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Introduction

A general regularity theorem for the singular set of solutions to variational
problems or to PDEs arising in geometric analysis is the topic of investigation
of this paper. We give several applications of this result, in particular to the
theory of Almgren’s Q-valued Dir-minimizing functions.

An abstract regularity result. We propose an abstraction of a quantitative
stratification principle introduced and developed in a series of papers by Cheeger
and Naber [4, 5], Cheeger, Haslhofer and Naber [6, 7] and Cheeger, Naber and
Valtorta [8].

The interest in finding general formulations of this kind of regularity results
is driven by a number of important applications in geometric analysis. Apart
from those contained in the papers quoted above, we mention the cases of
Dir-minimizing Q-valued maps according to Almgren, of varifold with bounded
mean curvature and of almost minimizers of the perimeter. The former is
treated in details in § 3 and § 4, the latters in § 5. We explicitly remark that
the papers [6, 7] deal also with parabolic examples, a case that is not covered
by our results.

To our knowledge the first example in this direction of abstraction is the
general regularity theorem proven by Simon [18, Appendix A] based on the so
called dimension reduction argument introduced by Federer in his pioneering
work [15]. Similarly, the paper by White [22] generalizes the refinement of
Federer’s reduction argument made by Almgren in his big regularity paper [2].
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The basic principle and the main ingredients of our abstract formulation can
be explained roughly as follows.

Abstract stratification: the set of points where a solu-
tion to a geometric problem is faraway at every scale from be-
ing homogeneous with k+1 indipendent invariant directions has
Minkowski dimension less than or equal to k.

The main sets of quantities we consider are:

(a) a family of density functions Θs(x), increasing w.r.t. s;

(b) a family of distance functions dk, k ∈ {0, . . . ,m}, measuring the distance
from k-invariant homogeneous solutions.

In addition, we assume suitable compatibility conditions, namely

(i) a quantitative differentiation principle that allows to quantify the num-
ber of those scales for which closeness to homogeneous solutions fails,
and that tipically follows in the applications from monotonicity type
formulas;

(ii) a consistency relation between the distances dk: if a solution is close to
a k-invariant one and additionally is 0-invariant with respect to another
point away from the invariant k-dimensional space, then it is actually
close to a (k + 1)-invariant solution (see § 1.0.2 for the detailed formu-
lation).

This set of hypotheses is common to many problems in geometric analysis
such as the multiple valued functions dealt with below, harmonic maps, almost
minimizing currents and several others (see [4]-[8] for other applications). In-
deed, the stratification result and the estimate on the Minkowski dimension in
the settings quoted above only depend on these assumptions (i) and (ii), thus
making the common aspects of all previous results clear.

It turns out that there is a simple connection between White’s approach to
Almgren’s stratification and the one outlined above. In § 2.3 we show how to
recast the result by White in our framework. In this respect, we stress that
the stratification in [5] and in our Theorem 1.4 can be applied to some cases
not covered by the ideas in [22], such as stationary harmonic maps (cp. [5,
Corollary 2.6], § 1.7.2 and [22, Section 6]).

Our main application of the abstract stratification principle is outlined in
the following subsection.

Application to Q-valued functions. In the regularity theory for higher codi-
mension minimal surfaces (in the sense of mass minimizing integer rectifiable
currents) a fundamental role is played by the multiple valued functions intro-
duced by Almgren in [2], which turn out to be the correct blowup limits for the
analysis of singularities (see also [9, 10, 11, 12, 13] for a simplified new proof of
the result in [2]).

Following [9], a Q-valued function u is a measurable map from a bounded
open subset Ω ⊂ Rn (for simplicity we always assume that the boundary of Ω
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is smooth) taking values in the space of positive atomic measures in Rm with
mass Q, namely

Ω 3 x 7→ u(x) ∈ AQ(Rm) :=

{
Q∑
i=1

JpiK : pi ∈ Rm
}
,

where JpK denotes the Dirac delta at p. Almgren proves in [2] (cp. also [13]) that
the blowups of higher codimension mass minimizing integral currents are actu-
ally graphs of Q-valued functions u in a suitable Sobolev class W 1,2(Ω,AQ(Rm))
minimizing a generalized Dirichlet energy (cp. [9, Definition 0.5]):ˆ

