ≥ sup

k
Fk(x).

For what (UB) inequality is concerned, with fixed a point x, for every
j ∈ N let xj be satisfying

|xj − x|+ |Fj(xj)−Fj(x)| ≤ 1

j
,

then (xj)j∈N converges to x, and

lim sup
j

Fj(xj) = lim sup
j

Fj(x) ≤ sup
j

Fj(x).

Instead, in the monotone decreasing case, i.e., Fj ≥ Fj+1 ≥ F , we
claim that Γ- limj Fj = F (cp. with (2.1)). Given any point x, for
every sequence (xj)j∈N converging to it we have

lim inf
j

Fj(xj) ≥ lim inf
j

F (xj)
(2.2)
≥ F (x),

so that (LB) inequality eventually follows. On the other hand, to check
(UB) inequality, fix a point x and let (xk)k∈N be satisfying equality
(2.3). For every k ∈ N, by pointwise convergence we find an increasing
sequence hk ↑ +∞ such that

|Fhk(xk)−F (xk)| ≤
1

k
.

By setting xj = xk if hk ≤ j < hk+1, the monotonicity of (Fj)j∈N yields

Fj(xj) = Fj(xk) ≤ Fhk(xk) for hk ≤ j < hk+1,

so that

lim sup
j

Fj(xj) = lim
k

Fhk(xk) = lim
k

F (xk)
(2.3)
= F (x).
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Example 2.6. Consider the sequence (Fj)j∈N, with Fj(x) = sin(jx),
for which it is well known that no pointwise limit exists. Instead, since
the period of Fj vanishes as j ↑ +∞, wild oscillations between −1 and
1 are produced in any neighbourhood of every point, so that the constant
−1 turns out to be the Γ-limit of (Fj)j∈N. More precisely, inequality
(LB) inequality is trivial, while to enforce (UB) inequality in a point x,
it is sufficient to take xj as the minimum point of Fj in the interval
[x, x+ 2π/j] for which Fj(xj) = −1.

Slightly modifying the sequence above we obtain a sequence neither
pointwise convergent nor Γ-convergent. Let Gj(x) = (−1)j(1 + Fj(x)),
then Gj has no Γ-limit since Γ- limj G2j = 0 while Γ- limj G2j+1 = −2.

Example 2.7. Consider the function2 G (x) = −xe−x1[0,+∞)(x), and
define Fj(x) = G (jx). Then, (Fj)j∈N converges pointwise to the con-
stant 0. On the other hand, noting that minR G = G (1), the Γ-limit is
given by F (x) = G (1)1{0}(x) since (Fj)j∈N converges uniformly to 0
on R \ (−δ, δ) for all δ > 0, and argminRFj = {1/j}.

The same construction performed in the preceding example provides
a sequence pointwise converging and not Γ-converging.

Elementary though non trivial features of the theory follow directly
from Definition 2.3, they are summarized in the next theorem (for the
proofs see [9, Paragraph 1.5] and [25, Chapter 7]).

Theorem 2.8. Let Fj, F : X → R with Γ- limj Fj = F , then
(i) Lower semicontinuity: F is d-lower semicontinuous on X;
(ii) Stability under continuous perturbations: if G : X → R is

continuous, then

Γ- lim
j

(Fj + G ) = F + G ;

(iii) Stability under relaxation: if Fj : X → R denotes the d-lower
semicontinuous envelope of Fj, then

Γ- lim
j

Gj = F

for all Gj : X → R with Fj ≤ Gj ≤ Fj.

Few remarks are in order. Item (ii) usually simplifies the calculation
of Γ-limits, since one can drop a large class of ineffective perturbations.

An interesting corollary of item (iii) is that Γ-convergence is not a
convergence induced by an underlying topology in the full generality of
Definition 2.3. This is clear if considering the constant sequence Fj =

2We recall that, the characteristic function of a set A is defined by 1A(x) = 1 if
x ∈ A and 0 otherwise.
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F for which the Γ-limit is given by the lower semicontinuos envelope of
F itself (cp. with (2.2), (2.3) in subsection 2.2). Instead, on the set of
lower semicontinuous functions Γ-convergence is induced by a topology,
and even more by a metric if restricting further to equicoercive lower
semicontinuous functions (see [25, Chapter 10]).

The lower semicontinuity of Γ-limits in item (i) is one of the many
variational features of the theory, that is tailor made to be operated in
the setting of Tonelli’s direct method as the result below shows clearly.

Definition 2.9. A family Fj : X → R is d-equi-coercive on X, if for
all t ∈ R {Fj ≤ t} ⊆ Kt for every j ∈ N, with Kt a sequentially
compact set.

The Fj’s are d-equi-mildly coercive on X if for some non-void se-
quentially compact set K ⊆ X

inf
X

Fj = inf
K

Fj for all j ∈ N.

Remark 2.10. It is well-known that (Fj)j∈N is d-equi-coercive on X
if and only if Fj(x) ≥ ψ(x) for some d-lower semicontinuous coercive
function ψ : X → R (see [25, Proposition 7.7]).

Theorem 2.11 (Convergence of global minimizers). Suppose that Fj :

X → R are d-equi-mildly coercive, if (Fj)j∈N Γ-converges to F , every
sequence (xj)j∈N of asymptotic minimizers, i.e.,

lim
j

(
Fj (xj)− inf

X
Fj

)
= 0,

is precompact and each cluster point x̄ minimizes F and

lim
j

(
inf
X

Fj

)
= F (x̄) = min

X
F . (2.6)

Proof. Let (xj)j∈N ⊆ K be asymptotically minimizing, equi-mild co-
ercivity yields that the sequence converges (up to a subsequence not
relabeled) to some x̄ ∈ K. Then, by (LB) inequality we find

F (x̄) ≤ lim inf
j

Fj(xj) = lim inf
j

inf
X

Fj.

In addition, with fixed any x ∈ X, consider a recovery sequence (yj)j∈N
for x. Hence, we find

F (x̄) ≤ lim sup
j

inf
X

Fj ≤ lim
j

Fj(yj) = F (x).

By collecting the previous inequalities we get

F (x̄) = min
X

F = lim
j

inf
X

Fj.

�
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The variational nature of Γ-convergence is now evident. Theorem
2.11 expresses the convergence of the minimum problems related to the
Fj’s to the corresponding one for F , and moreover the existence of
solutions to the latter problem is also guaranteed. Thus, Theorem 2.11
can be considered as a ‘sequential’ version of Theorem 2.2. Actually,
this link can be made more precise by appealing to the abstract defi-
nition of Γ-convergence (cp. with [30]). Thus, the same comments to
select a metric for the ambient space X under which the Γ-convergence
of (Fj)j∈N has to be investigated are pertinent. Two competing needs
have to be balanced in choosing the metric: on one hand a topology
with ‘few’ open sets ensures easily that any sequence of almost minimiz-
ers (xj)j∈N is d-precompact, on the other hand Γ-convergence is more
likely to occur provided the topology is ‘rich’ of open sets in order to
have ‘few’ converging sequences on which (LB) and (UB) inequalities
have to be tested.

Thus, the metric on X is one of the unknown of the problem under
study and has to be carefully selected relying upon the considerations
above.

There are two main ways in which Theorem 2.11 can be exploited
in applications: first when studying variational models in which a fam-
ily of functionals is given, representing for instance a physical energy
depending on some small scale parameter, often a more elementary
and tractable model is needed for theoretical or computational rea-
sons. Dealing with variational models finding the stable states of the
system is the main object of investigation. Hence, Theorem 2.11 gives
a first answer solving the case of global minimizers and providing an
‘effective’ model to which the original ones are asymptotically close to.

On the other way round, if dealing with a variational model in which
the relevant energy is difficult to be studied either directly or numeri-
cally, one can try to build up more elementary approximating models
in the variational sense provided by Γ-convergence and infer qualitative
properties of the minimizers of the problem of interest from those of
the approximating ones.

Eventually, we stress that global minimizers are only a subset of
the broader class of stable states which are central object of interest
in mechanical models. Hence, it is of some importance to infer the
asymptotic behaviour of sequences of those points from Γ-convergence
type arguments, say at least for the wider subclass of (strict) local
minimizers. This issue is highly nontrivial, a complete answer has not
been found, yet (see for instance [12],[43],[46]). We shall discuss about
this topic in more details in Section 2.5.
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2.3. Further properties. Several alternative characterizations of Γ-
convergence are available, new definitions are needed in order to intro-
duce them.

Definition 2.12. Given a sequence Fj : X → R define

Γ- lim inf
j

Fj(x) = inf{lim inf
j

Fj(xj) : xj
d→ x}, (2.7)

Γ- lim sup
j

Fj(x) = inf{lim sup
j

Fj(xj) : xj
d→ x}. (2.8)

Example 2.13. Let us consider the case of constant functions, i.e.
Fj(x) = αj for all x ∈ X. Then, for all x ∈ X, Γ- lim infj Fj(x) =
lim infj αj and Γ- lim supj Fj(x) = lim supj αj.

Remark 2.14. If d and d′ are two metrics on X with the topology
induced by d finer than that induced by d′, i.e. d-convergent sequences
in X are also d′-convergent, then

Γ(d′)- lim inf
j

Fj ≤ Γ(d)- lim inf
j

Fj, Γ(d′)- lim sup
j

Fj ≤ Γ(d)- lim inf
j

Fj.

A direct check shows that both Γ- lim infj Fj and Γ- lim supj Fj are
d-lower semicontinuous functions. With this remark at hand it is ele-
mentary to show the next result (see [9, Theorem 1.17] and [25, Propo-
sition 4.15]).

Theorem 2.15 (Equivalent definitions). The following conditions are
equivalent

(i) F = Γ- limj Fj;
(ii) F = Γ- lim infj Fj = Γ- lim supj Fj;
(iii) F satisfies inequality (LB) inequality, and for all x ∈ X and

δ > 0
F (x) + δ ≥ lim sup

j
Fj(yj) (2.9)

for some sequence yj
d→ x;

(iv) F satisfies inequality (LB) inequality, and (2.9) holds on a
dense set in X;

(v) for all x ∈ X

F (x) = sup
δ>0

lim inf
j

inf{Fj(y) : d(x, y) < δ}

= sup
δ>0

lim sup
j

inf{Fj(y) : d(x, y) < δ};

(vi) χepi(F ) = Γ- limj χepi(Fj) in the product metric of X ×R. Here,

epi(G ) = {(x, t) ∈ X × R : G (x) ≤ t},
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is the epigraph of G : X → R, and χE is the indicator function
of the set E, i.e., χE(x) = 0 if x ∈ E and +∞ if x /∈ E.

The last but one item, if properly reformulated in terms of neigh-
bourhoods, is the definition of Γ-convergence in the general setting of
a topological space. The last item above instead motivates the termi-
nology epi-convergence that is used in some literature, it is related to
Kuratowski set convergence (see for instance [7]).

Another characterization in terms of the convergence of Moreau-
Yosida approximations is given in [10, Section 1.4]. Here, we shall deal
only with (equi-coercive) convex functions on a reflexive Banach space,
for those a particularly neat characterization holds true.

Let us first discuss some topological properties of the theory. A very
useful feature is that Γ-convergence always occurs upon the extrac-
tion of subsequences provided separability of X is assumed (see [25,
Theorem 8.5]).

Proposition 2.16 (Compactness). If (X, d) is a separable metric space,
then any sequence (Fj)j∈N contains a Γ-convergent subsequence.

Combining the latter result with the following statement provides an
abstract criterion to check Γ-convergence (see [25, Proposition 8.3]).

Proposition 2.17 (Urysohn property). A sequence (Fj)j∈N Γ-converges
to some function F if and only if every subsequence (Fjk)k∈N contains
a further subsequence which Γ-converges to F .

In view of Propositions 2.16 and 2.17, we can characterize Γ-convergence
for (equi-coercive) convex functions by means of the convergence of lin-
early perturbed minimum problems following Marcellini [49] (see also
[8]).

Proposition 2.18. Let X be a (real) reflexive and separable Banach
space, denote by Cψ the class of convex and lower semicontinuous func-
tions F : X → (−∞,+∞] not identically +∞ (i.e. proper) and satis-
fying

ψ(x) ≤ F (x) for all x ∈ X, (2.10)
for a proper, convex and lower semicontinuous function ψ super linear
at infinity, i.e.

lim
‖x‖→+∞

ψ(x)

‖x‖
= +∞.

If (Fj)j∈N ⊂ Cψ then

F = Γ- lim
j

Fj ⇐⇒ lim
j

min
X
{Fj + G } = min

X
{F + G } (2.11)
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for all G : X → R linear and continuous, and the Γ-limit F belongs to
Cψ as well.

Before giving the proof it is convenient to rephrase (2.11) in terms
of the pointwise convergence of Fenchel conjugates. Recall that for a
proper convex function H : X → (−∞,+∞], the Fenchel conjugate is
the convex function H ∗ : X∗ → (−∞,+∞] given by

H ∗(z) := sup
X
{〈z, x〉 −H (x)},

where 〈·, ·〉 denotes the duality pairing in X∗ ×X. Note that
H ∗(−z) = − inf

X
{〈z, x〉+ H (x)},

thus if H ∈ Cψ the existence of a minimizer for the problem above is
guaranteed by the super linearity of ψ and it holds

H ∗(−z) = −min
X
{〈z, x〉+ H (x)} ≤ ψ∗(−z).

Then, clearly, (2.11) rewrites as
F = Γ- lim

j
Fj ⇐⇒ lim

j
F ∗
j (z) = F ∗(z) for all z ∈ X∗ (2.12)

Proof. Condition (2.10) and the super linearity of ψ imply the equico-
ercivity of (Fj + G )j∈N, so that the direct implication of the thesis
follows from property (ii) of Proposition 2.8 and Theorem 2.11.

To prove the opposite implication we fix a subsequence (Fjk)k∈N
and use Proposition 2.16 to extract a further subsequence (Fjkh

)h∈N
Γ-converging to some H lower semicontinuous and convex (see Propo-
sition 2.19 below for the latter property).

On one hand, by arguing as above, (F ∗
jkh

)h∈N converges pointwise
to H ∗, on the other hand by assumption (F ∗

jkh
)h∈N converges to F ∗,

then H ∗ = F ∗. In turn, from this, from the reflexivity of X, and from
the convexity and the lower semicontinuity of F , we infer equality
H = F . Hence, the Γ-convergence of the whole sequence (Fj)j∈N to
F follows from Proposition 2.17. �

Examples 2.4-2.6 shows that Γ-limits and pointwise limits are usually
unrelated. However, some pointwise properties are preserved along the
Γ-limit process (see [25, Chapter 11]).

Proposition 2.19. Let X be a Banach space. If (Fj)j∈N Γ-converges
to F , and if Fj is either convex or even or positively homogeneous of
degree α, then F is respectively convex, even, positively homogeneous
of degree α.

In addition, if X is a Hilbert space and each Fj is a quadratic form,
then F is a quadratic form as well.
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We remark that the natural setting for many applications is that of a
Banach space X endowed with the weak topology σ(X,X∗). For, norm
bounded sets are pre-compact in that topology, thus coercivity can be
ensured simply by imposing suitable growth conditions on the energy.
In that framework, a notion of sequential Γ-convergence one can be
introduced exactly according to Definition 2.3 simply testing (LB) and
(UB) inequalities on weakly convergent sequences. The drawback is
that in such a case many of the properties we have quoted so far no
longer satisfied, for instance the limit function is only sequentially weak
lower semicontinuous but not lower semicontinuous in general. Despite
this, the standard metric space setting is recovered in view of the en-
suing result (see [25, Proposition 8.7, Corollary 8.8, Proposition 8.10]).

Proposition 2.20. If X is a Banach space with separable dual X∗
there exists a metric d on X inducing on each norm bounded set the
topology σ(X,X∗).

In particular, let Fj : X → R for which there exists ψ : R→ R with
ψ(t) ↑ +∞ as t ↑ +∞, and Fj(x) ≥ ψ(‖x‖) for all j ∈ N, then

Γ(σ(X,X∗))- lim
j

Fj = Γ(d)- lim
j

Fj.

In what follows, given a Banach space X, Γ(X), Γ(w-X) shall denote
Γ-limits in the strong and weak topology of X, respectively.

Eventually, we provide some examples that will be of interest in the
subsequent sections and for which the result above is instrumental (see
Section 3).

Example 2.21. Consider the quadratic forms Fj : L2(Ω,Rm) →
[0,+∞), where Ω ⊆ Rn is a bounded open set, defined as

Fj(u) :=

ˆ
Ω

〈aj(x)u(x), u(x)〉 dx,

with aj ∈ L∞(Ω, Sym(m)) and satisfying α Idm ≤ aj(x) ≤ β Idm Ln
a.e. on Ω. Here, Sym(m) denotes the set of m×m symmetric matrices,
and Idm is the m×m identity matrix.

The growth assumptions on aj’s guarantee that (up to subsequences
not relabeled) (aj)j∈N and (a−1

j )j∈N converge weakly∗ in L∞(Ω, Sym(m))

to matrices a and b−1, respectively. It is then easy to check that the
pointwise limit and the Γ(L2)-limit of (Fj)j∈N is

F (u) :=

ˆ
Ω

〈a(x)u(x), u(x)〉 dx.
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Instead, we claim that the Γ(w-L2)-limit of (Fj)j∈N is given by

G (u) :=

ˆ
Ω

〈b(x)u(x), u(x)〉 dx.

Note that Proposition 2.20 applies thanks to the separability and reflex-
ivity of L2 and the assumptions on aj’s.

To give evidence to our claim, fix f ∈ L2(Ω,Rm) and consider the
perturbed functionals

Gj(u) := Fj(u)− 2

ˆ
Ω

〈f(x), u(x)〉 dx.

The asymptotic behaviour of the related minimizers wj is easily deter-
mined. For, by the Dirichlet principle wj = a−1

j f , and thus (wj)j∈N
converges weakly to b−1f . Supposing that Γ(w-L2) limj Fj exists (this
is always true up to subsequences thanks to Proposition 2.16), item (ii)
in Theorem 2.8 implies that

Γ(w-L2) lim
j

Gj = Γ(w-L2) lim
j

Fj − 2

ˆ
Ω

〈f(x), u(x)〉 dx.

In particular, for all f ∈ L2(Ω,Rm), the right hand side above is a
linearly perturbed quadratic form (cp. with Proposition 2.19) with min-
imizer b−1f . In conclusion, the quadratic form G identifies the Γ-limit
of (Fj)j∈N thanks to Propositions 2.17 and 2.18.

Alternatively, we prove the claim directly from the definition by check-
ing inequalities (UB) and (LB) inequalities. Fix u ∈ L2(Ω,Rm), for the
former a simple computation shows that a recovery sequence is given
by uj := a−1

j bu. For, (uj)j∈N converges to u weakly in L2(Ω,Rm), and
moreover

Fj(uj) =

ˆ
Ω

〈b(x)u(x), a−1
j (x)b(x)u(x)〉 dx, (2.13)

so that limj Fj(uj) = G (u). Furthermore, to prove (LB) inequality,
consider the bilinear forms related to Fj and G , given respectively by

Bj(v, w) :=

ˆ
Ω

〈aj(x)v(x), w(x)〉 dx, B(v, w) :=

ˆ
Ω

〈b(x)v(x), w(x)〉 dx.

Note that by the parallelogram law and the polarization identity we have

Fj(v) + Fj(uj) ≥ 2Bj(uj, v) = 2B(u, v).

In turn, from this we get for every sequence (vj)j∈N converging weakly
in L2(Ω,Rm) to u

lim inf
j

Fj(vj) ≥ lim
j

2B(u, vj)− lim
j

Fj(uj) = 2B(u, u)− G (u) = G (u).

(2.14)
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In the periodic setting the limits can be calculated explicitly. For, let
B ∈ L∞(Ω × Rn, Sym(m)), with B(x, ·) [0, 1]n-periodic for Ln a.e. in
Ω, and such that

α Idm ≤ B(x, y) Ln×n a.e. in Ω× Rn.

Symmetric matrices are then defined as

aj(y) :=

 
εj([y/εj ]+[0,1]n)

B

(
x,
y

εj

)
dx,

where [t] stands for the integer part of the real number t, and

a(y) :=

ˆ
[0,1]n

a(x, y) dy, b(y) :=

(ˆ
[0,1]n

a−1(x, y) dy

)−1

.

Under the quoted assumptions on B, one can show that (aj)j∈N, (a−1
j )j∈N

converge to a and b−1 weakly∗ L∞(Ω, Sym(m)), respectively (for a proof
see [52, Proposition 3.1]).

Example 2.22. We build upon Example 2.21 and show that a similar
result holds in the one-dimensional case for quadratic forms defined on
Sobolev spaces. A detailed study of this subject in any dimension shall
be outlined in Section 3.

We keep using the notation introduced in Example 2.21, restricting
the analysis to the one-dimensional case n = 1. Define H , Hj :
W 1,2((0, L); Rm)→ R respectively by

Hj(u) := Fj(u
′), and H (u) := G (u′).

We claim that Γ(w-W 1,2)- limj Hj = H on W 1,2((0, L); Rm). Indeed,
(LB) inequality follows directly from the analogous inequality for the
Fj’s. Instead, to show (UB) inequality for a given u inW 1,2((0, L); Rm),
it is sufficient to take the sequence

uj(x) := u(0) +

ˆ x

0

a−1
j (y)b(y)u′(y) dy,

a direct computation provides the conclusion.
Moreover, the same result is obtained if considering the strong L2

topology, having extended the functionals Hj to +∞ on L2\W 1,2. This
easily follows from Rellich-Kondrakov compact embedding theorem from
which the equi-coercivity of the family (Hj)j∈N is deduced.

Finally, note that the problem is compatible with the addition of
boundary conditions. For instance, if we consider the restrictions of
Hj to W 1,2

0 ((0, L); Rm) (still denoted by Hj), (LB) inequality is sat-
isfied all the more so, and for every function u a recovery sequence is
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given by

uj(x) :=

ˆ x

0

a−1
j (y)b(y)u′(y) dy − x

 L

0

a−1
j (y)b(y)u′(y) dy.

Example 2.23. We analyze the analogous problem studied in Exam-
ples 2.21 and 2.22 for nonlocal quadratic forms defined on fractional
Sobolev spaces. We shall prove that the answer is rather easy in any
dimension.

Let ∆ := {(x, y) ∈ Rn×Rn : x = y} be the diagonal set in Rn×Rn;
given measurable kernels Kj : Rn × Rn \∆→ [0,+∞) satisfying

α|x− y|−(n+2s) ≤ Kj(x, y) ≤ β|x− y|−(n+2s) (2.15)

for all admissible (x, y), for some 0 < α ≤ β and s ∈ (0, 1), define the
energies Kj : L2(Ω)→ [0,+∞] by

Kj(u) :=

ˆ
Ω×Ω

Kj(x, y)|u(x)− u(y)|2dxdy u ∈ W s,2(Ω),

+∞ otherwise. Here, W s,2(Ω) is the fractional Sobolev space of order
s (see Section 5 for more details) on the regular open set Ω ⊆ Rn.

With fixed δ > 0, let ∆δ := {(x, y) ∈ Ω × Ω : dist((x, y),∆) ≤ δ},
we claim that if Kj → K weak∗ L∞(Rn × Rn \ 4δ) for all δ > 0, then

Γ(L2)- lim
j

Kj(u) = K (u) :=

ˆ
Ω×Ω

K(x, y)|u(x)−u(y)|2dxdy u ∈ W s,2(Ω),

+∞ otherwise. Note that the convergence assumption on (Kj)j∈N is
always satisfied up to subsequences thanks to the growth conditions in
(2.15) and a diagonal argument.

In addition, the estimates in (2.15), together with the compact em-
bedding of W s,2(Ω) into L2(Ω) and Proposition 2.20, yield the same
Γ-convergence result with respect to the weak W s,2-topology.

To enforce inequality

Γ(L2)- lim inf
j

Kj(u) ≥ K (u),

first notice that given a sequence (uj)j∈N strongly converging in L2(Ω)
to some u with supj Kj(uj) < +∞, then actually u ∈ W s,2(Ω). In
addition, for all h ∈ N the truncations uhj := uj ∧ h ∨ (−h) converge
in L2(Ω) to uh := u ∧ h ∨ (−h), and being the energies decreasing by
truncations, we infer for all δ > 0 and h ∈ N

lim inf
j

Kj(uj) ≥ lim inf
j

ˆ
Ω×Ω\4δ

Kj(x, y)|uhj (x)− uhj (y)|2dxdy
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=

ˆ
Ω×Ω\4δ

K(x, y)|uh(x)− uh(y)|2dxdy,

where the last equality is a consequence of the convergences Kj → K
weak∗ L∞(Rn × Rn \ 4δ) and uhj → uh in L2(Ω). The conclusion then
follows by letting δ ↓ 0+ and h ↑ +∞ in the latter estimate thanks to
Lebesgue dominated convergence theorem.

Eventually, the estimate

Γ(L2)- lim sup
j

Kj(u) ≤ K (u)

follows easily by taking the constant sequence equal to the function u
itself if the latter is Lipschitz continuous. Indeed, denoting by L > 0
the Lipschitz constant of u, from (2.15) we infer for all j ∈ N

0 ≤ Kj(x, y)|u(x)− u(y)|2 ≤ βL2|x− y|−(n+2(s−1)).

Since the function on the right hand side above belongs to L1(Ω × Ω),
being s ∈ (0, 1), we deduce

lim
j

Kj(u) = K (u) (2.16)

by Lebesgue dominated convergence theorem. In general, to conclude
we use the lower semicontinuity of Γ- lim supj Kj and the continuity
of K , together with the density of Lipschitz functions in the strong
topology of W s,2(Ω). More precisely, being Ω a regular open set, we
can find a sequence (uk)k∈N of Lipschitz functions converging strongly
to u in W s,2(Ω), and infer

Γ(L2)- lim sup
j

Kj(u) ≤ lim inf
k

(
Γ(L2)- lim sup

j
Kj(uk)

)
(2.16)
= lim

k
K (uk) = K (u).

2.4. Asymptotic Γ-development. Theorem 2.11 together with the
upper bound inequality (UB) yield that every minimum point of the
Γ-limit is the limit point of an asymptotically minimizing sequence,
but in general it is not the limit of a sequence of minimum points. The
following simple example clarifies the stage.

Example 2.24. The sequence Fj(x) = x2/j Γ-converges to the con-
stant 0, thanks to local uniform convergence on R. On the other hand,
being argminRFj = {0} the only minimizer of the limit reached by those
of Fj’s is x = 0.

In particular, this shows that in principle only some among the min-
imizers of the Γ-limit are limits of the minimizers of the approximating
functions. The identification of those peculiar minima is particularly
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significant when analyzing static mechanical models obtained as vari-
ational limits of approximating ones.

A selection criterion designed expressly for this issue has been pro-
posed by Anzellotti and Baldo [5]. The underlying idea is to define a
development by Γ-convergence in such a way that it corresponds to a
Taylor formula for the minimum values of the Fj’s. Note that the zero
order approximation has already been identified in (2.6). We quote the
result of interest here referring to [5, Theorem 1.2] for a proof (see also
[9, Theorem 1.47]).

Theorem 2.25 (Asymptotic Γ-development). Let Fj, F : X → R
be such that Γ(d)- limj Fj = F , with Fj lower semicontinuous and
d-equicoercive on X.

Let αj ↓ 0+, and Gj : X → R be given by

Gj(x) :=
Fj(x)−minX F

αj
.

If d′ is a metric not weaker than d, the Gj’s are d′-equicoercive on
X and (Gj)j∈N Γ(d′)-converges to G , with G 6= +∞, then each se-
quence (xj)j∈N, with xj minimum point of Fj, d′-converges (up to sub-
sequences) to a minimum point of F and G , and in addition

min
X

Fj = min
X

F + αj min
X

G + o(αj) as j ↑ +∞. (2.17)

The function G is called a higher order Γ-limit of (Fj)j∈N, and
the notation Fj =Γ F + αjG is employed in literature to emphasize
that. We remark that the latter equality has the only meaning that
Γ- limj Fj = F and Γ- limj Gj = G , in a way that the expansion (2.17)
holds true. In addition, notice that the domain of G is a subset of the
set of minima of F , that is

G (x) ∈ R =⇒ F (x) = min
X

F .

In particular, the limits of minimizers of the Fj’s minimize both F
and G , in this way a selection criterion for the minimizers of F is
established.

Remark 2.26. The asymptotic Γ-development can be iterated to get a
better degree of accuracy in the expansion (2.17) and further pieces of
information on the limits of minimizers of the Fj’s. More precisely,
given vanishing sequences (α

(i)
j )j∈N, with α

(i)
j � α

(i−1)
j , and functionals

F (i) : X → R, 1 ≤ i ≤ k, equality

Fj =Γ F (0) + α
(1)
j F (1) + α

(2)
j F (2) + . . .+ α

(k)
j F (k)
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means that (Fj)j∈N Γ-converges to F (0) and that if

F (i)
j (x) :=

F (i−1)
j (x)−minX F (i−1)

α
(i)
j

,

then F (i) = Γ- limj F (i)
j . In particular, the Taylor expansion

min
X

Fj = min
X

F (0)+α
(1)
j min

X
F (1)+. . .+α

(k)
j min

X
F (k)+o(α

(k)
j ) as j ↑ +∞

is justified. Moreover, F (i)(x) ∈ R implies that x minimizes F (i−1),
so that if xj is a minimizer of Fj over X and x a cluster point of the
sequence (xj)j∈N, then x minimizes each one of the F (i)’s, 0 ≤ i ≤ k.

The most significant hypotheses to be satisfied to apply Theorem 2.25
are related to the identification of the metric d′ and to that of the scal-
ing αj not to get trivial limits. For what the second issue is concerned,
it is again an intrinsic feature of the problem under investigation and
so there is no a priori ansatz on it.

In this respect, note that the Γ-limit, H , of

Hj(x) :=
Fj(x)−minX F

βj

might be non-trivial for some intermediate scaling (βj)j∈N, i.e. αj �
βj � 1. Then, necessarily, minX H = 0, and the scale βj plays no role
in the minimum value expansion (2.17).

Remark 2.27. Let us emphasize that the procedure outlined in Theo-
rem 2.25 makes sense only for (local) minimum points. More precisely,
there is no sensible analogous development in the neighbourhood of any
point which is not a local minimizer of the zeroth order Γ-limit. In what
follows I shall resume the contents of a discussion with G. Dal Maso,
I. Fonseca and G. Leoni at CNA in Pittsburgh.

Keeping the notation introduced in Theorem 2.25, fix any positive,
vanishing and decreasing sequence (the latter condition is imposed only
for the sake of simplicity) (αj)j∈N and a point z in the domain of F .
Set by analogy

Gj(x) :=
Fj(x)−F (z)

αj
,

we shall prove that if z is not a local minimizer of F then

Γ- lim
j

Gj(z) = −∞. (2.18)

In passing, we note that Γ- limj Gj(x) ∈ {±∞}, if x 6= z, and that (LB)
inequality is trivially satisfied.
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Assume that z is not a local minimizer of F , then find a sequence
of points zk converging to z and such that F (zk) < F (z). By lower
semicontinuity of F , the positive sequence (F (z) −F (zk))k∈N is in-
finitesimal. For all j sufficiently big we can find kj ∈ N such that

F (zkj) ≤ F (z)− 2αj,

and consequently define a subsequence kj ↑ +∞.
For every j ∈ N, consider a recovery sequence (zhj )h∈N for zkj and

select mj ∈ N such that

Fh(z
h
j ) ≤ F (zkj) + αj and d(zhj , zkj) ≤ 1/j for all h ≥ mj.

From the choices above we infer

Fh(z
h
j )−F (z) ≤ F (zkj)−F (z) + αj ≤ −αj,

as well as
d(zhj , z) ≤ 1/j + d(zkj , z) if h ≥ mj.

Furthermore, take a subsequence hj ↑ +∞, hj ≥ mj, such that αj/αhj ↑
+∞ as j ↑ +∞. In conclusion, setting xj := z

hj
j , (xj)j∈N converges to

z and
Ghj(xj) ≤ −

αj
αhj

=⇒ lim
j

Ghj(xj) = −∞.

Finally, since the previous argument can be repeated for every extracted
subsequence (Gjn)n∈N of (Gj)j∈N, Urysohn property gives (UB) inequal-
ity, so that (2.18) follows at once.

The systematic use of Γ-development envisages some drawbacks that
shall be outlined below working out some examples. We refer to the
paper by Braides and Truskinovsky [13] for more in-depth insights
complemented with the discussion of several mechanical models and
exhaustive interpretations of the phenomena occurring.

First of all a trivial remark: there is no reason for minX Fj to be an
analytic function (even if the development is finite), so that even having
at disposal the asymptotic expansion of minX Fj at every order may
not provide an exact description of minX Fj itself. The next example
suggested in [6] clarifies the stage.

Example 2.28. Consider the functionals Fj : L2(−1, 1) → [0,+∞)
defined as

Fj(u) :=

ˆ 1

−1

(
|u|2 + ε2

j |u′|2
)
dx, u ∈ W 1,2(−1, 1), and u(−1) = u(1) = 1,
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+∞ otherwise. It is easy to infer that for all u ∈ L2(−1, 1)

Γ(L2)- lim
j

Fj(u) =: F (0)(u) =

ˆ 1

−1

|u|2dx,

being inequality (LB) inequality trivial, and inequality (UB) deduced
from the density of C∞c (−1, 1) functions in L2(−1, 1) in the usual met-
ric.

It is evident that the unique minimizer of F (0) is the null function;
moreover solving directly the Euler-Lagrange equation gives that the
minimizer of Fj is the function

uj(x) =
cosh(ε−1

j x)

cosh(ε−1
j )

.

Eventually, a direct calculation leads to

min
L2

Fj = Fj(uj) = εj
cosh(2ε−1

j )

cosh2(ε−1
j )

= 2εj + ωj as j ↑ +∞,

with ωj an infinitesimal such that ωj = o(εkj ) for all k ∈ N.

Let us now describe “locking” of minimizers and “chocking” of the
Γ-development according to the terminology introduced in [13].

The term “locking” refers to the fact that the domains of the higher-
order Γ-limits are subsets (ordered by inclusions) of the minimizers
of the zeroth order one, so that they are locked from the very first
step. In particular, when the class of minimizers is exhausted and
reduced to a singleton, the successive Γ-developments do not act as a
selection criterion, despite more and more precise pieces of information
are required for the determination of higher order Γ-limits. This is the
case envisaged in Example 2.28, we discuss a similar example below.

“Choking” of the Γ-development simply refers to the non-existence
of higher-order Γ-limits.

We work out two examples taken from [13].

Example 2.29. Consider Fj : W 1,2(0, 1)→ [0,+∞) defined as

Fj(u) :=

ˆ 1

0

(
|u′|2 + ε2

j |u|2
)
dx, if u(0) = 0, u(1) = 1

+∞ otherwise, then the Γ(L2)-limit of (Fj)j∈N is given by

F (u) :=

ˆ 1

0

|u′|2dx, if u(0) = 0, u(1) = 1
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+∞ otherwise. Jensen inequality yields that the unique minimizer of
F is the identity function. In turn, from this we infer that the first
relevant scaling is ε2

j . Indeed, setting

Gj(u) :=
Fj(u)−minW 1,2 F

ε2
j

then Gj(u) ≥
ˆ 1

0

|u|2dx, and it is then easy to conclude that (Gj)j∈N

Γ(L2)-converges to

G (u) :=

ˆ 1

0

|u|2dx if u(x) = x,

+∞ otherwise. Finally, we can compare u(x) = x with the minimizer
uj of Fj given by

uj(x) =
sinh(εjx)

sinh εj
= x+

ε2
j

6
(x3 − x) + o(ε2

j) as j ↑ +∞.

as follows by solving the Euler-Lagrange equations.