Ω
|Du|2 ≤

ˆ
Ω
|Dv|2 ∀ v ∈W 1,2(Ω,AQ(Rm)), v|∂Ω = u|∂Ω,

(explicit examples of Dir-minimizing Q-valued functions are given in [20]).
In order to estimate the size of the singular set of a minimizing current it is

essential to bound the dimension of the set of points where the graph of a Dir-
minimizing Q-valued function has higher multiplicity. Almgren’s main result in
the analysis of multiple valued functions is in fact an estimate of the Hausdorff
dimension of the set ∆Q of multiplicity Q points of a Dirichlet minimizing Q-
valued function u, i.e. the set of points x ∈ Ω such that u(x) = Q JpK for some
p ∈ Rm, which turns out not to exceed n − 2 in the case it does not coincide
with Ω (cp. [9, Proposition 3.22]).

In this paper we improve Almgren’s result by showing an estimate of the
Minkowski dimension of ∆Q. To this aim we denote by Tr(E) := {z ∈ Rn :
dist(z, E) < r} the tubular neighborhood of radius r of a given set E ⊂ Rn.

Theorem A. Let u : Ω → AQ(Rm) be a Dir-minimizing function, where
Ω ⊂ Rn is a bounded open set with smooth boundary. Then either ∆Q = Ω, or
for every Ω′ ⊂⊂ Ω the Minkowski dimension of ∆Q ∩ Ω′ is less than or equal
to n − 2, i.e. for every Ω′ ⊂⊂ Ω and for every κ0 > 0 there exists a constant
C > 0 such that

|Tr(∆Q ∩ Ω′)| ≤ C r2−κ0 ∀ 0 < r < dist(Ω′, ∂Ω). (0.1)

We also obtain a stratification result for the whole set of singular points of
multiple valued functions that, even if known to the experts, we were not able
to find in the literature. To this aim we introduce the following notation. Given
a Q-valued function u : Ω→ AQ(Rm), we denote by Singu ⊂ Ω its singular set,
i.e. x0 6∈ Singu if and only if there exists r > 0 such that

graph(u|Br(x0)) := {(x, y) ∈ Rn×m : |x− x0| < r, y ∈ supp (u(x))}

is a smooth n-dimensional embedded submanifold (not necessarily connected).
For every k ∈ {0, . . . , n}, we define the subset Singku of the singular set Singu
made of those points having all tangent functions with at most k independent
directions of invariance (we refer to § 4.4 for the precise definition).

Theorem B. Let u : Ω → AQ(Rm) be a Dir-minimizing function, where

Ω ⊂ Rn is a bounded open set with smooth boundary, and let Singku be the
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singular strata defined in § 4.4. Then, Singu = Singn−2
u and

Sing0
u is countable (0.2)

dimH(Singku) ≤ k ∀ k ∈ {1, . . . , n− 2}. (0.3)

In the case Q = 2 a more refined analysis by Krummel and Wickramasekera
[16] shows the rectifiability of the singular set, remarkably improving Almgren’s
work.

We prove Theorem A and B as a consequence of our abstract stratification
principle. More precisely, Theorem B is a direct consequence of it, while The-
orem A requires a further stability property deduced by an ε-regularity result
(see Proposition 4.4).

Applications to generalized submanifolds. In the final section § 5 we ap-
ply the abstract stratification principle to varifolds with bounded mean curva-
ture and almost minimizers of the perimeter, two relevant cases for applications
that are not covered by the results in [5]. Also in these cases we derive some
improvements of well-known estimates for the singular set. Stratification for the
singular set of stationary varifolds with bounded mean curvature is addressed
in § 5.1. Eventually, in Theorem 5.4 we give a bound on the Minkowski dimen-
sion of the singular set of an almost minimizer of the perimeter rather than
the classical Hausdorff dimension estimate, and in Theorem 5.5 we show higher
integrability for its generalized second fundamental form.

On the organization of the paper. A few words are worthwhile concerning
the structure of the paper. The first two sections of the paper are devoted to the
abstract regularity results. In particular, § 1 contains the estimate of the volume
of the tubular neighborhood of the singular strata given in Theorem 1.2 (which
is proved in the first part of § 2) and the abstract stratification in Theorem 1.4.
In order to make our statements and hypotheses recognizable and “natural”
to the readers, we illustrate them in § 1.7 for the model examples of area
minimizing currents and harmonic maps. The last part of § 2 is devoted to the
comparison with the results by White in [22]. Then, we specialize our results
to the case of Q-valued functions in §4, the needed preliminaries are collected
in § 3. We finally focus on varifolds with suitable hypotheses on their mean
curvature and on almost minimizers of the perimeter in § 5.
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1. Abstract Stratification

The general abstract approach we propose is based on two main sets of
quantities: namely, a family of density functions Θs and an increasing family
of distance functions dk.

1.0.1. Densities and distance functions. Let Ω ⊂ Rn be open and
bounded, and for every s ≥ 0 set Ωs := {x ∈ Ω : dist(x, ∂Ω) ≥ 2s}. We
assume the following.

(a) For every s such that Ωs 6= ∅, there exist functions Θs ∈ L∞(Ωs) such
that

0 ≤ Θs(x) ≤ Θs′(x),

for all 0 ≤ s < s′ and for all x ∈ Ωs′ . Moreover, for every s0 > 0 there
exists Λ0 = Λ0(s0) > 0 such that

Θs(x) ≤ Λ0,

for every 0 ≤ s ≤ s0 and for every x ∈ Ωs0 .
(b) Setting U := {(x, s) : x ∈ Ωs, Θ0(x) > 0}, there exist a positive integer

m ≤ n and control functions dk : U → [0,+∞) for k ∈ {0, . . . ,m} such
that

d0 ≤ d1 ≤ · · · ≤ dm.

1.0.2. Structural hypotheses. These two sets of quantities are then related
by the following structural hypotheses.

(i) For every s0 > 0, ε1 > 0 there exist 0 < λ1(s0, ε1), η1(s0, ε1) < 1/4 such
that if (x, s) ∈ U , with x ∈ Ωs0 and s < s0, then

Θs(x)−Θλ1s(x) ≤ η1 =⇒ d0(x, s) ≤ ε1.

(ii) For every s0 > 0, for every ε2, τ ∈ (0, 1) there exists 0 < η2(s0, ε2, τ) ≤
ε2 such that if (x, 5s) ∈ U , with x ∈ Ωs0 and 5s < s0, satisfies for some
k ∈ {0, . . . ,m− 1}

dk(x, 4s) ≤ η2 and dk+1(x, 4s) ≥ ε2,

then there exists a k-dimensional linear subspace V for which

d0(y, 4s) > η2 ∀ y ∈ Bs(x) \ Tτs(x+ V ),

where Tτs(x + V ) := {z : dist(z, x + V ) < τs} is the tubular neighbor-
hood of x+ V of radius τs.
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1.1. Volume of the neighborhoods of singular strata. The sets we con-
sider in our estimates are the following.

1.1.1. Definition (Singular Strata). For every 0 < δ < 1, 0 < r ≤ r0 and
for every k ∈ {0, . . . ,m− 1} we set

Skr,r0,δ :=
{
x ∈ Ωr0 : Θ0(x) > 0 and dk+1(x, s) ≥ δ ∀ r ≤ s ≤ r0

}
(1.1)

and

Skr0,δ :=
⋂

0<r≤r0

Skr,r0,δ and Skr0 :=
⋃

0<δ<1

Skr0,δ. (1.2)

Note that, by the monotonicity of the control functions, Skr,δ ⊂ Sk
′
r′,δ′ if δ′ ≤ δ,

r ≤ r′ and k ≤ k′.

Our abstract stratification result relies on the following estimate for the tubu-
lar neighborhoods of the singular strata. Its proof is postponed to §2.

1.2. Theorem. Under the Structural Hypotheses 1.0.2, for every κ0, δ ∈
(0, 1) and r0 > 0 there exists C = C(κ0, δ, r0, n,Ω) > 0 such that

|Tr(Skr,r0,δ)| ≤ C r
n−k−κ0 ∀ 0 < r < r0 ∀ k ∈ {1, . . . ,m− 1} (1.3)

S0
r0,δ is countable. (1.4)

1.3. Hausdorff dimension of the singular strata. It is now an immediate
consequence of Theorem 1.2 the following stratification result.

1.4. Theorem. Under the Structural Hypotheses 1.0.2 for every r0 > 0 the
estimate dimH(Skr0) ≤ k holds for k ∈ {1, . . . ,m− 1}. Moreover, S0

r0 is count-
able.