Example 2.30. We consider the setting of Example 2.22 in the periodic
one-dimensional case. In particular, let Fj : W 1,2(0, 1)→ [0,+∞] be

Fj(u) :=

ˆ 1

0

a

(
x

εj

)
|u′|2dx, u(0) = 0, u(1) = 1

+∞ otherwise, with a : R → R a 1-periodic function satisfying 0 <
α ≤ a(x) ≤ β L1 a.e.. Setting

1

a
=

ˆ 1

0

1

a(x)
dx, and

1

aj
=

ˆ 1

0

1

a(x/εj)
dx = εj

ˆ 1/εj

0

1

a(x)
dx,

from Example 2.22 we infer easily that

Γ(L2)- lim
j

Fj(u) =: F (u) = a

ˆ 1

0

|u′|2dx u(0) = 0, u(1) = 1

+∞ otherwise. Being the functionals Fj and F strictly convex, the
analysis of the corresponding Euler-Lagrange equations implies that

min
W 1,2

Fj −min
W 1,2

F = aj − a = a aj εj

ˆ 1/εj

[1/εj ]

(
1

a
− 1

a(x)

)
dx. (2.19)

The last equality is obtained by the periodicity of a(·) through a change
of variable. Thus, the first relevant scaling is εj, and since the limiting
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behaviour of

1

εj
(min
L2

Fj −min
L2

F ) = a aj

ˆ 1/εj

[1/εj ]

(
1

a
− 1

a(x)

)
dx

depends on the sequence (εj)j∈N, higher order Γ-limits do not exist in
general, and formula (2.17) cannot be improved besides the zeroth order
expansion.

The issue is even more subtle (and interesting for what the analy-
sis of models is concerned) in case parametrized families of functionals
are taken into account, i.e. (F λ

j )j∈N, where λ is a secondary param-
eter related to some continuous perturbation which do not alter Γ-
convergence. For instance, in the analysis of variational models for
mechanical systems, λ either can be an imposed displacement on the
boundary of the domain or can represent the geometry of the domain
itself (such as the length of a bar), or can model distributed forces or
can be used to fix volume fractions.

Even assuming that (F λ
j )j∈N Γ-converges to some F λ for all λ, only

the pointwise convergence of the minimum functions λ→ minX F λ
j to

λ→ minX F λ can be inferred. Uniform convergence, or better contin-
uous convergence, that is limj minX F

λj
j = minX F λ for all sequences

λj → λ0, is not guaranteed a priori, so that for a certain parameter
λ0 the families (minX F

λj
j )j∈N might have distinct limits for different

sequences λj → λ0. In such a case, we call λ0 a singular point for the
Γ-development.

This phenomenon is particularly interesting when studying physical
models for which the Γ-limit represents only an approximation, the
true model being related to F λ

j for j big but finite. In such a case, if
λ0 is a singular point, the Taylor expansion obtained by computing the
Γ-limit at fixed λ, that is

min
X

F λ
j = min

X
F λ + ωλj , (2.20)

with ωλj infinitesimal as j ↑ +∞, is not accurate to describe the be-
haviour of minimum problems. One reason being that the left hand
side above is a continuous function of λ at λ0, while the right hand side
is not. In addition, the quantity

lim sup
λ→λ0

|min
X

F λ
j −min

X
F λ|

might not be infinitesimal as j ↑ +∞ contrary to formula (2.20) com-
puted for λ = λ0 (see Example 2.31 below).
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Non-uniformity phenomena at singular points λ0 are associated to
non-uniqueness of the Γ-development at order zero for families (F

λj
j )j∈N

depending on the sequence (λj)j∈N converging to λ0. Hence, a “table” of
all the possible Γ-limits of (F

λj
j )j∈N is necessary in order to bookkeep

the behaviours close to singular points.
Clearly, analogous comments can be repeated for higher order devel-

opments.
We discuss non-uniformity in the ensuing example.

Example 2.31. Let λ ≥ 0, and consider the one-dimensional homog-
enization problem related to F λ

j : W 1,2(0, 1)→ [0,+∞] defined as

F λ
j (u) :=

ˆ 1

0

a

(
λx

εj

)
|u′|2dx if u(0) = 0, u(1) = 1

+∞ otherwise, with a(·) is a continuous 1-periodic function satisfying
0 < α ≤ a(x) ≤ β for all x ∈ R. By means of Example 2.22 the
corresponding Γ(L2)-limit is given, for λ > 0, by

F λ(u) := a

ˆ 1

0

|u′|2dx if u(0) = 0, u(1) = 1

+∞ otherwise, where a is defined in Example 2.30 above, and by

F 0(u) := a(0)

ˆ 1

0

|u′|2dx if u(0) = 0, u(1) = 1

+∞ otherwise.
In particular, arguing as in in Example 2.30 we infer that minW 1,2 F λ =

a and minW 1,2 F λ
j = aλj for λ > 0, with

1

aλj
=

ˆ 1

0

1

a(λx/εj)
dx→ 1

a(0)
as λ→ 0+.

In conclusion, the function λ→ minW 1,2 F λ is not right continuous at
λ = 0, being

lim
λ→0+

min
W 1,2

F λ = a 6= a(0) = min
W 1,2

F 0,

and
lim
λ→0+

|min
W 1,2

F λ
j −min

W 1,2
F λ| = |a(0)− a| > 0.

To fill out the table of Γ-limits, note that for any infinitesimal se-
quence (λj)j∈N two possibilities occur when studying the asymptotics
of (F

λj
j )j∈N: either λj = O(εj) or εj = o(λj) as j ↑ +∞. We have
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(i) λj = O(εj): if λj/εj → k ∈ [0,+∞), then by continuity of a(·)
we conclude

Γ(L2)- lim
j

F
λj
j (u) :=

ˆ 1

0

a(kx)|u′|2dx if u(0) = 0, u(1) = 1

+∞ otherwise,
(ii) εj = o(λj): Example 2.22 gives

Γ(L2)- lim
j

F
λj
j (u) := a

ˆ 1

0

|u′|2dx if u(0) = 0, u(1) = 1

+∞ otherwise.
Instead, for every λ > 0 we have that the Γ-limit is always as in item
(ii) above.

Eventually, thanks to Example 2.30 we infer that all λ > 0 are sin-
gular points at scale εj.

A nontrivial application of the Γ-development shall be provided in
Section 4.

2.5. Convergence of local minimizers. The discussion in the pre-
vious sections highlights that (strict) local minimality is a property
not preserved in the Γ-limit process. More precisely, given (Fj)j∈N Γ-
converging to F , simple counterexamples show that the following two
issues cannot hold true in general:

(A) if xj (asymptotically) locally minimize Fj and (xj)j∈N converges
to x, then x locally minimize F . For instance, the energies
Fj(x) = x+sin(jx) Γ-converge to F (x) = x−1, by Example 2.6
and Theorem 2.8, that has no local minima though each point
is approximated by local minimizers of Fj;

(B) if x locally minimizes F , then there exists (xj)j∈N converging
to x with xj asymptotically locally minimizing Fj, provided,
of course, the Fj’s are equicoercive (cp. with Example 2.24 in
subsection 2.4).

For what the latter item is concerned, we have already analyzed the
corresponding case for global minimizers in Section 2.4. The issue in
this case is that the Γ-limit might have several (local) minimizers unre-
lated to (local) minimizers of the approximating energies. Strict local
minimizers deserve a separate discussion since they can be regarded as
strict global ones by restricting the analysis to a suitable neighbour-
hood of the relevant point (cp. with [46] for applications). Hence, for
those points item (B) is actually fulfilled thanks to Theorem 2.11. In
addition, the discussion of subsection 2.4 is appropriate.
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On the contrary, the main reason for the failure of the validity of
the former item above is the presence of many oscillations in the ap-
proximating energy landscapes which are responsible for the existence
of many local minimizers in principle unrelated to local minimizers of
the limit. This phenomenon is more difficult to be handled as we shall
discuss in what follows.

A possible clue to avoid such degenerate behaviours is to choose
‘qualified’ local minima and look for an intermediate notion between
strict local minimality and local minimality stable under Γ-convergence
(see subsection 3.4 for a different approach). Recently, Braides and
Larsen [12] have proposed to select local minima according to an ap-
propriate notion of stability.

Definition 2.32. Let F : X → [0,+∞] and ε > 0, a point x̄ is ε-stable
for F if for every ϕ ∈ C0([0, 1], X) with ϕ(0) = x̄ and F (ϕ(1)) <
F (x̄) we have

sup
0≤s<t≤1

(
F (ϕ(t))−F (ϕ(s))

)
≥ ε. (2.21)

A point x̄ is stable for F if it is ε-stable for some ε > 0.

The basic idea behind the notion above is that lower energy states
are accessible for an ε-stable point only if crossing an energy barrier of
height ε.

Simple examples show that in general neither local minimizers are
ε-stable, let for instance F (x) = ((x − 1) ∨ 0)2 for x ≥ 0, F (x) =
−F (−x) if x < 0 and x̄ = 0; nor ε-stable points are necessarily local
minimizers, let for instance

F (x) =

{
0 x = 0

sin2 (1/x)− x2 x 6= 0,
(2.22)

then x̄ = 0 is not a local minimizer but it is 1-stable.
Instead, strict local minimizers are stable in case the relevant func-

tion enjoys some natural requirements.

Proposition 2.33. Let x̄ be a strict local minimizer of a d-coercive
and d-lower semicontinuous function F : X → R, then x̄ is stable.

Proof. Assume that F (x̄) < F (x) for every point x ∈ Br(x̄) \ {x̄},
for some radius r > 0, then ε = inf∂Br(x̄) F − F (x̄) > 0 thanks to
Theorem 2.2. We claim that x̄ is ε-stable. Suppose not, then a path
ϕ ∈ C0([0, 1], X) exists with ϕ(0) = x̄, F (ϕ(1)) < F (x̄) and

sup
0≤s<t≤1

(
F (ϕ(t))−F (ϕ(s))

)
< ε.
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In particular, from this we infer F (ϕ(t)) < F (x̄) + ε for all t ∈ [0, 1],
so that ϕ(t) ∈ Br(x̄) for all t ∈ [0, 1]. Indeed, ϕ(0) = x̄ and ϕ([0, 1])
is a connected set (being ϕ continuous) with values into X \ ∂Br(x̄).
Hence, ϕ(1) ∈ Br(x̄) and F (ϕ(1)) < F (x̄), a contradiction. �

The first naive attempt to couple stability with Γ-convergence is
contained in the following definition.

Definition 2.34. (Fj)j∈N Γ-converges stably to F if
(i) (Fj)j∈N Γ-converges to F ;
(ii) if (xj)j∈N is converging to x, xj an ε-stable local minimizer of

Fj for some ε > 0 and for all j big enough, then x is an ε-stable
local minimizer of F ;

(iii) if x is a strict local minimizer for F , there exist ε > 0 and
(xj)j∈N converging to x, with xj an ε-stable local minimizer of
Fj for all j big enough.

Remark 2.35. If F is a constant function and (Fj)j∈N Γ-converges
to F , then actually (Fj)j∈N Γ-converges stably to F .

We warn the reader that we have slightly departed from the termi-
nology used in [12], there condition (ii) above is substituted by the
weaker requirement

(ii′) if (xj)j∈N is converging to x, xj an ε-stable point for Fj for
some ε > 0 and for all j big enough, then x is an ε-stable point
for F .

Item (iii) is naturally formulated for strict local minima in view of the
discussion in subsection 2.4. It is guaranteed by mild assumptions on
the approximating sequence following an argument very similar to that
exploited in Proposition 2.33. Proposition 2.36 below can be compared
with [46, Theorem 4.1] in which, given a strict local minimizer of the Γ-
limit, the existence of local minimizers of the approximating functions
converging to such a point was established.

Proposition 2.36. Let Fj : X → R be d-lower semicontinuous func-
tions, with (Fj)j∈N d-equicoercive and Γ-converging to some F .

If x̄ is a strict local minimizer of F , then there exist ε > 0 and
(xj)j∈N converging to x̄, with xj an ε-stable local minimizer of Fj for
all j big enough.

Proof. Assume that F (x̄) < F (x) for every point x ∈ Br(x̄) \ {x̄}, for
some radius r > 0, then 2ε = inf∂Br(x̄) F −F (x̄) > 0. We claim that
xj ∈ argminBr(x̄)Fj is ε-stable for j big enough (the existence of xj is
ensured by the d-coercivity hypothesis on Fj).
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Let us first show that (xj)j∈N d-converges to x̄. To this aim consider
(yj)j∈N a recovery sequence for F (x̄), then

F (x̄) = lim
j

Fj(yj) ≥ lim sup
j

Fj(xj).

On the other hand, by d-equicoercivity there exists a subsequence
(xjk)k∈N converging to some x ∈ Br(x̄), so that

F (x) ≤ lim inf
k

Fjk(xjk) ≤ lim
j

Fj(yj) = F (x̄).

By strict minimality x̄ = x, and then by Urysohn property the whole
sequence (xj)j∈N converges to x.

Therefore, since inf∂Br(x̄) Fj −Fj(xj)→ inf∂Br(x̄) F −F (x̄) thanks
to Theorem 2.11, we infer inf∂Br(x̄) Fj −Fj(xj) > ε for j sufficiently
big. Then, if xj was not ε-stable for Fj there would be paths ϕj ∈
C0([0, 1], X) with ϕj(0) = xj, Fj(ϕj(1)) < Fj(xj) and

sup
0≤s<t≤1

(
Fj(ϕj(t))−Fj(ϕj(s))

)
< ε.

Hence, Fj(ϕj(t)) < Fj(xj) + ε, and thus by continuity ϕj(t) ∈ Br(x̄)
for all t ∈ [0, 1]. In conclusion, ϕj(1) ∈ Br(x̄) and Fj(ϕj(1)) < Fj(xj),
a contradiction. �

The main drawbacks of Definition 2.34 pertain item (ii) there, and
can be highlighted when comparing it to the basic properties of Γ-
convergence (see Theorem 2.8):

(i) given F d-lower semicontinuous, the constant sequence Fj =
F in general does not Γ-converge stably to F itself. Consider
for instance

F (x) =

{
cos(1/x) x > 0

x− 1 x ≤ 0,
(2.23)

then xj = (πj)−1 are 2-stable local minimizers, but x̄ = 0 is nei-
ther stable nor a local minimizer (see also (2.22) for an example
of locally minimizing 1-stable points converging to a 1-stable
point that is not a local minimizer);

(ii) Fj(x) = sin(jx) Γ-converge stably to F (x) = −1 (cp. with Ex-
ample 2.6 and Remark 2.35). Despite this, Gj(x) = Fj(x) + x2

Γ-converge to −1 +x2, but not stably since each point different
from x̄ = 0 is the limit of strict local minimizers of the Gj’s
though unstable and not locally minimizing.

The first topic is analogous to the fact that a constant sequence Fj =
F does not Γ-converge to F itself, unless F is d-lower semicontinuous.
Instead, the second counterexample shows that stable Γ-convergence is
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not preserved for the addition of (d-coercive) continuous perturbations
contrary to Γ-convergence.

More stringent requirements than those in Definition 2.34 are intro-
duced below.

Definition 2.37. (Fj)j∈N Γ-converges strongly-stably to F if
(i) F and each Fj are d-lower semicontinuous;
(ii) each stable point for F is a local minimizer;
(iii) (Fj)j∈N Γ-converges stably to F ;
(iv) if ϕ ∈ C0([0, 1], X) with ϕ(0) = x̄ and (xj)j∈N converges to x̄,

then there exist paths ϕj, ψj ∈ C0([0, 1], X), with ψj(0) = xj,
ϕj(0) = ψj(1), and a partition 0 = τ j1 < τ j2 < . . . < τ jnj = 1 of
[0, 1] with limj maxi |τ ji+1 − τ

j
i | = 0, such that

lim
j

sup
0≤t1<t2≤1

(
Fj(ψj(t2))−Fj(ψj(t1))

)
= 0, (2.24)

lim
j

sup
t∈[0,1]

dist(ϕj(t), ϕ(t)) = 0, (2.25)

lim
j

max
i

∣∣Fj(ϕj(τ
j
i ))−F (ϕ(τ ji ))

∣∣ = 0, (2.26)

and for some positive infinitesimal βj it holds for all i ∈ {1, . . . , nj−
1}.

sup
t,s∈[τ ji ,τ

j
i+1]

|Fj(ϕj(t))−Fj(ϕj(s))| ≤ βj+
∣∣Fj(ϕj(τ

j
i+1))−Fj(ϕj(τ

j
i ))
∣∣ .

(2.27)

Few remarks are in order: first, properties in items (i) and (ii) iden-
tify the class of functions of interest as to rule out examples as those in
(2.22) and (2.23). For what item (iv) is concerned, in view of (2.24),
Fj is almost decreasing (and it might be discontinuous) along ψj (the
latter remark is important for applications in fracture mechanics as in
[47]); on the points of the partition τ ji the Fj-energy of ϕj is close
to the F -energy of ϕ by (2.26) (uniformly in i). Note that the paths
ϕj are uniformly close to ϕ thanks to (2.25). In (2.27) the oscillation
of Fj along ϕj on each interval of the partition is controlled only in
terms of the oscillation at the end-points up to an infinitesimal error.
Hence, by combining (2.27) with (2.26) we get that for some positive
infinitesimal δj and for all i ∈ {1, . . . , j − 1} it holds

sup
t,s∈[τ ji ,τ

j
i+1]

|Fj(ϕj(t))−Fj(ϕj(s))| ≤ δj +
∣∣F (ϕ(τ ji+1))−F (ϕ(τ ji ))

∣∣ .
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Note also that (2.27) can be equivalently formulated as

Fj(ϕj(τ
j
i+1))∧Fj(ϕj(τ

j
i ))−βj ≤ Fj(ϕj(t)) ≤ Fj(ϕj(τ

j
i+1))∨Fj(ϕj(τ

j
i ))+βj.

(2.28)
Finally, the path ψj is needed to link the path ϕj, for which the

conditions above are satisfied, to the point of interest xj (recall that
ψj(0) = xj and ψj(1) = ϕj(0)).

All in all, the conditions in item (iv) ensure that if the path ϕ is an
‘ε-slide’ for F between ϕ(0) and ϕ(1) (according to the terminology in
[47]), i.e.

F (ϕ(1)) < F (ϕ(0)) and sup
0≤s<t≤1

(F (ϕ(t))−F (ϕ(s))) < ε,

then one can find close to ϕ an (ε− δ)-slide for Fj between ϕj(0) and
ϕj(1) for j big enough and δ ∈ (0, ε) (cp. with the proof of (2.29) in
Proposition 2.38 below).

Let us now prove that strong-stable Γ-convergence enforces some
stability with respect to the addition of (suitable) continuous pertur-
bations.

Proposition 2.38. Suppose (Fj)j∈N Γ-converges strongly-stably to F .
Then, for all continuous perturbations G such that (Fj + G )j∈N is d-
equicoercive, (Fj + G )j∈N satisfies (i) and (iii) in Definition 2.34 and
item (ii′) right after.