Proof. Indeed Theorem 1.2 implies that dimM(Skr0,δ) ≤ k, where dimM is
the Minkowski dimension. Since the Hausdorff dimension of a set is always less
than or equal to the Minkowski dimension, we also infer that

dimH(Skr0) ≤ dimH

( ⋃
δ>0

Skr0,δ

)
≤ k

because, being the union monotone, it is enough to consider a countable set of
parameters. �

1.5. Minkowski dimension of the singular strata. The dependence of the
constant C in (1.3) on δ prevents the derivation of an estimate on the Minkowski
dimension of the singular strata Skr0 . Nevertheless, if such dependence drops,
then Theorem 1.2 turns actually into an estimate on the Minkowski dimension of
the singular strata which is not implied by the Almgren’s stratification principle.

1.6. Theorem. Under the hypotheses of Theorem 1.2, if there exist k ∈
{0, . . . ,m− 1} and δ0 > 0 such that

Skr0,δ = Skr0 ∀ δ ∈ (0, δ0), (1.5)
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then for every 0 < κ0 < 1 and r0 > 0 there exists C = C(κ0, δ0, r0, n,Ω) > 0
such that

|Tr(Skr0)| ≤ C rn−k−κ0 ∀ 0 < r < r0. (1.6)

In particular dimM(Skr0) ≤ k.

1.7. Examples. The meaning of the Structural Hypotheses 1.0.2 is very well
illustrated by the two familiar examples of area minimizing currents and sta-
tionary harmonic maps treated in [5] for which Theorem 1.2 and 1.4 hold.
Moreover for area minimizing currents of codimension one in Rn Theorem 1.6
can be also applied for k = n− 8.

1.7.1. Area minimizing currents. Let T be an m-dimensional area minimizing
integral current in Ω. Then we can set

Θs(x) :=
‖T‖(Bs(x))

wmsm
for s > 0 and Θ0(x) := lim

r↓0+
Θr(x)

and for k ∈ {0, . . . ,m}

dk(x, s) := inf
{
F
(
(Tx,s − C) B1

)
: C is k-conical & area minimizing

}
,

where

• Tx,r is the rescaling of the current around any point x ∈ Rn at scale
r > 0:

Tx,r :=
(
ηx,r
)

#
T (1.7)

and the push-forward is done via the proper map ηx,r given by y 7→
(y − x)/r;

• F is the flat norm (see [18, § 31]);

• an m-dimensional current C in Rn is k-conical for k ∈ {0, . . . ,m}, if
there exists a linear subspace V ⊂ Rn of dimension bigger than or equal
to k such that

Tx,r = T for all r > 0 and x ∈ V .

Note that a 0-conical current is simply a cone with respect to the origin.

One can choose Λ0(r0) := M(T )/ωmrm0 . Then (a) is a consequence of the Mono-
tonicity Formula (see [18, Theorem 17.6]) and (b) follows from the inclusion of
k-conical currents in the k′-conical ones when k′ ≤ k. With this choice, the
structural hypoteses in 1.0.2 are satisfied, indeed (i) is an other consequence
of the Monotonicity Formula and (ii) follows from a rigidity property of cones
sometimes called “cylindrical blowup” (see [18, Lemma 35.5]).

Then the quantitative stratification principle in Theorem 1.2 recovers the
corresponding result in [5]:

the set of points that are faraway from (k+ 1)-conical area min-
imizing currents, at every scale in [r, r0], has Minkowski dimen-
sion less than or equal to k.
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1.7.2. Stationary harmonic maps. Similarly let u ∈ W 1,2(Ω,N ) be a station-
ary harmonic map from an open set Ω ⊂ Rn to a Riemannian manifold (N m, h)
isometrically embedded in some Euclidean space Rp (see, e.g., [19]). We can
set

Θs(x) := s2−n
ˆ
Bs(x)

|∇u|2dy, s ∈
(
0, dist(x, ∂Ω)

)
,

and for every k ∈ {0, . . . , n}

dk(x, r) := inf
v∈Ck

 
B1

dist2
N

(
ux,r, v

)
dy,

with

• ux,r(y) := u(x+ ry) for x ∈ Ω and r ∈
(
0, dist(x, ∂Ω)

)
;

• a measurable map v is said to be k-conical if there exists a vector space
V with dimV ≥ k that leaves v invariant, i.e.

v(x) = v(y + x) ∀x ∈ Rn, y ∈ V, (1.8)

and such that v is 0-homogeneous with respect to the points in V , i.e.

v(y + x) = v(y + λx) ∀x ∈ Rn, y ∈ V and λ > 0; (1.9)

• Ck := {v : B1 → N k-conical} .