Proof. Items (i) and (iii) in Definition 2.34 are satisfied thanks to The-
orem 2.8 and Proposition 2.36, respectively. To conclude let (xj)j∈N be
converging to x̄, with xj ε-stable for Fj + G for all j big enough, then
in particular (ε − δ)-stable for all δ ∈ (0, ε). We shall show that x̄ is
(ε− δ)-stable for those δ.

Suppose towards contradiction that x̄ is un-(ε − δ)-stable for some
δ, i.e. we can find ϕ ∈ C0([0, 1], X) with ϕ(0) = x̄, (F + G )(ϕ(1)) <
(F + G )(x̄) and

sup
0≤s<t≤1

(
(F + G )(ϕ(t))− (F + G )(ϕ(s))

)
< ε− δ.

Choose ϕj and ψj as in item (iv) of Definition 2.37, and set φj(t) =
ψj(2t) for t ∈ [0, 1/2], φj(t) = ϕj(2t− 1) for t ∈ [1/2, 1]. We claim that
items (i)-(iii) above, the continuity of G and elementary computations
give for j big enough

(Fj + G )(φj(t2))− (Fj + G )(φj(t1)) ≤ ε− δ + o(1) (2.29)
for all t1, t2 ∈ [0, 1], with t1 < t2, and moreover
(Fj+G )(φj(1))−(Fj+G )(φj(0)) ≤ (F +G )(ϕ(1))−(F +G )(x̄)+o(1).

(2.30)
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Given this for granted, xj is not ε-stable for Fj + G for j sufficiently
large, a contradiction.

Let us now prove (2.29). It is sufficient to show that

Fj(φj(t2))−Fj(φj(t1)) ≤ F (ϕ(τ jk))−F (ϕ(τ ji )) + o(1), (2.31)

for some τ ji < τ jk , thanks to condition (2.25), limj maxi |τ ji+1 − τ
j
i | = 0

and the continuity of G .
First, choose t1, t2 ∈ [0, 1/2], then by (2.24) we get

Fj(φj(t2))−Fj(φj(t1)) = Fj(ψj(2t2))−Fj(ψj(2t1)) ≤ o(1).

If, instead, t1, t2 ∈ [1/2, 1] then by (2.26) and (2.27)

Fj(φj(t2))−Fj(φj(t1)) = Fj(ϕj(2t2 − 1))−Fj(ϕj(2t1 − 1))

≤ F (ϕ(τ jk))−F (ϕ(τ ji )) + o(1),

for some τ ji < τ jk . Finally, let 0 < t1 < 1/2 < t2, then
Fj(φj(t2))−Fj(φj(t1)) = Fj(ϕj(2t2 − 1))−Fj(ψj(2t1)).

To estimate the last terms note that by (2.26) and (2.27), if (2t2−1) ∈
[τ ji , τ

j
i+1], we have

Fj(ϕj(2t2 − 1)) ≤ Fj(ϕj(τ
j
i )) ∨Fj(ϕj(τ

j
i+1)) + o(1)

≤ F (ϕ(τ ji )) ∨F (ϕ(τ ji+1)) + o(1),

while
Fj(ψj(2t1)) ≥ Fj(ψj(1)) + o(1) = Fj(ϕj(0)) + o(1) ≥ F (ϕ(0)) + o(1).

In conclusion, (2.31) holds in this case as well. Similarly, one can prove
(2.30). �

Remark 2.39. It is evident that if the sequence (Fj)j∈N is equicoer-
cive itself, then the conclusions of Proposition 2.38 still hold substitut-
ing the strong-stable Γ-convergence assumption with (i), (ii), (iv) in
Definition 2.37 together with standard Γ-convergence. For, stable Γ-
convergence in item (iii) of Definition 2.37 is a consequence of Propo-
sition 2.36 and of the argument exploited in Proposition 2.38 to prove
(ε− δ)-stability.
Remark 2.40. Let us now show by an example that, in general, strong-
stable Γ-convergence of (Fj +G )j∈N to F +G fails since condition (ii)
in Definition 2.34 is violated. We slightly modify example (2.22) in
order to gain coercivity.

Let F (x) = sin2(1/x) for x 6= 0 and F (0) = 0, note that each local
minimizer of F it is actually a global one. Then, clearly, the constant
sequence equal to F Γ-converges strongly-stably to F itself.
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Despite this, setting G (x) = (1− x2)2− 1, F + G is coercive and do
not Γ-converge stably to itself. For, the origin is not a local minimizer
of F +G , though it is 1-stable and limit of local minimizers of F +G .

Eventually, we end this section by pointing out that non-trivial ex-
amples of strong-stable convergence are discussed in the original paper
[12].

3. G-convergence

Given a bounded open set Ω of Rn we denote byM(Ω, α, β) the set
of n× n symmetric matrix fields B with Borel measurable coefficients
satisfying

αIdn ≤ B(x) ≤ βIdn for Ln a.e. x ∈ Ω, (3.1)
where Idn is the n × n identity matrix. Let B ∈ M(Ω, α, β) and
f ∈ H−1(Ω), then consider the variational problem

−div(B∇w) = f Ln a.e. Ω, with w ∈ W 1,2
0 (Ω), (3.2)

for which Dirichlet principle supplies a solution (see [14, Theorem V.6]).
In several applied fields it is often interesting to analyze parameter

depending problems as that above with (Bj)j∈N ⊂ M(Ω, α, β). This
happens when looking for physical properties of multi-phase media,
for instance mixing periodically two different materials, in this case
Bj(x) = a(x/εj) Idn, a : Rn → {α, β} 1-periodic, 0 < α < β, and
εj > 0. Thermal or electrical conductivities, constitutive relations and
many others, are prominent examples all obeying to PDEs as that in
(3.2). In a sample much bigger than the separate components, sev-
eral physical properties of the microscopically heterogeneous medium
(i.e. εj fixed) behave macroscopically like those of a homogeneous one
(i.e. εj ↓ 0 as j ↑ +∞) which then furnishes a convenient approxima-
tion of the real one for (numerical) analysis purposes. Mathematically,
we are led to determine the asymptotic behaviour as j ↑ +∞ of the
solutions, uj, of families of problems as those in (3.2) related to Bj.
Note that thanks to (3.1) the sequence (uj)j∈N converges weakly in
W 1,2 to some u ∈ W 1,2

0 (Ω) (up to subsequences not relabeled in what
follows). Thus, the issue is to understand whether u solves a similar
problem or not, and in case it does, the form of the matrix B in the
latter. Clearly, it would be desirable to accomplish this task without
requiring restrictive convergence hypotheses on (Bj)j∈N, such as strong
convergence in L1

loc(Ω,Rn×n), that are not ensured by the compactness
properties of the problem itself. Indeed, the natural convergences for
(Bj)j∈N and (uj)j∈N following from the ellipticity bounds are weak∗
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L∞(Ω,Rn×n) and weak W 1,2(Ω), respectively. Note also that the se-
quence (Bj∇uj)j∈N has no obvious convergence properties a priori.

To solve this problem, at least in an abstract fashion, necessary pre-
liminaries are in order. We quote the needed results without going
into the details being well-established in literature (see for instance
[25, Chapter 12]).

3.1. Quadratic forms and linear operators. The functional ana-
lytic setting of interest here is that of positive quadratic forms and
linear operators on a separable (real) Hilbert space X endowed with a
norm ‖·‖ induced by a scalar product 〈·, ·〉. In what follows we identify
X with its dual space X∗.

Definition 3.1. F : X → [0,+∞] is a quadratic form if there exist a
linear subspace Y of X and a bilinear symmetric form B : Y × Y → R
such that

F (x) =

{
B(x, x) x ∈ Y
+∞ x 6= Y

The domain of F is the linear subspace DF = {x ∈ X : F (x) <
+∞}, and the bilinear form associated with F is B|DF×DF

.
A useful algebraic characterization of quadratic forms is contained

in the statement below (cp. with [25, Proposition 11.9]).

Proposition 3.2. F : X → [0,+∞] is a quadratic form if and only if
(i) F (tx) ≤ t2F (x) for all x ∈ X and t > 0;
(ii) F (x+ y) + F (x− y) ≤ 2F (x) + 2F (y) for all x, y ∈ X.

Note that any quadratic form is necessarily convex, so that lower
semicontinuity can be intended with respect to either the strong or
weak topology indistinctly being the two properties equivalent in that
case (see for instance [25, Proposition 1.18]).

In view of this last remark, of the proposition just stated and of
Proposition 2.19, we infer the ensuing closure property of quadratic
forms.

Corollary 3.3. The class of lower semicontinuous quadratic forms is
closed under Γ-convergence.

Next, we introduce linear operators related to a quadratic form F .
To this aim fix x ∈ DF we look for the representation

B(x, z) = 〈y, z〉 for all z ∈ DF , for some y ∈ DF (3.3)

and consider the linear subspace DA = {x ∈ DF : (3.3) holds}. Define
the linear operator A : DA → DF as Ax = y for x ∈ DA. Note that,
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since DF is dense in DF , the uniqueness of y is guaranteed. It is easy
to infer that A is a (not necessarily bounded) positive and symmetric
operator, that is respectively

〈Ax, x〉 ≥ 0 , and 〈Ax, z〉 = 〈x,Az〉 for all x, z ∈ DA.

The operator A can be characterized variationally by using a ‘partial’
version of the Dirichlet principle.

Proposition 3.4. Let F : X → [0,+∞] be a quadratic form, x ∈ DF ,
and y ∈ X. Let A be the linear operator related to F and denote by O
the orthogonal projection from X onto DF .

The following conditions are equivalent:
(i) x ∈ DA and Ax = Oy;
(ii) F (z)− 2〈y, z〉 ≥ F (x)− 2〈y, x〉 for all z ∈ X.

The missing condition to ensure the existence of solutions to equation
(3.3) for all points is the lower semicontinuity of F , that for quadratic
forms can be characterized as follows.

Proposition 3.5. The quadratic form F is lower semicontinuous on
X if and only if (DF , ‖ · ‖F ) is Hilbert, where ‖ · ‖F = ‖ · ‖+ F (·).

As a consequence of Proposition 3.5 we have,

Corollary 3.6. If F is lower semicontinuous on X, then DA is dense
in (DF , ‖ · ‖F ). In particular, DA is dense in DF .

Moreover, if A : DA → DA is the operator associated to F , then F
itself is the lower semicontinuous envelope of the quadratic form

Q(x) =

{
〈Ax, x〉 x ∈ DA

+∞ otherwise in X.

Let us now recall the definition of the adjoint of a linear operator
L : DL → V densely defined on a subspace DL of a Hilbert space V .
To this aim let,

DL∗ = {z ∈ V : 〈Lx, z〉 = 〈x, y〉 for all x ∈ DL, for some y ∈ V }.
Since DL is dense in V , the uniqueness of the element y above is guar-
anteed; hence, we define a linear operator L∗ : DL∗ → V as L∗z = y,
for z ∈ DL∗ . L∗ is called the adjoint of L; L is said to be self-adjoint
if and only if DL = DL∗ and L = L∗.

In particular, if A : DA → DF is the operator associated to a lower
semicontinuous quadratic form F on X, DA is dense in DF in view
of Corollary 3.6. Hence, the adjoint operator A∗ : DA∗ → DF is well
defined on DF . In addition, DA ⊆ DA∗ being A symmetric. Actually,
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there is a bijection between lower semicontinuous quadratic forms and
self-adjoint operators.

Theorem 3.7. If F is a lower semicontinuous quadratic form on X
the operator A : DA → DF associated to F is self-adjoint.

Vice versa, let DA ⊆ X be a subspace, A : DA → DA be a positive,
self-adjoint linear operator. Then, the quadratic form

F (x) =

sup
DA

〈Ay, 2x− y〉 x ∈ DA

+∞ otherwise in X,

is lower semicontinuous and the operator associated to F is A itself.

3.2. G-convergence for self-adjoint operators. Given λ > 0 set

Qλ(X) = {F : X → [0,+∞] lower semicontinuous

quadratic form, F (x) ≥ λ‖x‖2 ∀x ∈ X},
and
Pλ(X) = {A : DA → DA, A self-adjoint, 〈Ax, x〉 ≥ λ‖x‖2 ∀x ∈ DA}.
From Theorem 3.7 it follows that F ∈ Qλ(X) if and only if the asso-
ciated operator A ∈ Pλ(X). Following Spagnolo [67], [68] we introduce
a weak notion of operatorial convergence on Pλ(X).

Definition 3.8. Let A, Aj be in Pλ(X), for all j ∈ N, and O and Oj

denote the orthogonal projections onto DA and DAj , respectively. We
say that (Aj)j∈N G-converges weakly (strongly) to A if

A−1
j Ojz → A−1Oz weakly (strongly) for all z ∈ X.

If DA = DAj = X, weak (strong) G-convergence is nothing but the
weak (strong) convergence of the solutions of the equations Ajx = z
to that of Ax = z for all z ∈ X. More generally, the following result
holds true (cp. with [2, Proposition 2.3]).

Proposition 3.9. Let A, (Aj)j∈N ⊂ Qλ(X), then
(i) (Aj)j∈N G-converges weakly (strongly) to A;
(ii) for all (zj)j∈N ⊂ X converging strongly to z in X, then (A−1

j Ojzj)j∈N
converges weakly (strongly) to A−1Oz in X;

In addition, if DAj = DA = X, then (i) and (ii) are equivalent to
(iii) Γ- limj χgraphAj = χgraphA in the product w-X × s-X topology.

Proof. The implication (ii)⇒ (i) is trivial, so we deal only with (i)⇒
(ii). To this aim set xj = A−1

j Oj(zj − z) ∈ X, and note that

λ‖xj‖2 ≤ 〈Ajxj, xj〉 = 〈Oj(zj − z), xj〉 ≤ ‖zj − z‖‖xj‖, (3.4)
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so that (xj)j∈N converges strongly to 0 in X. In particular, since
(A−1

j Ojz)j∈N converges weakly (strongly) to A−1Oz inX by hypothesis,
the conclusion follows at once.

Let us assume that DA = DAj = X and prove equivalence (ii) ⇔
(iii). To show (ii) ⇒ (iii) fix (x, z) ∈ graphA, i.e., z = Ax with
x ∈ DA, then setting xj = A−1

j z, the sequence (xj)j∈N converges
weakly to A−1z, that is to x. In addition, the sequence (xj, Ajxj) =
(xj, z) ∈ graphAj and converges in w-X × s-X to (x, z), so that
Γ- lim supj χgraphAj ≤ χgraphA.

To show Γ- lim infj χgraphAj ≥ χgraphA, let (xj, zj) ∈ graphAj be given
converging in w-X × s-X to some (x, z). Let yj = A−1

j z, by hypothesis
(yj)j∈N converges weakly to A−1z. In addition

λ‖xj − yj‖2 ≤ 〈Aj(xj − yj), xj − yj〉 ≤ ‖zj − z‖‖xj − yj‖,
so that (xj − yj)j∈N converges strongly to 0, and then x = A−1z.

Vice versa, suppose (iii) hold true. If (zj)j∈N converges strongly
to z set xj = A−1

j zj and x = A−1z. Then, ((xj, zj))j∈N ∈ graphAj
and arguing as in (3.4) shows that (xj)j∈N is norm bounded. Hence, a
subsequence (xjk)k∈N weakly converges to some y ∈ X. Item (iii) then
implies that (y, z) ∈ graphA, i.e. z = Ay, hence y = x and by Urysohn
property the whole sequence (xj)j∈N converges weakly to x. �

Remark 3.10. Item (iii) can be taken as a definition of G-convergence
in case of multiple-valued mappings A : X → P(X), P(X) being the
power set of X. Actually, it is the general abstract definition of G-
convergence (see for instance [60]).

Thanks to Theorem 3.7 we can link the Γ-convergence of equicoercive
quadratic forms to the G-convergence of the corresponding self-adjoint
linear operators. This result has been originally proved in [32] and [68],
and later extended to families of strictly convex equi-coercive functions
in [8].

Theorem 3.11. Let A, Aj be in Pλ(X), and F , Fj be the corre-
sponding quadratic forms in Qλ(X). Then, the following conditions
are equivalent:

(a) (Aj)j∈N G-converges to A in the weak topology of X,
(b) (Fj)j∈N Γ-converges to F in the weak topology of X,
(c) limj minX

(
Fj(x)−〈z, x〉

)
= minX

(
F (x)−〈z, x〉

)
for all z ∈ X.

Moreover, the following conditions are equivalent:
(d) (Aj)j∈N G-converges to A in the strong topology of X,
(e) (Fj)j∈N Γ-converges to F in the weak and strong topology of

X.
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A sketch of the proof of Theorem 3.11 has been supplied in the
Introduction in a simplified setting, we do not give full details here
since this result is well-known (see [25, Theorem 13.5]). Instead, we
shall draw the attention on a more recent abstract characterization for
bounded operators proposed by Mielke [52, Propositions 2.4 and 2.5].

Proposition 3.12. Let F , Fj ∈ Qλ(X), and A, Aj ∈ Pλ(X) be
the corresponding operators, respectively. Assume, in addition, that
DA = DF , DAj = DFj

, and that A : DA → DA, Aj : DAj → DAj are
bounded.

Then, (Fj)j∈N Γ-converges to F in the weak topology of X, if and
only if there exists a sequence of linear and continuous operators Λj :
DF → DFj

such that
(i) if xj ∈ DFj

and (xj)j∈N weakly converges to x in X, then
(Λ∗jAjxj)j∈N weakly converges to Ax in DF ;

(ii) for all x ∈ DF , (Λjx)j∈N weakly converges to x in X;
(iii) if xj ∈ DFj

and (xj)j∈N weakly converges to x /∈ DF , then
Fj(xj) ↑ +∞.

Proof. First, note that by assumption DA = DF = DF , DAj = DFj
=

DFj
.

We start with proving the ‘only if’ part. Note that (Λjx)j∈N is a
recovery sequence for any x ∈ DF . Indeed, (Λjx)j∈N weakly converges
to x by item (ii), and by item (i) above

Fj(Λjx) = 〈Λ∗jAjΛjx, x〉 → 〈Ax, x〉 = F (x). (3.5)

To check (LB) inequality, assume that a sequence (xj)j∈N weakly con-
verging to some point x ∈ DF is given. Then, use item (i) and (3.5)
to infer the conclusion,

Fj(xj) = Fj(xj − Λjx) + 2〈Ajxj,Λjx〉 −Fj(Λjx)

≥ 2〈Λ∗jAjxj, x〉 −Fj(Λjx),

so that
lim inf

j
Fj(xj) ≥ 〈Ax, x〉 = F (x).