Assumption (a) in § 1.0.1 is easily verified and the monotonicity formula

Θr(x)−Θs(x) =

ˆ r

s

ˆ
∂Bt(x)

t2−n
∣∣∣∣∂u∂t

∣∣∣∣2 dHn−1dt

together with an elementary contradiction argument show that the Structural
hypothesis (i) in § 1.0.2 is satisfied. Moreover the structural hypothesis (ii)
follows similarly to the one for minimizing currents (cp. [5] for more details),
thus leading to the stratification of Theorem 1.2.

In Section 5 we give other applications of this abstract regularity result to
the case of varifolds with bounded variation and almost minimizers of the mass
in codimension one.

2. Proof of the Abstract Stratification and comparison with
Almgren’s Stratification

2.1. Preliminary results. To begin with, we state a simple consequence of
the Structural Hypothesis 1.0.2 (ii) in the following

2.1.1. Lemma. For every s0 > 0, for every ε, τ ∈ (0, 1) there exists 0 <
γ0 ≤ ε such that if (x, 5s) ∈ U , with x ∈ Ωs0 and 5s < s0, satisfies for some
k ∈ {0, . . . ,m− 1}

d0(x, 4s) ≤ γ0 and dk+1(x, 4s) ≥ ε,
then there exists a linear subspace V with dim(V ) ≤ k such that

y ∈ Bs(x) & d0(y, 4s) ≤ γ0 =⇒ y ∈ Tτs(x+ V ). (2.1)
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Proof. Let γ0 ≤ γ1 ≤ . . . ≤ γk+1 be set as γk+1 = ε and γj−1 = η2(s0, γj , τ)
with η2 the constant in the Structural Hypothesis (ii). Let i ∈ {0, . . . , k} be
the smallest index such that di+1(x, 4s) ≥ γi+1 (which exists because of the
assumption dk+1(x, 4s) ≥ ε = γk+1). Then, applying the Structural Hypoth-
esis (ii) we deduce that there exists an i-dimensional linear subspace V such
that every point y ∈ Bs(x) with d0(y, 4s) ≤ γ0 ≤ γi belongs to the tubular
neighborhood Tτs(x+ V ). �

In the proof of Theorem 1.2 we shall repeatedly use the following elementary
covering argument.

2.1.2. Lemma. For every measurable set E ⊂ Rn with finite measure and
for every ρ > 0, there exists a finite covering {Bρ(xi)}i∈I of Tρ/5(E) with xi ∈ E
and

H0(I) ≤
5n |Tρ/5(E)|
ωn ρn

. (2.2)

Proof. Consider the family of balls {Bρ/5(x)}x∈E . By the Vitali 5r-covering
lemma, there exists a finite subfamily {Bρ/5(xi)}i∈I of disjoint balls such that
Tρ/5(E) ⊂ ∪i∈IBρ(xi). By a simple volume comparison we conclude (2.2). �

2.2. Proof of Theorem 1.2.

Proof of Theorem 1.2. We start fixing a parameter τ = τ(n, κ0) > 0
such that

ωn τ
κ0
2 ≤ 20−n. (2.3)

We choose the other constants involved in the Structural Hypotheses in the
following way:

(1) let γ0 ≤ γ1 ≤ . . . ≤ γk be such that γk = δ and γj−1 = η2(r0, γj , τ) for
every j ∈ {1, . . . , k} as in the Structural Hypothesis (ii);

(2) let λ1 = λ1(r0, γ0) and η1 = η1(r0, γ0) be as in the Structural Hypothesis
(i);

(3) fix q ∈ N such that τ q ≤ λ1.

We divide the proof into four steps.

Step 1: reduction to dyadic radii. Let Λ0 = Λ0(r0) given in 1.0.1. It suffices to
prove (1.3) for every r of the form r = r0τp

5 with p ∈ N such that p ≥ p0 :=

q +M + 1 and M := bqΛ0/η1c. Indeed for r0τp0
5 < s < r0 we simply have

|Ts(Sks,r0,δ)| ≤ |Ω| ≤
|Ω|(

r0τp0
5

)n−k−κ0 sn−k−κ0
= C2(κ0, δ, r0, n,Ω) sn−k−κ0 .

On the other hand, if we assume that (1.3) holds with a constant C1 > 0 for
every r of the form r = r0τp

5 with p ≥ p0, we conclude that for rτ < s < r it
holds

|Ts(Sks,r0,δ)| ≤ |Tr(S
k
r,r0,δ)| ≤ C1 r

n−k−κ0 ≤ C1 τ
k+κ0−n sn−k−κ0 .
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Therefore setting C := max{τk+κ0−nC1, C2} we deduce that (1.3) holds for
every r ∈ (0, r0).

Step 2: selection of good scales. Fix a value p ∈ N with p ≥ p0 as above and
set r = r0τp/5. For all (x, r0) ∈ U we have

p∑
l=q

Θ4τ l r0(x)−Θ4τ l+q r0(x) =

p∑
l=q

l+q−1∑
i=l

Θ4τ i r0(x)−Θ4τ i+1 r0(x)

≤ q
p+q−1∑
h=q

(
Θ4τh r0(x)−Θ4τh+1 r0(x)

)
= q

(
Θ4τqr0(x)−Θ4τp+q r0(x)

)
≤ qΛ0.

Therefore, there exist at most M indices l ∈ {q, . . . , p} for which it does not
hold that

Θ4τ l r0(x)−Θ4τ l+q r0(x) ≤ η1. (2.4)

For any subset A ⊂ {q, . . . , p} with cardinality M we consider

SA :=
{
x ∈ Skr,r0,δ : (2.4) holds ∀ l 6∈ A

}
.

We prove in the next step that

|Tr(SA)| ≤ C rn−k−
κ0
2 (2.5)

for some C = C(κ0, δ, r0, n,Ω) > 0. From (2.5) one concludes because the
number of subsets A as above is estimated by(

p− q + 1

M

)
≤ (p− q + 1)M ≤ C | log r|M

for some C(κ0, δ, r0, n) > 0, and

|Tr(Skr,r0,δ)| ≤
∑
A

|Tr(SA)| ≤ C | log r|M rn−k−
κ0
2 ≤ C rn−k−κ0

for some C(κ0, δ, r0, n,Ω) > 0.

Step 3: proof of (2.5). We estimate the volume of Tr(SA) by covering it itera-
tively with families of balls centered in SA and with radii τ jr0 for j ∈ {q, . . . , p}.
We can then proceed as follows. Firstly we consider a cover of Tτqr0/5(SA)
made of balls {Bτqr0(xi)}i∈Iq with xi ∈ SA and by a straightforward use of
Lemma 2.1.2

H0(Iq) ≤ 5nτ−nqr−n0

(
diam(Ω) + 1

)n
.

Iteratively, for every j ∈ {q + 1, . . . , p}, we assume to be given the cover
{Bτ j−1r0(xi)}i∈Ij−1 of Tτj−1r0/5(SA), and we select a new cover of Tτjr0/5(SA)

which is made of balls of radii τ jr0 centered in SA according to the following
two cases:

(a) j − 1 ∈ A,

(b) j − 1 /∈ A.
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Case (a). For every xi in the family at level j−1, using Lemma 2.1.2 we cover
SA ∩Bτ j−1r0(xi) with finitely many balls Bτjr0/2(yl) with yl ∈ SA ∩Bτ j−1r0(xi)
and the cardinality of the cover is bounded by

5n |B(τ j−1+τj/10) r0(xi)|
ωn (τ jr0/2)n

≤ 20n τ−n

(note that Tτjr0/10(SA ∩Bτ j−1r0(xi)) ⊂ B(τ j−1+τj/10) r0(xi)). We claim next that

the union of Bτ jr0(yl) covers the tubular neighborhood

T τjr0
5

(SA ∩Bτ j−1r0(xi)).

Indeed for every z ∈ Tτjr0/5(SA ∩Bτ j−1r0(xi)) there exists z′ ∈ SA ∩Bτ j−1r0(xi)
such that |z− z′| < τ jr0/5. Since z′ ∈ Bτjr0/2(yl) for some yl, then z ∈ Bτ jr0(yl).