Eventually, condition (iii) takes care of the case x /∈ DF .
To prove the opposite implication we consider the bounded linear op-

erators Λj = A−1
j OjA : DF → DFj

, where Oj denotes the orthogonal
projection onto DFj

. By the very definition of Λj and in view of Propo-
sition 3.4, the point Λjx, x ∈ DF , is the minimizer of Fj(z)−2〈Ax, z〉.
Since

Fj(Λjx)− 2〈Ax,Λjx〉 ≤ Fj(0)− 2〈Ax, 0〉 = 0,
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and Fj ∈ Qλ(X), (‖Λjx‖)j∈N is bounded so that for a subsequence
(Λjkx)k∈N weakly converges to x̃. By Theorem 2.11 x̃ is a minimizer of
minX(F (z)−2〈Ax, z〉). Being the minimizer of such a problem unique
x̃ = x, and the whole sequence (Λjx)j∈N weakly converges to x and (ii)
is established. In particular, we have also proved that limj Fj(Λjx) =
F (x), for all x ∈ X.

Furthermore, if xj ∈ DFj
and (xj)j∈N weakly converges to x in X,

being Oj self-adjoint, a direct computation shows that Λ∗jAj = AO on
DFj

, so that

〈Λ∗jAjxj, z〉 = 〈AOxj, z〉 → 〈Ax, z〉,

and item (i) then follows at once.
Finally, (iii) is guaranteed by the fact that (Fj)j∈N ⊂ Qλ(X) and

the Γ-convergence assumption. �

The proof highlights that there is always a canonical way to construct
recovery sequences by solving suitable minimization problems (this is
the essence of the equivalence of items (b) and (c) in Theorem 3.11),
though being not necessarily the only one.

The previous characterization is particularly useful when dealing
with convergence issues for solutions of linear and nonlinear mechanical
evolutionary systems where two families of energies, kinetic and poten-
tial, are involved. A compatibility condition is needed to correctly de-
scribe the asymptotic behaviour of the equilibria of the corresponding
mechanical systems: the existence of a family of joint recovery opera-
tors as that in Proposition 3.12 (see [52] and the references therein).

Remark 3.13. Example 2.21 can be rephrased in light of Proposi-
tion 3.12. For, a family of ‘recovery’ operators Λj : L2(Ω,Rm) →
L2(Ω,Rm) satisfying the assumptions of the latter is given by Λj(u) =
a−1
j bu, as it follows from (2.13) and (2.14).
Analogously, Example 2.22 can be reinterpreted in terms of Propo-

sition 3.12. For instance, when zero Dirichlet boundary conditions
are imposed, consider the recovery operators Λ̂j : W 1,2

0 ((0, L); Rm) →
W 1,2

0 ((0, L); Rm) given by

Λ̂j(u) =

ˆ x

0

Λj(u
′)(y) dy − x

 L

0

Λj(u
′)(y) dy,

with Λj defined above.

We are now ready to analyze the problem motivating this study and
quoted in the introduction of the section. For a sequence (Bj)j∈N ⊂
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M(Ω, α, β) consider the corresponding quadratic forms on L2(Ω)

Fj(u) =


ˆ

Ω

〈Bj∇u,∇u〉 dx u ∈ W 1,2
0 (Ω)

+∞ otherwise in L2(Ω).
(3.6)

The associated operators Aj can be expressed in terms of the distribu-
tional divergence on the sets

Dj = {u ∈ W 1,2
0 (Ω) : −div(Bj∇u) ∈ L2(Ω)}

as Aju = −div(B∇u). Note that the symmetric matrix Bj, the qua-
dratic form Fj and the operator Aj are in one-to-one correspondence,
hence in what follows we shall refer to G-convergence for (Bj)j∈N mean-
ing the G-convergence for the sequence of operators (Aj)j∈N.

We are in the setting of Theorem 3.11, thus the asymptotic behaviour
of the solutions of

−div(Bj∇uj) = f, for f ∈ H−1(Ω),

is characterized in terms of the G-convergence of (Aj)j∈N in the weak
topology of L2(Ω), or equivalently via the Γ-convergence in the weak
topology of L2(Ω) of the associated quadratic forms (FBj)j∈N.

Note that G-convergence is always ensured up to subsequences. In
this respect, we mention the ensuing compactness result due to Spag-
nolo [67].

Theorem 3.14. For any sequence (Bj)j∈N ⊂ M(Ω, α, β) there exists
a matrix field B ∈ M(Ω, α, β) and a subsequence (not relabeled) such
that (Bj)j∈N G-converges weakly to B.

Actually, a more refined analysis shows that the same result holds
true in the strong L2(Ω) and weak W 1,2(Ω) topology (see [25, Theo-
rem 3.12, Example 3.13]). In addition, following the celebrated Div-
Curl lemma, it is also possible to show that the sequence (Bj∇uj)j∈N
converges weakly in L2(Ω; Rn) to the corresponding quantity for the
G-limit (see [70, Lemma 10.3]).

The one-dimensional case, considered in Example 2.22, is particu-
larly simple since G-convergence can be characterized in terms of the
weak∗-convergence in L∞ of the inverse coefficients. More generally, a
similar statement holds for isotropic operators as shown in [51, Theo-
rem 2.2].

Proposition 3.15. Let (Bj)j∈N ∈ M(Ω, α, β) be defined as Bj =
ϕjIdn, with ϕj(x) = Πn

i=1b
i
j(xi), then (Bj)j∈N G-converges weakly to

the diagonal matrix B = diag(bi(x)) ∈M(Ω, α, β) if and only if(
(ϕj − bi)/bij

)
j∈N converge to 0 weak∗L∞(Ω) for all i ∈ {1, . . . , n}.
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In general, it is not elementary to find an explicit formula for the G-
limit, even in the simplest case, as the next density theorem confirms
(see [51, Theorems 3.1, 3.4]).

Theorem 3.16. There exists a dimensional constant C ≥ 1 such that
for any B ∈ M(Ω, α, β) one can find (ϕj)j∈N ⊂ C∞(Ω) such that the
sequence (Bj)j∈N, with Bj = ϕjIdn, belongs to M(Ω, α/C,Cβ) and
G-converges weakly to B.

For periodic coefficients the G-limit matrix B can be identified via a
suitable minimization problem (see [32, Theorem 4.2]). Such a result
builds upon the localization methods of Γ-convergence, with which far
reaching extensions for nonlinear homogenization problems can be ob-
tained as well (see for instance [11, Theorems 14.5, 14.7], and compare
with [70] for a different approach).

Proposition 3.17. Given B̂ ∈ M(Ω, α, β) let Bj(x) = B̂(x/εj), then
(Bj)j∈N G-converges weakly to B defined as

〈B(x)ξ, ξ〉 = inf

{ˆ
(0,1)n
〈B̂(x)∇u,∇u〉 dx : u− 〈x, ξ〉 ∈ W 1,2

# ((0, 1)n)

}
,

where W 1,2
# ((0, 1)n) denotes the subspace of W 1,2((0, 1)n) functions that

are (0, 1)n-periodic.

Let us conclude the section by remarking that in this notes we have
only scratched the surface of the vast fields or research which are nowa-
days G-convergence and homogenization. We refer to the books [11],
[20], [44], [60], [70] for in-depth accounts of those theories supplemented
with several applications and detailed references. Many links with
physical models and further problems in the theory of composites can
be found in the book by Milton [56].

3.3. G-convergence for non-self-adjoint linear operators. In this
paragraph we deal with non-self-adjoint operators, or more precisely,
given f ∈ H−1(Ω), with non-variational PDEs of the form

−div(B∇w) = f Ln a.e. Ω, with w ∈ W 1,2
0 (Ω). (3.7)

The important fact is that we do not require the matrix field B : Ω→
Rn×n to be symmetric Ln a.e. in Ω. As a consequence, the corre-
sponding operator is not self-adjoint and the variational structure of
the problem is lost. The appropriate operatorial notion of convergence
in this case has been introduced by Tartar [69, 70] and Murat [59] and
called H-convergence.
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Let us first fix the functional framework under analysis: we con-
sider the subset M̃(Ω, α, β) of n×n matrices B with Borel measurable
coefficients satisfying

α Idn ≤ B(x), β−1Idn ≤ B−1(x) for Ln a.e. x ∈ Ω,

where Idn is the n × n identity matrix, and 0 < α ≤ β. The second
condition easily yields that ‖B‖L∞(Ω,Rn×n) ≤ β. Lax-Milgram theo-
rem implies the existence of solutions to the problem above under the
quoted assumptions (see [14, Corollary V.8]).

Definition 3.18. A sequence (Bj)j∈N ⊂ M̃(α, β,Ω) H-converges to
B ∈ M̃(α, β,Ω) if for all f ∈ H−1(Ω) the solutions uj ∈ W 1,2

0 (Ω) of
(3.7) satisfy

(i) (uj)j∈N converges weakly to u in W 1,2(Ω),
(ii) (Bj∇uj)j∈N converges weakly to B∇u in L2(Ω; Rm).

Therefore, keeping the notation in Definition 3.18 above, we get that
u ∈ W 1,2

0 (Ω) is the solution of

−div(B∇w) = f Ln a.e. Ω, with w ∈ W 1,2
0 (Ω).

Remark 3.19. Comparing Definitions 3.8 and 3.18 few remarks are
in order. First, the extra condition (ii) in Definition 3.18 is necessary
to determine uniquely the limit since

div(B(x)∇w(x)) = div ((B(x) +B′)∇w(x)) Ln a.e. Ω, w ∈ W 1,2
0 (Ω)

for any skew-symmetric matrix B′ with sufficiently small norm to retain
the ellipticity bounds.

In addition, as already noted, the convergence of (Bj∇uj)j∈N to B∇u
is guaranteed in the symmetric case. In particular, H-convergence re-
duces to G-convergence in that setting (see [70, Lemma 10.3]).

Rather than overviewing the theory of H-convergence, for which we
quote the references [69, 70, 59], we discuss some recent new insights
by Ansini and Zeppieri [4] with which H-convergence for elliptic PDEs
is recasted into the framework of G- or Γ-convergence building upon a
variational principle introduced by Cherkaev and Gibiansky [19]. Ac-
tually, the developments of the latter proposed by Milton [55] are of
interest here.

The starting point is to consider the coupled system{
−div(B∇u) = f1 u ∈ W 1,2

0 (Ω)

−div(Bt∇v) = f2 v ∈ W 1,2
0 (Ω)

(3.8)
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which can be rewritten as{
−divju = f1 u ∈ W 1,2

0 (Ω)

−divjv = f2 v ∈ W 1,2
0 (Ω)

(3.9)

by introducing the fields {
ju = B∇u
jv = Bt∇v.

(3.10)

In applications to electrostatics u and v are potentials with associated
electric fields −∇u and −∇v, B is the conductivity tensor, ju and jv
the current fields. Then, (3.10) represents the constitutive laws.

Denoting the symmetric and antisymmetric part of a matrix with
the superscripts s and a, respectively, and setting φ = u+v, ψ = u−v,
the system in (3.10) can be equivalently expressed as{

Bs∇φ+Ba∇ψ = ju + jv
−Ba∇φ−Bs∇ψ = ju − jv

(3.11)

that is in more compact form

ΘB

(
∇φ
∇ψ

)
=

(
ju + jv
ju − jv

)
, where ΘB =

(
Bs Ba

−Ba −Bs

)
.

The matrix field ΘB ∈ L∞(Ω,R2n×2n) is symmetric but not positive
definite. Being Bs positive definite Ln a.e., B defines the convex-
concave quadratic form QB : W 1,2

0 (Ω) × W 1,2
0 (Ω) → [0,+∞] given

by

QB(φ, ψ) =
1

2

ˆ
Ω

ΘB

(
∇φ
∇ψ

)
:

(
∇φ
∇ψ

)
dx,

where the symbol : denotes the scalar product in R2n. By introducing
the linear functional L on W 1,2

0 (Ω)×W 1,2
0 (Ω)

L (φ, ψ) =

ˆ
Ω

(
ju + jv
ju − jv

)
:

(
∇φ
∇ψ

)
dx,

the saddle point variational principle

inf
φ∈W 1,2

0 (Ω)
sup

ψ∈W 1,2
0 (Ω)

(QB −L ) = sup
ψ∈W 1,2

0 (Ω)

inf
φ∈W 1,2

0 (Ω)
(QB −L ) (3.12)

identifies the solutions of (3.11).
A partial Legendre transform can be employed to obtain a con-

vex quadratic form, and a corresponding minimization principle. This
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amounts to rewriting (3.11) as{
(Bs)−1(ju + jv)− (Bs)−1Ba∇ψ = ∇φ
−Ba(Bs)−1(ju + jv) + (Bs −Ba(Bs)−1Ba)∇ψ = ju − jv

(3.13)

that is
ΣB

(
ju + jv
∇ψ

)
=

(
∇φ

ju − jv

)
,

where
ΣB =

(
(Bs)−1 −(Bs)−1Ba

Ba(Bs)−1 Bs −Ba(Bs)−1Ba

)
. (3.14)

The very definition of ΣB yields the ensuing properties (see [4, Section
3.1.1] for the proofs).

Proposition 3.20. If B ∈ M̃(Ω, α, β), the matrix field ΣB ∈ L∞(Ω,R2n×2n)
satisfies for Ln a.e. x ∈ Ω

(i) ΣB is symmetric, and coercive, i.e. λId2n ≤ ΣB for some λ > 0;
(ii) det ΣB = 1
(iii) Σ−1

B = JΣBJ , where if 0n is the null n× n matrix, then

J =

(
0n Idn
Idn 0n

)
.

It is now possible to turn the minimax principle (3.12) leading to
(3.8) into a minimization one. Let ΣB ∈ L∞(Ω,R2n×2n) be as in (3.14)
for some B ∈ M̃(Ω, α, β), fix h in L2(Ω; Rn), k ∈ W 1,2(Ω) and f ∈
H−1(Ω), then define the linearly perturbed quadratic form

F f,h,k
B (j, ψ) =

1

2

ˆ
Ω

ΣB

(
j
∇ψ

)
:

(
j
∇ψ

)
dx−

ˆ
Ω

(2〈j, k〉+〈∇ψ, h〉) dx,

on the convex set
Kf = {(j, ψ) ∈ L2(Ω; Rn)×W 1,2

0 (Ω), divj = f}
and +∞ otherwise on L2(Ω; Rn)×W 1,2(Ω).

Elementary computations shows that the Euler-Lagrange equation
satisfied by minimizers of F f,h,k

B is exactly the system in (3.8) with
ψ = u − v, f1 = −(f + divh)/2, f2 = −(f − divh)/2, and k = 0 (see
[4, Section 3.2]).

We are now able to resume the contents of [4, Theorems 4.1 and 4.5]
that interpret H-convergence as Γ-convergence of suitable quadratic
forms. The equivalences below rely upon Theorem 3.11 and some tech-
nical properties of H-convergence.

Theorem 3.21. Let B, (Bj)j∈N ⊂ M̃(Ω, α, β), h ∈ L2(Ω; Rn) and
k ∈ W 1,2

0 (Ω), then the following are equivalent
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(a) (Bj)j∈N H-converges to B;
(b) (F f,h,k

Bj
)j∈N Γ-converges to F f,h,k

B in the weak topology of L2(Ω; Rn)×
W 1,2(Ω) for every f ∈ H−1(Ω).

3.4. An extension to nonlinear elliptic equations. In this final
section we describe a contribution by Ambrosetti and Sbordone [2]
aimed at obtaining convergence of solutions of Euler-Lagrange equa-
tions related to non-convex energies. The significant outcome of their
analysis is that the solutions of the approximating equations are, in
principle, neither global nor local minimizers of the energies under
study. Despite this, their asymptotic behaviour can still be studied
via Γ-convergence methods.

We shall consider the Hilbertian setting for the sake of simplicity, in
the original paper [2] the results are stated in the broader framework
of reflexive and separable Banach spaces. First, we introduce a weak
notion of subdifferentiability.

Definition 3.22. Let F : X → R, put DF := {x ∈ X : F (x) ∈ R}.
For x ∈ DF consider (the possibly empty set)

∂−F (x) :=

{
z ∈ X : lim inf

y→x

F (y)−F (x)− 〈z, y − x〉
‖y − x‖

≥ 0

}
,

and for x ∈ X \DF set ∂−F (x) = ∅.
If ∂−F (x) 6= ∅, we say that F is subdifferentiable at x, and z ∈

∂−F (x) is said a subdifferential of F at x.

Simple properties coming from the very definition are subsumed be-
low (cp. with [2, Lemma 3.2, Proposition 3.3]).

Lemma 3.23. Let F : X → R and x ∈ X. Then,
(i) if x is a minimum point of F , then 0 ∈ ∂−F (x);
(ii) if F is convex, then ∂−F (x) coincides with the subdifferential

of F in the sense of convex analysis;
(iii) if F = F1 + F2 with F2 differentiable, then

∂−F (x) = ∂−F1(x) + F ′
2(x).

(iv) if F = F1 + F2, with F1 convex and F2 differentiable, such
that

〈F ′
2(y1)−F ′

2(y2), y1 − y2〉 ≥ 〈ϕ′(x− y1)− ϕ′(x− y2), y1 − y2〉
for all x, y1, y2 ∈ X and for some differentiable function ϕ :
X → R with ϕ(0) = ϕ′(0) = 0, then

∂−F (x) = {z ∈ X : F (y)− 〈z, y − x〉+ ϕ(y − x) ≥ F (x), ∀y ∈ X}.
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Semiconvex functions, also known as λ-convex, i.e. functions F :
X → R such that F +λ‖ ·‖2 is convex for some constant λ ≥ 0, satisfy
the assumptions in (iv) above with ϕ(x) = −λ‖x‖2.

More generally, in what follows we shall consider the class Qϕ(X) of
functions satisfying for all x ∈ X for which ∂−F (x) 6= ∅ equality

∂−F (x) = {z ∈ X : F (y)− 〈z, y − x〉+ ϕ(y − x) ≥ F (x), ∀y ∈ X},
(3.15)

with ϕ : X → [0,+∞) weakly continuous and differentiable, such that
ϕ−1(0) = {0}, ϕ′ : X → X is continuous from the weak topology of X
to the strong topology of X and ϕ′(0) = 0.