Therefore, collecting all such balls, the cardinality of the new covering is
estimated by

H0(Ij) ≤ 20n τ−nH0(Ij−1). (2.6)

Case (b). If j − 1 /∈ A, then (2.4) holds with l = j − 1. By the Structural
Hypothesis (i) and the choice of λ1, η1 in (2) and τ in (3) at the beginning of
the proof, we have that d0(x, 4τ j−1r0) ≤ γ0 for every x ∈ SA. Since xi ∈ SA ⊂
Skr,r0,δ we have also dk+1(xi, 4τ

j−1r0) ≥ δ. We can then apply Lemma 2.1.1 and
conclude that

SA ∩Bτ j−1r0(xi) ⊂ Tτ jr0(xi + V ) (2.7)

for some linear subspace V of dimension less than or equal to k. Note that

|Tτ jr0((xi + V ) ∩Bτ j−1r0(xi))| ≤ ωn τn−k |Bτ j−1r0(xi)|. (2.8)

Thus applying Lemma 2.1.2 we find a covering of Tτjr0/5(SA) with balls Br0τ j (yl)
such that yl ∈ SA and using (2.8) the cardinality of the covering is bounded by

H0(Ij) ≤ 10nωnH0(Ij−1) τ−k. (2.9)

In any case the procedure ends at j = p with a covering of Tτpr0/5(SA) which
is made of balls {Bτpr0(xi)}i∈Ip such that xi ∈ SA and

H0(Ip) ≤ 5nτ−nqr−n0

(
diam(Ω) + 1

)n(
20n τ−n

)M (
10nωn τ

−k)p−q−M
≤ C τ−kp(20nωn)p ≤ C τ−p(k+

κ0
2 ) (2.10)

with C = C(κ0, δ, r0, n,Ω) > 0 and where we used (2.3) in the last inequality.
Estimate (2.5) follows at once

|Tr(SA)| ≤ H0(Ip) |Bτpr0 |
(2.10)

≤ C rn−k−
κ0
2 ,

for some C = C(κ0, δ, r0, n,Ω) > 0.

Step 4: proof of (1.4). Let jx be the smallest index such that (2.4) holds for
every j ≥ jx, and for every i ∈ N set

Ai := {x ∈ S0
r0,δ : jx = i}.
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We will prove that Ai is discrete, and hence S0
r0,δ

is at most countable. Fix

x ∈ Ai. By the choice of the parameters applying the Structural Hypothesis (i)
it follows that d0(x, 4r0τ

j) ≤ γ0 for every j ≥ i. Since x ∈ S0
r0,δ

, we can apply

Lemma 2.1.1 and infer that the points y ∈ Br0τ j (x) satisfying d0(y, 4r0τ
j) ≤ γ0

are contained in Br0τ j+1(x). Therefore Ai ∩ Br0τ j (x) ⊂ Br0τ j+1(x) for every
j ≥ i, which implies that Ai is discrete. �

2.3. Almgren’s stratification principle. In this section we make the con-
nection to the approach to Almgren’s stratification principle by White [22].
Indeed under very natural assumptions the results by White for the time inde-
pendent case follow from ours.

2.3.1. White’s stratification criterion in its simplest formulation is based
on:

(a′) an upper semi-continuous function f : Ω→ [0,∞) defined on a bounded
open set Ω ⊂ Rn;

(b′) for every x ∈ Ω a compact class of conical functions G(x) according to
the following definition.

2.3.2. Definition. (1) An upper semi-continuous map g : Rn → [0,∞) is
conical if g(z) = g(0) implies that g is positively 0-homogeneous with respect to
z, i.e.,

g(z + λx) = g(z + x) for all x ∈ Rn and λ > 0.

(2) A class G of conical functions is compact if for all sequences (gi)i∈N ⊆ G
there exist a subsequence (gij )j∈N and an element g ∈ G such that

lim sup
j→∞

gij (yij ) ≤ g(y) ∀ y ∈ Rn, (yi)i∈N ⊂ Rn with yi → y.

In particular a conical function is 0-homogeneous with respect to 0.

2.3.3. White’s Structural Hypotheses. The stratification theorem by
White is then based on the following two structural hypotheses:

(i′) g(0) = f(x) for all g ∈ G (x);
(ii′) for all ri ↓ 0 there exist a subsequence rij ↓ 0 and g ∈ G (x) such that

lim sup
j→+∞

f(x+ rijyj) ≤ g(y) for all y, yj ∈ B1 with yj → y.