The crucial feature of such a class of functions is that if F ∈ Qϕ(X)
and z ∈ ∂−F (x), then x is a global minimizer of the perturbed func-
tionals

G (y) = F (y)− 〈z, y − x〉+ (1 + δ)ϕ(y − x),

for all δ ≥ 0, and actually the unique minimizer if δ > 0. Γ-convergence
machinery can then be exploited. In the next theorem G-convergence
for multiple-valued mappings is intended according to Remark 3.10.

Theorem 3.24. Let F , Fj : X → R ∪ {+∞} be weakly lower semi-
continuous satisfying

(i) F and each Fj ∈ Qϕ(X) for some ϕ as above;
(ii) Fj(x) ≥ ψ(‖x‖) for all x ∈ X and for some ψ : R → R with

ψ(t) ↑ +∞ as t ↑ +∞, and supj Fj(x̄) < +∞ for some x̄ ∈ X.
If (Fj)j∈N Γ-converges weakly to F , then (∂−Fj)j∈N G-converges weakly
to ∂−F .

Proof. Let zj ∈ ∂−Fj(xj), with zj converging strongly to z in X and
xj weakly to x in X. Consider the functions

Gj(y) := Fj(y)− 〈zj, y − xj〉+ ϕ(y − xj),

assumption (i) for Fj then rewrites as

Gj(xj) ≤ Gj(y) for all y ∈ X.

Moreover, by hypotheses it follows that

G (y) = Γ(w-X)- lim
j

Gj(y) = F (y)− 〈z, y − x〉+ ϕ(y − x),

and thus x turns out to minimize G on X by Theorem 2.11. Noting
that G (x) = F (x) we get

F (y)− 〈z, y − x〉+ ϕ(y − x) ≥ F (x) for all y ∈ X,

then assumption ϕ′(0) = 0 implies that z ∈ ∂−F (x).
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Vice versa, suppose that z ∈ ∂−F (x). With fixed δ > 0, assumption
(i) for F implies that for all y ∈ X \ {x}

G (x) < G (y) := F (y)− 〈z, y − x〉+ (1 + δ)ϕ(y − x).

Let now

Gj(y) := Fj(y)− 〈z, y − x〉+ (1 + δ)ϕ(y − x),

if xj ∈ argminXGj then (ii) and the positivity of ϕ give

ψ(‖xj‖)− ‖z‖‖xj − x‖ ≤ Gj(xj) ≤ Gj(x̄) =⇒ sup
j
‖xj‖ < +∞.

Since Γ(w-X)- limj Gj = G , and being x the unique minimizer of G ,
Theorem 2.11 implies that the whole sequence (xj)j∈N converges weakly
to x by Urysohn property.

Eventually, arguing as before 0 ∈ ∂−Gj(xj) = ∂−Fj(xj)−z−ϕ′(xj−
x). Setting zj = z+ϕ′(xj−x) ∈ ∂−Fj(xj), the weak-strong continuity
of ϕ′, ϕ′(0) = 0 and the weak convergence of (xj)j∈N to x give the
conclusion. �

Remark 3.25. Following [35, Section 4] it is possible to show that
the class Qϕ(X) is closed under Γ-convergence, so that assumption
F ∈ Qϕ(X) in Theorem 3.24 above is actually not needed.

A basic example in which the assumptions of Theorem 3.24 are sat-
isfied is given by

Fj(x) =
1

2
〈Ajx, x〉+ b(x),

with (Aj)j∈N G-converging weakly in X, and b : X → R differentiable,
bounded from below, weakly continuous and satisfying for all x, y ∈ X

|〈b′(x)− b′(y), x− y〉| ≤ ‖x− y‖2.

The latter condition guarantees the equi-generalized subdifferentiabil-
ity hypothesis in (i) Theorem 3.24 with ϕ = ‖ · ‖2/2 (see [2, Proposi-
tion 3.3, Corollary 4.4]). In general, the corresponding Euler-Lagrange
equations

Ajx+ b′(x) = 0

have multiple solutions, the generic one denoted by xj, that are ob-
tained via topological methods (see [2, Remark 4.5]). Hence, xj is not
necessarily a minimizer of Fj. Despite this, the stability brought into
the problem by condition Fj ∈ Qϕ(X) yields that xj is actually the
only global minimizer of a suitable perturbed function, so that varia-
tional properties of the cluster points of the sequence (xj)j∈N can be
determined via Γ-convergence.
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In this respect, we mention that Theorem 3.24 is the forerunner of a
broad theory developed in a series of papers by De Giorgi, Degiovanni,
Marino and Tosques (see [35] and the references therein). Generalized
notions of convexity for functions and of monotonicity for subdiffer-
entials, departing strictly from the standard ones and including that
in (3.15) presented here, were introduced and proved to guarantee the
convergence of Euler-Lagrange equations given the Γ-convergence of
the corresponding energies. In this way, several variational problems
with lack of convexity can be analyzed via those methods.

The initial interest in those researches relied in the investigation of
the connection between Γ-convergence of sequence of energies and the
convergence of solutions of the corresponding evolution equations. Un-
der the mentioned generalized convexity for energies or monotonicity
for subdifferentials, the convergence of gradient-flows, suitably reformu-
lated, follows (see [35] again). In parallel, a non-variational theory for
operators which are not subdifferentials is developed, with that some
hyperbolic problems fall into the analysis as well.

Recently, Sandier and Serfaty have proposed a general scheme to
study convergence issues for gradient flows (working also in a metric
space setting), furnishing several interesting applications as well (see
[63], [65] and the references therein).

Along the same paths, let us mention that far reaching generaliza-
tions of the ideas presented in Theorem 3.24 have been lately devel-
oped by Mielke, Roubíček and Stefanelli [54] to analyze relaxation and
convergence problems for energetic solutions of rate-independent evo-
lutionary mechanical systems.

4. Linearized elasticity as Γ-limit of finite elasticity

Let Ω be a bounded open subset of Rn, and consider an homogeneous
hyperelastic body for which Ω represents the reference configuration.
Let

E (v) =

ˆ
Ω

W (∇v)dx

be the stored energy functional, where v : Ω→ Rn is the deformation,
∇v the deformation gradient, and the energy density W : Rn×n →
[0,+∞] satisfies
(W1) W (RF ) = W (F ) for all F ∈ Rn×n and R ∈ SO(n), that is W

is frame indifferent ;
(W2) W is of class C2(U) and supU W < +∞, where U is a neigh-

bourhood of SO(n);
(W3) W (F ) = 0 for all F ∈ SO(n);
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(W4) W (F ) ≥ dist2(F, SO(n)) for all F ∈ Rn×n;
(W5) W (F ) = +∞ if detF ≤ 0.
Thanks to assumption (W4), admissible deformations belong to the
Sobolev space W 1,2(Ω,Rn). External loads are represented by a con-
tinuous linear functional L : W 1,2(Ω,Rn)→ R, we may also fix bound-
ary displacements h ∈ W 1,2(Ω,Rn) by imposing a Dirichlet boundary
condition.

We are interested in studying the behaviour of the stable states of
the system in case of small deformation regime. Thus, with fixed a
sequence εj ↓ 0, we are led to the variational problem

mj := min
u∈h+W 1,2

0 (Ω,Rn)

ˆ
Ω

W (Idn + εj∇u)dx− εjL (x+ εju). (4.1)

In what follows we shall characterize the behaviour of the minimimum
problems above by resorting to the Γ-convergence properties of the
associated rescaled energies Fj : X → [0,+∞]

Fj(u) =
1

ε2
j

ˆ
Ω

W (Idn + εj∇u)dx−L (u), (4.2)

with X := h+W 1,2
0 (Ω,Rn) the space of admissible displacements.

The rescaling ε−2
j is necessary to avoid trivial results. Indeed, denot-

ing by Ej the energies to be minimized in (4.1), it is easy to see that
Γ- limj Ej(u) = 0 and that Γ- limj εj

−1Ej(u) = −L (x) for all u ∈ X in
the weak W 1,2 topology in view of assumptions (W2)-(W4). Thus, the
energies

Fj(u) = εj
−1(εj

−1Ej(u) + L (x))

are introduced in the spirit of the asymptotic Γ-development (cp. with
subsection 2.4).

Further notation is needed: given a positive definite symmetric fourth
order tensor Θ the associated quadratic form is denoted by Θ[·, ·], i.e.
for every n× n matrix A if Θ = (θijhk)

n
i,j,h,k=1

Θ[A,A] =
n∑

i,j,h,k=1

θijhkaijahk.

Note that being Θ a symmetric tensor

Θ[A,A] = Θ

[
A+ At

2
,
A+ At

2

]
.

Theorem 4.1. Assume that W : Rn×n → [0,+∞] satisfies properties
(W1)-(W5) above, then
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(i) Compactness: if supj Fj(uj) < +∞, then supj ‖uj‖W 1,2(Ω) <
+∞;

(ii) Γ-convergence: Γ- limj Fj = F in the weak W 1,2 topology,
where F : X → [0,+∞] is given by

F (u) =
1

2

ˆ
Ω

D2W (Idn)[e(u), e(u)]dx−L (u),

with e(u) = (∇u+∇tu)/2 the linearized strain of u.

Before going into the proof, we note that Theorem 4.1 together with
Theorem 2.11 ensure the convergence of global minimizers of Fj to
that of F together with the Taylor expansion

mj = −εjL (x) + εj
2 min
u∈X

F + o(εj
2).

Thus, Theorem 4.1 provides a rigorous variational argument for the
derivation of linearized elasticity from finite elasticity, contrary to the
usual Taylor expansion which corresponds to checking (UB) inequality
only for Lipschitz displacements (see the proof of Theorem 4.1).

Let us also mention that the one stated above is only a prototype
result which can be improved into many directions. First, (qualified)
non-homogeneous materials can be considered, Dirichlet boundary con-
ditions can be imposed only on a subset of the boundary of Ω, the
growth conditions in (W4) can be relaxed in order to include the anal-
ysis of a large class of compressible rubber-like materials, and the con-
vergence of recovery sequences can be improved to strong W 1,2(Ω,Rn)
and not only weak (for all these generalizations see [3]). In addition,
families of multiwell energies can be also dealt with (cp. with [64]).

In the sequel we shall prove Theorem 4.1 neglecting the continuous
perturbation L since it affects neither the Γ-convergence nor the equi-
coerciveness properties of (Fj)j∈N thanks to (W4). With a slight abuse
of notation we keep denoting by Fj the first term on the right hand
side in (4.2).

The equi-coerciveness properties of (Fj)j∈N rely on a key result by
Friesecke, James and Müller [41] in which the L2-distance of a gradient
field from SO(n) is controlled via the L2-distance from a single rotation
modulo a universal constant prefactor.

Theorem 4.2 (Geometric Rigidity). There exists a constant C =
C(Ω) > 0 such that for every field v ∈ W 1,2(Ω,Rn) there exists a
constant rotation R ∈ SO(n) satisfyingˆ

Ω

|∇v −R|2dx ≤ C

ˆ
Ω

dist2(∇v, SO(n))dx.
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The geometric rigidity estimate has been employed as an essential
ingredient for the variational derivation of several low dimensional the-
ories from three-dimensional elasticity models (see, for instance, [41]
and [42] and the references therein).

Lemma 4.3. Under the assumptions of Theorem 4.1 there exists a
constant C = C(Ω) > 0 such that if u ∈ X and j ∈ N are fixed, there
is a rotation Rj ∈ SO(n) for which

|Idn −Rj|2 ≤ Cεj
2

(
Fj(u) +

ˆ
∂Ω

|h|2dHn−1

)
.

Proof. Given u ∈ X, let vj = x+ εju, then by Theorem 4.2ˆ
Ω

|∇vj −Rj|2dx ≤ C

ˆ
Ω

d2(∇vj, SO(n))dx.

for some Rj ∈ SO(n); in turn, assumption (W4) impliesˆ
Ω

|∇vj −Rj|2dx ≤ C

ˆ
Ω

W (∇vj)dx ≤ Cεj
2Fj(u). (4.3)

Poincaré-Wirtinger inequality and the continuity of the trace operator
yield
ˆ
∂Ω

|vj −Rjx− aj|2dHn−1

≤ C

ˆ
Ω

|vj −Rjx− aj|2dx ≤ C

ˆ
Ω

|∇vj −Rj|2dx (4.4)

if aj denotes the mean value of vj − Rjx on Ω. Then, recalling that
u− h ∈ W 1,2

0 (Ω,Rn), we have vj = x+ εjh on ∂Ω, and thus
ˆ
∂Ω

|(Idn −Rj)x− aj|2dHn−1

≤ 2

ˆ
∂Ω

|vj −Rjx− aj|2dHn−1 + 2ε2
j

ˆ
∂Ω

|h|2dHn−1. (4.5)

[27, Lemma 3.3] ensures that for some constant C = C(Ω) > 0

|Idn −Rj|2 ≤ C min
z∈Rn

ˆ
∂Ω

|(Idn −Rj)x− z|2dHn−1, (4.6)

by collecting estimates (4.3)-(4.6) the desired result follows at once. �

We are now ready to show Theorem 4.1, we follow the approach in
[3] (the result was first proved under more stringent hypothesis in [27]).
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Proof of Theorem 4.1. Let us first prove that the family (Fj)j∈N is
equi-coercive in the weak W 1,2 topology. To this aim suppose a se-
quence (uj)j∈N is given such that supj Fj(uj) < +∞, and let vj =
x + εjuj. Then, by (W4) and Lemma 4.3, for some Rj ∈ SO(n) we
haveˆ

Ω

|∇uj|2dx ≤
2

ε2
j

(ˆ
Ω

|∇vj −Rj|2dx+ Ln(Ω)|Idn −Rj|2
)

≤ C

(
Fj(uj) +

ˆ
∂Ω

|h|2dHn−1

)
. (4.7)

Moreover, since uj − h ∈ W 1,2
0 (Ω,Rn), Poincaré inequality yields that

‖uj‖L2(Ω) ≤ C‖∇uj‖L2(Ω,Rn)

for some constant C > 0, and the equi-coerciveness thus follows straight-
forwardly from (4.7).

Let us now prove the Γ-convergent statement. To this aim we shall
show separately the inequalities Γ- lim infj Fj(u) ≥ F (u) and Γ- lim supj Fj(u) ≤
F (u) (cp. with Theorem 2.15).

We begin with the former inequality. Given a sequence (uj)j∈N con-
verging weakly in W 1,2 to a map u we may assume (up to extracting a
subsequence not relabeled for convenience) that

lim inf
j

Fj(uj) = lim
j

Fj(uj) < +∞.

In particular, (uj)j∈N ⊆ X and then by weak W 1,2 convergence u ∈ X.
Set

Ωj = {x ∈ Ω : |∇uj(x)| ≤ ε
−1/2
j }

and note that (1Ωj∇uj)j∈N converges to ∇u weakly in L2 since by
Chebyshev inequality and (4.7)

Ln(Ωc
j) ≤ εj

ˆ
Ω

|∇uj|2dx ≤ Cεj

(
Fj(uj) +

ˆ
∂Ω

|h|2dHn−1

)
≤ Cεj.

Next, we use (W2)-(W4) to infer the existence of an increasing function
η : [0,+∞) → [0,+∞) with η(t) ↓ 0+ as t ↓ 0+ and such that for all
F ∈ Rn×n

W (Idn + F ) ≥ 1

2
∂2W (Idn)[F, F ]− η(|F |)|F |2.

In turn, from this and the very definition of Ωj we find

Fj(uj) ≥
1

ε2
j

ˆ
Ωj

W (Idn + εj∇uj)dx



Γ-CONVERGENCE 59

≥
ˆ

Ωj

(
1

2
∂2W (Idn)[∇uj,∇uj]− η(εj|∇uj|)|∇uj|2

)
dx

≥ 1

2

ˆ
Ω

∂2W (Idn)[1Ωj∇uj,1Ωj∇uj]dx− η(ε
1/2
j )

ˆ
Ω

|∇uj|2dx.

In particular, by taking into account the weak L2 lower semicontinu-
ity of the quadratic form associated to ∂2W (Idn) and being (uj)j∈N
bounded in the W 1,2 norm we infer

lim inf
j

Fj(uj) ≥ lim inf
j

1

2

ˆ
Ω

∂2W (Idn)[1Ωj∇uj,1Ωj∇uj]dx

≥ 1

2

ˆ
Ω

∂2W (Idn)[∇u,∇u]dx =
1

2

ˆ
Ω

∂2W (Idn)[e(u), e(u)]dx = F (u).

In particular, we conclude that Γ- lim infj Fj(u) ≥ F (u).
To prove the opposite inequality we first exhibit a recovery sequence

for displacements u ∈ W 1,∞(Ω,Rn) ∩ X. In this case set uj = u and
notice that Taylor expansion around the identity matrix is allowed since
∇u is bounded Ln a.e. on Ω. Hence, by taking into account that W is
C2 close to Idn, W (Idn) = 0 and ∂FW (Idn) = 0, we find

lim
j

1

εj2
W (Idn + εj∇u) =

1

2
∂2W (Idn)[e(u), e(u)] Ln a.e. in Ω.

In addition, assumption (W2) guarantees that for some absolute posi-
tive constant C

W (Idn + εj∇u) ≤ Cεj
2|∇u|2 Ln a.e. Ω,

for all j sufficiently big; hence, Lebesgue dominated convergence theo-
rem implies

Γ- lim sup
j

Fj(u) ≤ lim sup
j

Fj(uj) ≤
ˆ

Ω

lim
j

1

εj2
W (Idn+εj∇u)dx = F (u).

(4.8)
If u is any map in X, we use the density of C∞c (Ω,Rn) in W 1,2

0 (Ω,Rn)
to get functions uk ∈ h + C∞c (Ω,Rn) converging to u strongly in
W 1,2(Ω,Rn). Thus, (4.8), the lower semicontinuity of Γ-limsup and
the continuity of F give the conclusion,

Γ- lim sup
j

Fj(u) ≤ lim inf
k

(Γ- lim sup
j

Fj(uk))
(4.8)
≤ lim inf

k
F (uk) = F (u).

�
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5. Obstacle problems for nonlocal energies

In this section we deal with the homogenization of nonlocal energies
in periodically perforated domains. In its simplest form the problem
amounts in characterizing the asymptotic behaviour as j ↑ +∞ of the
solutions of {

−4su = f u = 0 Ln a.e. on Tj ∩ Ω

u ∈ W s,2
0 (Ω)

(5.1)

where f ∈ L2(Ω), −4s is the fractional Laplacian of order s ∈ (1/2, 1)
andW s,2

0 is the Sobolev-Slobodeckij space with null trace at the bound-
ary (see afterwards for the precise definitions, if s ∈ (0, 1/2] the problem
is formulated slightly differently). Given a compact set T with posi-
tive Lebesgue measure, the set of ‘holes’, or perforations, is defined as
Tj = ∪i∈Zn(εji + λjT ), where εj is the size of the lattice εjZn on the
vertices of which the holes are centered, and λj ∈ (0, εj) is a vanishing
scaling parameter.

The interest in the problem is motivated by several applications in
different fields, running from the classical Signorini’s problem in contact
mechanics and diffusion through semi-permeablke membranes (corre-
sponding to the case s = 1/2, see [37]), to stock-option pricing models
in Finance (see the papers [16], [17], [39], [40] for an overview).

The asymptotic analysis has been performed first by Caffarelli and
Mellet [16], [17] by means of an extension formula by Caffarelli and
Silvestre [18] with which the solution to the nonlocal equation in Rn is
interpreted as the boundary trace of the solution of a degenerate but
local elliptic equation in the higher dimensional half-space Rn+1

+ .
Instead, Γ-convergence techniques were applied by the Author first

in [38] still exploiting the extension formula by Caffarelli and Silvestre,
and then in [39] giving an intrinsic proof at the level of the nonlocal
energies.

Indeed, problem (5.1) has a natural variational character as the
Euler-Lagrange equation satisfied by minimizers, among functions in
W s,2

0 (Ω), of the perturbed quadratic form

Fj(u) =

ˆ
Ω×Ω

|u(x)− u(y)|2

|x− y|n+2s
dxdy −

ˆ
Ω

fu dx+ Kj(u),

where Kj : W s,2
0 (Ω)→ [0,+∞] equals 0 if u = 0 Ln a.e. on Tj ∩Ω and

+∞ otherwise. With this interpretation at hand (5.1) rewrites asˆ
Ω×Ω

2
(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dxdy =

ˆ
Ω

f(x)ϕ(x)dx
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for all ϕ ∈ C∞c (Ω\Tj) (see [36] for a survey of fractional Sobolev spaces
and different equivalent definitions of the fractional laplacian). Note
that being the energy under examination strictly convex the solution
of (5.1) is exactly its minimizer.

We shall show that depending on the limit value of the quotient
λj/ε

n
n−2s

j as j ↑ +∞ (which we shall assume to exist) different phe-

nomena occur. In particular, for λj ∼ ε
n

n−2s

j the singular penalization
represented by Kj is substituted in the limit by a finite penalization
of capacitary nature related to the homogenizing holes.

Heuristically, the motivation for this fact is clear when approximat-
ing a nonzero constant function u = k ∈ R \ {0}. For, suppose (uj)j∈N
is converging in L2(Ω) to u, and that the corresponding energies are
equi-bounded, i.e. supj Fj(uj) < +∞. Then, on one hand the approx-
imating functions uj are close to u in mean, on the other hand they
have to make a transition from values almost equal to k to zero around
each hole εji + λjT in Ω. The minimal energy paid for each of these
transitions is the so-called variational capacity of the relevant hole re-
lated to the energy under consideration (see the next section for the
definitions). The nontrivial fact that adding up all those contributions
gives the optimal energetic configuration is related to the geometric
assumption on the placements of the holes and the scaling properties
of the quoted capacity, more precisely to the integrability at ∞ of the
singular kernel | · |−(n+2s).

Such a behaviour is well-known in literature for energies defined
on standard Sobolev spaces, that is for the analogous problem with
the Dirichlet energy instead of the fractional seminorm, i.e., for u ∈
W 1,2

0 (Ω) ˆ
Ω

|∇u|2dx−
ˆ

Ω

fu dx+ Kj(u), (5.2)

equivalently from the point of view of PDEs{
−4u = f, u = 0 Ln a.e. on Ω ∩ Tj
u ∈ W 1,2

0 (Ω).

The homogenization of (nonlinear) elliptic problems in perforated do-
mains has received much attention since the ’70’s to today mainly for
applications in mechanics (fiber reinforced materials in the antiplane
setting for linearly elastic materials) and electrostatics (effective mod-
els for composites). Note that the Euler-Lagrange equations of the
minimimum problems related to the functionals in (5.2) do not fit the
framework of Theorem 3.14 due to the singular constraints imposed via
Kj.
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Much literature has been devoted to study the asymptotics of the
energies in (5.2), and many far reaching generalizations of such a prob-
lem, with different approaches starting with the seminal papers by
Marchenko and Khruslov [50], Rauch and Taylor [61], [62] and Cio-
ranescu and Murat [21]. Building upon a preliminary contribution by
De Giorgi, Dal Maso and Longo [33], abstract Γ-convergence methods
were employed by Dal Maso in a series of papers to give a full solu-
tion of the problem (see [23],[24]) without any assumption on the sizes,
shapes or distributions of the obstacles. The analysis there is based on
the abstract localization methods of Γ-convergence and fine tools from
potential theory. Here, we shall limit ourselves to a prototype result
which can be worked out ‘by hands’, highlighting at the end of the
section many possible generalizations.

The survey [26] provides a very detailed review of all the classical
contributions discussing also parallel results for monotone operators as
well as further developments (see [10] for a more up-to-date state of
the art).

5.1. Preliminaries and further definitions. With fixed s ∈ (0, 1),
for any Ln-measurable function w : Ω → R and any Ln×n-measurable
set E ⊆ Ω× Ω define

Ds(w,E) =

ˆ
E

|w(x)− w(y)|2

|x− y|n+2s
dxdy .

In addition, set
|w|2W s,2(A) := Ds(w,A× A).

The latter quantity is called the s-fractional seminorm of w, and

W s,2(Ω) :=
{
w ∈ L2(Ω) : |w|2W s,2(Ω) < +∞

}
is the Sobolev-Slobodeckij space, which turns out to be a Hilbert space
if endowed with the norm (‖ · ‖2

L2(Ω) + | · |2W s,2(Ω))
1/2 (we refer to the

books [1], [71] and to the recent paper [36] as main references for these
topics).
Ds(w, ·) is called the locality defect of the W s,2 seminorm, the termi-

nology being justified because given two disjoint subdomains A,B ⊆ Ω
one gets

|w|2W s,2(A∪B) = |w|2W s,2(A) + |w|2W s,2(B) + 2Ds(w,A×B). (5.3)

For s ∈ (1/2, 1),W s,2
0 (Ω) denotes the closure in the normW s,2 topology

of C∞c (Ω); while for s ∈ (0, 1/2] we recall that traces are not well-
defined as W s,2

0 (Ω) = W s,2(Ω). Hence, with fixed an open subset Ω′ b
Ω, for those values of the parameter s we shall impose a null Dirichlet
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boundary condition by taking Ŵ s,2(Ω), the (weakly closed) subspace
of functions in W s,2(Ω) with support in Ω′.

We shall employ only few analytical results concerning the spaces
W s,2 in what follows. First, we recall the scaled version of the Poincaré-
Wirtinger inequality in fractional Sobolev spaces (a consequence of
[71, Theorems 2.6.1 and 4.2.3], of a scaling argument and of Hölder
inequality)

‖u− ux+rE‖2
L2(x+rA,Rm) ≤ c r2s|u|2W s,2(x+rA,Rm) (5.4)

for any x ∈ Rn, r > 0 and for some c = c(n, s, E,A) > 0 with A an
open set in Rn and E a Ln-measurable subset of A.

Second, we quote an elementary bound on singular kernels (cp. with
[39, Lemma A.1]): for any Ln-measurable set E and for any point
x ∈ Rn with dist(x,E) > 0ˆ

E

1

|y − x|n+2s
dy ≤ c (dist(x,E))−2s (5.5)

for some positive constant c = c(n, p, s).
The notion of variational capacity for fractional Sobolev spaces and

some related properties are instrumental tools in what follows. For
s ∈ (0, 1), and given a set T ⊆ Rn of positive Lebesgue measure let

caps(T ) :=

inf
{A∈A(Rn):A⊇T}

inf
{
|u|pW s,2(Rn) : u ∈ W s,2(Rn), u ≥ 1Ln a.e. on A

}
,

(5.6)

with the convention inf ∅ = +∞. The set function in (5.6) turns out
to be a Choquet capacity (see [1, Chapter V]).

In the sequel relative capacities shall be crucial. We introduce two
different notions, the first shall be useful in the Γ-liminf inequality, the
second in the Γ-limsup inequality, respectively. For every 0 < r ≤ R
set

caps(T,BR; r) = inf
{A∈A(Rn):A⊇T}

inf
{
|w|2W s,2(BR) :

w ∈ W s,2(Rn), w ≥ 1 Ln a.e. on A, w = 0 on Rn \Br,
}
,

and

Cs(T,Br) = inf
{A∈A(Rn):A⊇T}

inf
{
|w|2W s,2(Rn) :

w ∈ W s,2(Rn), w ≥ 1 Ln a.e. on A, w = 0 on Rn \Br,
}
.
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Note that Cs(T,Br) ≥ caps(T ) for all r sufficiently big. In [39, Lemma
2.12] it is established that

lim
r→+∞

Cs(T,Br) = caps(T ), (5.7)

and also that

caps(T )−Cs(T,Br) ≤ caps(T )−caps(T,BR; r) ≤ c r2s

(R− r)2s
Cs(Bρ, Br),

(5.8)
for some constant c = c(n, s) and for all 0 < ρ < r < R with T ⊆ Bρ.

Remark 5.1. If ξr is a (1/r)-minimizer for Cs(T,Br) and R(r)/r →
+∞ as r ↑ +∞, then (5.8) yields

lim
r→+∞

Ds(ξr, BR(r) ×Bc
R(r)) = 0.

5.2. Statement of the Main Result. With fixed a bounded set T
with positive Lebesgue measure, for all j ∈ N define the obstacle set
Tj ⊆ Rn to be Tj = ∪i∈ZnT

i
j with

T i
j := εji + λjT, and λj ∈ (0, εj). (5.9)

Note then that T i
j ⊆ Qi

j := εj(i + [0, 1]n) for all i ∈ Zn and j ∈ N
sufficiently big.

Consider the functionals Fj : L2(Ω)→ [0,+∞] defined by

Fj(u) :=

{
|u|2W s,2(Ω) if u ∈ W s,2

0 (Ω), u = 0 Ln a.e. on Tj ∩ Ω

+∞ otherwise
(5.10)

if s ∈ (1/2, 1), we substitute W s,2
0 (Ω) with Ŵ s,2(Ω) for s ∈ (0, 1/2].

We are now able to state the Γ-convergence result.

Theorem 5.2. Let Ω ⊂ Rn be a bounded open connected set with
Lipschitz regular boundary and such that

ϑ := lim
j
ε−nj λn−2s

j ∈ [0,+∞].

Then, (Fj)j∈N Γ-converges in the strong L2(Ω) topology to F : L2(Ω)→
[0,+∞] defined by

F (u) := |u|2W s,2(Ω) + ϑ caps(T )

ˆ
Ω

|u(x)|2 dx (5.11)

if u ∈ W s,2
0 (Ω) for s ∈ (1/2, 1) or u ∈ Ŵ s,2(Ω) for s ∈ (0, 1/2], and

+∞ otherwise in L2(Ω).



Γ-CONVERGENCE 65

The well-known compact embedding of W s,2(Ω) into L2(Ω) on one
hand justifies the choice of the L2 topology, on the other hand, to-
gether with of Theorem 5.2, provides the convergence of the solutions
of problems (5.1) to the solution of

−4su+ ϑ caps(T )u = f, u ∈ W s,2
0 (Ω), s ∈ (1/2, 1)

(u ∈ Ŵ s,2(Ω) for s ∈ (0, 1/2]) in view of the continuity of the linear
perturbation defined via f . As anticipated, a lower order term substi-
tutes in the limit PDE the Dirichlet condition on the set of holes Tj
(cp. the last equation with (5.1)).

Two technical lemmata are instrumental for proving Theorem 5.2.
With the help of those results, Γ-convergence can be checked only on
sequences of functions that take constant values on suitable annuli sur-
rounding the obstacle sets almost matching the values of the corre-
sponding limit function. Thus, the heuristic argument quoted in the
introduction can be rendered rigorous.

We first deal with the unscaled setting in Lemma 5.3 obtaining a
preliminary rough estimate, and then turn to the framework of interest
in Lemma 5.4.

In Lemma 5.3 a family of annuli around points with integers coordi-
nates and a set of values are assigned. The values of any function u in
W s,2 are then changed accordingly on those sets. The relevant fact is
that the absolute energetic error of the construction can be estimated
only by local quantities related to u and to the chosen data (see for-
mula (5.12)). In doing this, long range interaction terms are carefully
estimated by distinguishing the zones close to the diagonal set in Ω×Ω
and those far from it. We refer to [39, Lemma 3.8] for the proof.

Lemma 5.3. Set I = {i ∈ Zn : i + [0, 1]n ⊆ Ω}, for any m ∈ N, m ≥
2, ρ ∈ (0, 1/2) and i ∈ I let A′i = i+Bρ/m\Bρ/m2, Ai = i+Bρ\Bρ/m3,
and ϕi(·) = ϕ(· − i), where ϕ ∈ C∞c (Bρ \ Bρ/m3) and ϕ = 1 on
Bρ/m \Bρ/m2.

Then there exists a constant c = c(n, s) > 0 such that for any u ∈
W s,2(Ω), and any #I-tuple of vectors {zi}i∈I, zi ∈ Rn, the function

w(x) =
∑
i∈I

ϕi(x)zi +

(
1−

∑
i∈I

ϕi(x)

)
u(x)

belongs to W s,2(Ω), w = zi on A′i and w = u on Ω \ A, with A :=
∪i∈IAi. In addition, for every measurable set E ⊆ Ω× Ω it holds

|Ds(w,E)−Ds(u,E)|
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≤ c

(
Ds(u,Ω× A) +m4ρ−2s

∑
i∈I

ˆ
Ai

|u(y)− zi|2 dy

)
. (5.12)

Next, in Lemma 5.4 we improve upon Lemma 5.3 by choosing suit-
ably the new values in a way that an elementary slicing and averaging
argument detects a family of annuli on which the energies do not con-
centrate. In particular, the final absolute energetic error turns out to
be only a small proportion of the energy of the starting function (cp.
with (5.15)).

The slicing/averaging argument employed below goes back to De
Giorgi [28], it has been largely employed in variational problems of
the kind of that of interest here in order to change boundary values
controlling the error in energy.

Before starting the proof we fix some notation: fixed m ∈ N, set

Ij := {i ∈ Zn : εj(i + [0, 1]n) ⊆ Ω} ,

and for all i ∈ Ij, h ∈ N consider the balls

Bi,h
j := {x ∈ Rn : |x− εji| < m−3hεj},

and the annuli

Ci,h
j := {x ∈ Rn : m−3h−2εj < |x− εji| < m−3h−1εj}.

Note that Ci,h
j ⊂ Bi,h

j \B
i,h+1

j ⊂ Qi
j .

Lemma 5.4. Let (uj)j∈N be converging to u in L2(Ω) with supj |uj|W s,2(Ω) <
+∞. With fixed m, N ∈ N, for every j ∈ N there exists hj ∈
{1, . . . , N} and a function wj ∈ W s,2(Ω) such that

wj = uj on Ω \ ∪i∈Ij(B
i,hj
j \Bi,hj+1

j ), (5.13)

wj = (uj)
C

i,hj
j

on Ci,hj
j , (5.14)

for some c = c(n, s,m) > 0 it holds for every measurable set E in
Ω× Ω

|Ds(uj, E)−Ds(wj, E)| ≤ c

N
|uj|2W s,2(Ω), (5.15)

and the sequences (wj)j∈N, (ζj)j∈N, with ζj :=
∑

i∈Ij(uj)Ci,hj
j

1Qi
j
, con-

verge to u in L2(Ω).

Proof. Givenm, N ∈ N, then for every j ∈ N and h ∈ {1, . . . , N} fixed,
apply Lemma 5.3 with (A′)hi := Ci,h

j , Ahi := Bi,h
j \B

i,h+1

j , zi = (uj)Ci,h
j
,

i ∈ Ij. Take note that ρ = m−3hεj. If wi,h
j denotes the resulting
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function and Ah = ∪i∈IjAhi , then for some constant c = c(n, s) and for
any measurable set E in Ω× Ω by (5.12) it holds

|Ds(uj, E)−Ds(wj, E)| ≤ cDs(uj,Ω× Ah)

+ cm4

(
m3h

εj

)2s∑
i∈Ij

ˆ
Ahi

|uj − (uj)Ci,h
j
|2dx.

This estimate, together with the scaled Poincarè-Wirtinger inequality
(5.4) with r = m−3hεj, gives

|Ds(uj, E)−Ds(wj, E)|

≤ c
(
Ds(uj,Ω× Ah) + |uj|2W s,2(Ah)

)
≤ cDs(uj,Ω× Ah), (5.16)

for some c = c(n, s,m) > 0. By summing up and averaging on h, being
the Ah’s disjoint, we find hj ∈ {1, . . . , N} such that

Ds(uj,Ω× Ahj) ≤
1

N
Ds(uj,Ω× ∪hAh). (5.17)

Set wj := w
i,hj
j , then (5.13) and (5.14) are satisfied by construction,

and moreover (5.16) and (5.17) imply (5.15).
To prove that (wj)j∈N converges to u in L2(Ω) we use (5.4), with

r = m−3hεj, and the very definition of wj as convex combination of uj
and the mean value (uj)

C
i,hj
j

on Bi,hj
j \Bi,hj+1

j to get

‖uj − wj‖2
L2(Ω) = ‖uj − wj‖2

L2(Ahj )

=
∑
i∈Ij

‖uj − wj‖2

L2(B
i,hj
j \B

i,hj+1

j )
≤
∑
i∈Ij

‖uj − (uj)
C
i,hj
j

‖2

L2(B
i,hj
j \B

i,hj+1

j )

≤ c
( εj
m3hj

)2s∑
i∈Ij

|uj|2
W s,2(B

i,hj
j \B

i,hj+1

j )
≤ cε2s

j |uj|2W s,2(Ω),

where c = c(n, s,m) > 0.
Eventually, let us show the convergence of (ζj)j∈N to u in L2(Ω). To

this aim we prove that (ζj − uj)j∈N is infinitesimal in L2(Ω).
For, note that (5.4) applied with r = εj which gives for some c =

c(n, s,m,N) > 0∑
i∈Ij

‖uj − (uj)
C

i,hj
j

‖2
L2(Qi

j)
≤ c ε2s

j |uj|2W s,2(Ω). (5.18)
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Given this, the conclusion is a straightforward consequence of the def-
inition of ζj and of (5.18), i.e.

‖ζj − uj‖2
L2(Ω) =

∑
i∈Ij

‖uj − (uj)
C

i,hj
j

‖2
L2(Qi

j)
+ ‖uj‖2

L2(Ω\∪IjQ
i
j)
.

�

5.3. Proof of the Γ-convergence. We establish the Γ-convergence
result contained in Theorem 5.2.

We first show the lower bound inequality in Propositions 5.5 below.
In view of Lemma 5.4 we consider only sequences assuming constant
values around the obstacles, which are then approximately mean values
of the target function close to the T i

j ’s (cp. with (ζj) in Lemma 5.4).
Then we use a separation of scale argument. Fix a lengthscale δ > 0

and consider the δ-neighbourhood ∆δ of the diagonal set ∆, i.e.

∆ := {(x, y) ∈ Rn × Rn : x = y},
∆δ := {(x, y) ∈ Rn × Rn : dist((x, y),∆) ≤ δ}.

The asymptotic energy contribution on Ω×Ω \∆δ gives the fractional
seminorm of the target function since the kernel is no longer singular
there.

Further, to recover the limit capacitary term we evaluate only the
self-interaction energies close to each obstacle. This is sufficient because
the obstacles shrink at a faster scale than the distances between their
centers, so that capacity behaves additively in the limit. Hence, for each
T i
j we solve a local capacitary problem with transition between the local

value of the target function around T i
j to zero. In conclusion, when we

evaluate the total contribution of those terms we get a discretization
of the integral of the target function squared.

Eventually, in Proposition 5.6 we build a special sequence for which,
using the previous arguments, there is actually no loss of energy asymp-
totically.

Proposition 5.5. For every uj → u in L2(Ω) we have

lim inf
j

Fj(uj) ≥ F (u).

Proof. Fix N ∈ N, δ > 0, and set m = [1/δ] ∈ N, [·] denoting the
integer part function.

Without loss of generality suppose that lim infj Fj(uj) < +∞, in
a way that u ∈ W s,2

0 (Ω) for s ∈ (1/2, 1), or u ∈ Ŵ s,2(Ω) for s ∈
(0, 1/2]), being the latter spaces weakly closed. Consider the sequence
(wj)j∈N provided by Lemma 5.4, for the sake of notational convenience
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its dependence on δ, N is not highlighted. Note that whatesover the
choices of δ and N are, (wj)j∈N converges to u in L2(Ω) and for some
c = c(n, s, δ) > 0 it holds(

1 +
c

N

)
lim inf

j
Fj(uj) ≥ lim inf

j
Fj(wj). (5.19)

Since for j sufficiently big ∪i∈Ij(Qi
j×Qi

j) ⊆ ∆δ, we can argue as follows

lim inf
j

Fj(wj)

≥ lim inf
j

ˆ
Ω×Ω\∆δ

|wj(x)− wj(y)|2

|x− y|n+2s
dx dy +

∑
i∈Ij

|wj|2W s,2(Qi
j)


=

ˆ
Ω×Ω\∆δ

|u(x)− u(y)|2

|x− y|n+2s
dx dy + lim inf

j

∑
i∈Ij

|wj|2W s,2(Qi
j)
, (5.20)

thanks to the convergence |wj(x)− wj(y)|2 → |u(x)− u(y)|2 in L1(Ω)
and being | · |−(n+2s) ∈ L∞(Rn × Rn \∆δ). We claim that

lim inf
j

∑
i∈Ij

|wj|2W s,2(Qi
j)
≥ ϑ (caps(T )− εδ)

ˆ
U

|u(x)|2dx, (5.21)

with εδ > 0 infinitesimal as δ ↓ 0+. Given this for granted, by (5.19)
inequality (5.20) rewrites as(

1 +
c

N

)
lim inf

j
Fj(uj) ≥

ˆ
Ω×Ω\∆δ

|u(x)− u(y)|2

|x− y|n+2s
dx dy

+ ϑ (caps(T )− εδ)
ˆ

Ω

|u(x)|2dx. (5.22)

The thesis then follows by passing to the limit first as N ↑ +∞ and
then as δ ↓ 0+ in (5.22).

To conclude we are left with proving (5.21). We keep the notation of
Lemma 5.4, and further set Bi

j := {x ∈ Rn : |x− εji| < m−(3hj+1)εj},
for all i ∈ Ij. Note that Bi

j ⊆ Qi
j . We have

|wj|2W s,2(Qi
j)

≥ inf

{
|w|2W s,2(Bi

j )
: w ∈ W s,2(Rn), w = (uj)

C
i,hj
j

on Ci,hj
j , w̃ = 0 q.e. on T i

j

}
= inf

{
|w|2W s,2(Bi

j )
: w ∈ W s,2(Rn), w = 0 on Ci,hj

j , w̃ = (uj)
C

i,hj
j

q.e. on T i
j

}
= |(uj)

C
i,hj
j

|2caps

(
T i
j , B

i
j ;

εj
m3hj+2

)
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= λn−2s
j |(uj)

C
i,hj
j

|2caps

(
T,B εj

m
3hj+1

λj

;
εj

m3hj+2λj

)
. (5.23)

The last equality is justified by an elementary translation and scaling
argument. Being hj ∈ {1, . . . , N}, estimate (5.8) gives

caps

(
T,B εj

m
3hj+1

λj

;
εj

m3hj+2λj

)
≥ caps(T )− c

(m− 1)2s
Cs

(
B1, B εj

m
3hj+2

λj

)
.

Hence, if A ∈ A(Ω) is such that A b Ω, for j sufficiently big we infer∑
i∈Ij

|wj|2W s,2(Qi
j)

≥

(
caps(T )− c

(m− 1)2s
Cs

(
B1, B εj

m
3hj+2

λj

))
λn−2s
j ε−nj

ˆ
A

|ζj(x)|2dx.

Finally, the thesis follows at once by the convergence of relative ca-
pacities to the global one proved in (5.7). the strong convergence of
(ζj)j∈N to u in L2(Ω) established in Lemma 5.4, and eventually by
letting A increase to Ω and m ↑ +∞. �

In the next proposition we prove that the lower bound established in
Proposition 5.5 is optimal. Thanks to the insight provided by Proposi-
tion 5.5 we show that the capacitary contribution is concentrated along
the diagonal set ∆ and is due to short range interactions. Instead, long
range interactions are responsible for the nonlocal term in the limit.

Proposition 5.6. For every u ∈ L2(Ω) there exists a sequence (uj)j∈N
such that uj → u in L2(Ω) and

lim sup
j

Fj(uj) ≤ F (u).

Proof. Without loss of generality we may suppose ϑ < +∞, since oth-
erwise if F (u) < +∞ then u = 0 Ln a.e. on Ω and u itself provides a
trivial recovery sequence.

A density argument, which holds true thanks to the very definitions
of W s,2

0 (Ω) for s ∈ (1/2, 1), and Ŵ s,2(Ω) for s ∈ (0, 1/2], the continuity
of F and the lower semicontinuity of Γ- lim supj Fj in the strong W s,2

topology allow the choice u ∈ C∞c (Ω). In addition, we may also assume
that u, extended to 0, belongs to W s,2(Ω′) for some bounded open
smooth set Ω′ with Ω b Ω′.

Let (wj)j∈N be the sequence obtained from u by applying Lemma 5.4
on Ω′ with m = 2. We keep the notation introduced there and further
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set
I ′j = Ij ∪ {i ∈ Zn : εj(i + [0, 1]n) ∩ ∂Ω 6= ∅},

and for i ∈ I ′j

Bi
j = B

i,hj
j (= {x ∈ Rn : |x− εji| < 2−3hj−1εj}),

uij = u
C

i,hj
j

, Ωj = Ω \
(
∪I′jB

i
j

)
.

Given N ∈ N, let ξ ∈ W s,2(Rn) be such that ξ = 0 on Rn \ BN , ξ ≥ 1
Ln a.e. on T and |ξ|2W s,2(Rn) ≤ Cs(T,BN) + 1/N . Then, recalling that
λjε
−n/(n−2s)
j is bounded, define

uj(x) :=

{
wj(x) Ωj(

1− ξ
(
x−εji
λj

))
uij Bi

j , i ∈ I ′j.
(5.24)

For the sake of notational simplicity we have not highlighted the de-
pendence of the sequence (uj)j∈N on the parameter N ∈ N. Clearly,
(uj)j∈N converges strongly to u in L2(Ω), and moreover it satisfies the
obstacle condition by construction. The rest of the proof is devoted to
show that uj ∈ W s,2(Ω) with

lim sup
j

Fj(uj) ≤ F (u) + εδ + εN ,

where εδ ↓ 0+ as δ ↓ 0+ and εN ↓ 0+ as N ↑ +∞.
First, we can reduce the calculations to compute the energy of uj

only on a neighbourhood of the diagonal ∆. For, Lebesgue dominated
convergence and the convergence of (uj)j∈N to u in L2(Ω) give

lim
j
Ds(uj, (Ω× Ω) \∆δ) = Ds(u, (Ω× Ω) \∆δ).

Moreover, since uj = wj on Ωj by (5.15) in Lemma 5.4, we have for
some constant c = c(n, s)

lim sup
j
Ds(uj, (Ωj × Ωj) ∩∆δ)

≤ lim sup
j
Ds(wj, (Ω×Ω)∩∆δ) ≤

(
1 +

c

N

)
Ds(u, (Ω×Ω)∩∆δ) = εδ.

(5.25)

The conclusion follows at once provided we show that

lim sup
j

(
Ds(uj, (Ω× (Ω \ Ωj)) ∩∆δ) +Ds(uj, ((Ω \ Ωj)× Ωj) ∩∆δ)

)
≤ ϑ caps(T )

ˆ
Ω

|u|2dx+ εN + εδ. (5.26)
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To prove the latter inequality we split the left hand side above as
follows:

Ds(uj, (Ω× (Ω \ Ωj)) ∩∆δ) +Ds(uj, ((Ω \ Ωj)× Ωj) ∩∆δ)

≤
∑
i∈I′j

|uj|2W s,2(Bi
j )

+
∑

{(i,k)∈I′j×I′j : 0<|εji−εjk|<δ}

Ds(uj, Bi
j ×Bk

j )

+2
∑
i∈I′j

Ds(uj, (Bi
j × Ωj) ∩∆δ) = I1

j + I2
j + I3

j .

We estimate separately each term Ihj , h ∈ {1, 2, 3}. All the constants
c appearing below depend only on n, s and ‖u‖W 1,∞(Ω′), so that this
dependence will no longer be indicated.

Step 1. Estimate of I1
j :

lim sup
j

I1
j ≤ ϑ (caps(T ) + εN)

ˆ
Ω

|u|2dx. (5.27)

A straightforward change of variables leads to

I1
j = λn−2s

j

∑
i∈Ij

|uij |2|ξ|2W s,2(λ−1
j (Bi

j−εji))
≤ λn−2s

j

(
Cs(T,BN) +

1

N

)∑
i∈Ij

|uij |2

=

(
Cs(T,BN) +

1

N

)
λn−2s
j ε−nj

ˆ
Ω

|ζj|2dx,

where ζj is defined in Lemma 5.4. Arguing as in Proposition 5.5 and
using (5.7), we conclude (5.27).

Step 2. Estimate of I2
j :

lim sup
j

I2
j ≤ εδ + εN . (5.28)

The very definition of uj in (5.24) yields for all (x, y) ∈ Bi
j ×Bk

j , i 6= k

and i, k ∈ Ij,

uj(x)− uj(y) =
(
uij − ukj

)
− ξ

(
λ−1
j (x− εji)

)
uij + ξ

(
λ−1
j (y − εjk)

)
ukj .

Hence, we can bound I2
j as follows

I2
j ≤ c

∑
{(i,k)∈I′j×I′j : 0<|εji−εjk|<δ}

ˆ
Bi
j×Bk

j

|uij − ukj |2

|x− y|n+2s
dxdy

+c
∑

{(i,k)∈I′j×I′j : 0<|εji−εjk|<δ}

ˆ
Bi
j×Bk

j

|ξ(λ−1
j (x− εji))|2

|x− y|n+2s
dxdy =: I2,1

j + I2,2
j .
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To estimate the right hand side above we note that for any (x, y) ∈
Bi
j ×Bk

j , i, k ∈ I ′j with i 6= k

εj|i− k|/2 ≤ |x− y| ≤ 2εj|i− k|.
From this we infer |uij − ukj | ≤ 2‖u‖W 1,∞(Ω′)εj|i− k|, and so we deduce

ˆ
Bi
j×Bk

j

|uij − ukj |2

|x− y|n+2s
dxdy ≤ c

ε
n−2(s−1)
j

|i− k|n+2(s−1)
. (5.29)

In addition, for every fixed i ∈ Ij we have

{k ∈ I ′j : 0 < εj|i− k|∞ < δ} ⊆ ∪[δ/εj ]
h=1 {k ∈ I

′
j : h ≤ |i− k|∞ < h+ 1},

where [t] denotes the integer part of t. The latter inclusion, (5.29) and
the estimate

#{k ∈ I ′j : h ≤ |i− k|∞ < h+ 1} ≤ 2nhn−1, (5.30)

entail

I2,1
j ≤ c

∑
i∈I′j

[δ/εj ]∑
h=1

∑
{k∈I′j :h≤|i−k|∞<h+1}

ε
n−2(s−1)
j

hn+2(s−1)

≤ c

[δ/εj ]∑
h=1

ε
−2(s−1)
j

h1+2(s−1)
≤ c δ2(1−s), (5.31)

since
∑M

h=1 h
−(1+γ) ≤ 2(M−γ)/(−γ), for any γ < 0 and M ∈ N.

To deal with I2,2
j we argue as above, so that for every i ∈ I ′j we have∑

{k∈I′j : k 6=i}

ˆ
Bk
j

1

|x− y|n+2s
dy ≤ c

∑
{k∈I′j : k6=i}

ε−2s
j

|i− k|n+2s

(5.30)
≤ c

∑
h≥1

ε−2s
j

h1+2s
.

Thus, being ξ(λ−1
j (·−εji)) supported in Bi

j , a change of variables yields

I2,2
j ≤ c λnj ε

−n−2s
j ‖ξ‖2

L2(BN ) ≤ c ε
4s2

n−2s

j ‖ξ‖2
L2(BN ). (5.32)

Clearly, (5.31) and (5.32) imply (5.28).

Step 3. Estimate of I3
j :

lim sup
j

I3
j ≤ εδ + εN . (5.33)

Being uj = wj on Ωj and spt(ξ(λ−1
j (· − εji))) ⊆ Bi

j , we find

I3
j ≤ c

∑
i∈I′j

Ds(ξ(λ−1
j (· − εji)), Bi

j × (Ω \Bi
j ))
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+ c
∑
i∈I′j

ˆ
Bi
j×Ωj

|wj(x)− uij |2

|x− y|n+2s
dxdy

+ c
∑
i∈I′j

ˆ
(Bi
j×Ωj)∩∆δ

|wj(y)− wj(x)|2

|x− y|n+2s
dxdy = I3,1

j + I3,2
j + I3,3

j .

Note that by a change of variables the integral I3,1
j rewrites as

I3,1
j ≤ c λn−2s

j ε−nj Ds

(
ξ, B εj

8
hj λj

×

(
Rn \B εj

8
hj λj

))
= εN , (5.34)

by Remark 5.1.
To deal with the term I3,2

j we first integrate out y thanks to estimate
(5.5), and observe that by construction wj|

C
i,hj
j

= uij . Hence, we apply

the scaled Poincaré-Wirtinger inequality (5.4) on the ball Bi
j \C

i,hj
j =

B2−3hj−2εj
(εji) to infer

I3,2
j ≤ c

∑
i∈I′j

ˆ
Bi
j

|wj(x)− uij |2

dist2s(x, ∂Bi
j )
dx = c

∑
i∈I′j

ˆ
Bi
j\C

i,hj
j

|wj(x)− uij |2

dist2s(x, ∂Bi
j )
dx

≤ c

(
23hj+1

εj

)2s∑
i∈I′j

ˆ
Bi
j\C

i,hj
j

|wj(x)− uij |2dx

≤ c
∑
i∈I′j

|wj|2W s,2(Bi
j )
≤ cDs(wj, (Ω× Ω) ∩∆δ)

(5.25)
= εδ. (5.35)

Finally, for what I3,3
j is concerned we have

I3,3
j ≤ cDs(wj, (Ω× Ω) ∩∆δ)

(5.25)
= εδ. (5.36)

By collecting (5.34)-(5.36) we infer (5.33).

Step 4: Conclusion. By collecting Step 1 - Step 3 we infer

lim sup
j

Fj(uj) ≤ F (u) + εδ + εN ,

with the two terms on the right hand side above infinitesimal as δ ↓ 0+

and as N ↑ +∞, respectively. �

We end this section by mentioning several possible generalizations
of Theorem 5.2 which are obtained slightly refining the arguments out-
lined here. The analysis performed above is sufficiently robust to deal
with suitable aperiodic distributions of points (Delone set of points)
on which the perforations are centered, with holes with random sizes
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and shapes, and with holes centered on stochastic lattices (see [39]).
Vector-valued obstacles can also be taken into account (see [40]).

Eventually, all the quoted results are proved also for broad classes of
anisotropic and non-homogeneous kernels defined on Sobolev-Slobodeckij
spaces W s,p, with s ∈ (0, 1), p ∈ (1,+∞) and sp ∈ (0, n] (the case
sp = n deserves a slightly different analysis due to the scaling invari-
ance property of the related energy, see [40]).
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