2.3.4. By the upper semi-continuity of any conical function g, the closed set

Sg := {z ∈ Rn : g(z) = g(0)}
is in fact the set of the maximum points of g. Sg is called the spine of g.
Moreover Sg is the largest vector space that leaves g invariant, i.e.,

Sg = {z ∈ Rn : g(y) = g(z + y) for all y ∈ Rn} (2.11)

(cp. [22, Theorem 3.1]). We set d(x) := sup{dimSg : g ∈ G (x)}, and

Σ` := {x ∈ Ω : f(x) > 0, d(x) ≤ `}.

The stratification criterion in [22, Theorem 3.2] is the following.
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2.4. Theorem (White). Under the Structural Hypotheses 2.3.3,

Σ0 is countable; (2.12)

dimH(Σ`) ≤ ` ∀ ` ∈ {1, . . . , n}, (2.13)

where dimH denotes the Hausdorff dimension.

The reader who is interested in the application of this criterion to the model
cases of area minimizing currents and harmonic maps is referred to [22].

2.4.1. Theorem 2.4 can be recovered from our Theorem 1.4 if we assume
the following relations between the Structural Hypotheses 1.0.2 and 2.3.3:

(1) f = Θ0;
(2) for every x ∈ Ω, if

lim
j

dk(x, rj) = 0 for some (rj)j∈N ⊂ (0, dist(x, ∂Ω)),

then x /∈ Σk−1.

Note that (1) and (2) are always satisfied in the relevant examples considered
in the literature.

2.4.2. To prove that the conclusions of Theorem 2.4 are implied by Theo-
rem 1.4 it is enough to show that

Σ` ⊂
⋃
r0>0

S`r0 . (2.14)

This means that for every r0 > 0 and for every x ∈ Σ` ∩ Ωr0 there exists δ > 0
such that

d`+1(x, r) ≥ δ ∀ 0 < r ≤ r0. (2.15)

Assume by contradiction that (2.15) does not hold, we find r0 and x as above
such that for a sequence rj ∈ (0, r0] we have d`+1(x, rj) ↓ 0. Then by § 2.4.1
(2) x cannot belong to Σ`.

3. Preliminary results on Dir-minimizing Q-valued functions

We follow [9] for the notation and the terminology, which we briefly recall in
the following subsections.

The space of Q-points of Rm is the subspace of positive atomic measures in
Rm with mass Q, i.e.

AQ(Rm) :=

{
Q∑
i=1

JpiK : pi ∈ Rm
}

where JpiK denotes the Dirac delta at pi. AQ is endowed with the complete
metric G given by: for every T =

∑
i JpiK and S =

∑
i Jp
′
iK ∈ AQ(Rm)

G(T, S) := min
σ∈PQ

(
Q∑
i=1

|pi − p′σ(i)|
2

)1/2
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where PQ is the symmetric group of Q elements.
A Q-valued function is a measurable map u : Ω→ AQ(Rm) from a bounded

open set Ω ⊂ Rn (with smooth boundary ∂Ω for simplicity). It is always
possible to find measurable functions ui : Ω → Rm for i ∈ {1, . . . , Q} such
that u(x) =

∑
i Jui(x)K for a.e. x ∈ Ω. Note that the ui’s are not uniquely

determined: nevertheless, we often use the notation u =
∑

i JuiK meaning an
admissible choice of the functions ui’s has been fixed. We set

|u|(x) := G(u(x), Q J0K) =

(∑
i

|ui(x)|2
)1/2

.

The definition of the Sobolev space W 1,2(Ω,AQ) is given in [9, Definition 0.5]
and leads to the notion of approximate differential Du =

∑
i JDuiK (cp. [9,

Definitions 1.9 & 2.6]. We set

|Du|(x) :=

(∑
i

|Dui(x)|2
)1/2

and say that a function u ∈W 1,2(Ω,AQ(Rm)) is Dir-minimizing ifˆ
Ω
|Du|2 ≤

ˆ
Ω
|Dv|2 ∀ v ∈W 1,2(Ω), v|∂Ω = u|∂Ω

where the last equality is meant in the sense of traces (cp. [9, Definition 0.7]).
By [9, Theorem 0.9] Dir-minimizing Q-valued functions are locally Hölder con-
tinuous with exponent β = β(n,Q) > 0.

In what follows we shall always assume that u ∈ W 1,2(Ω,AQ(Rm)) is a
nontrivial Dir-minimizing function, i.e. u 6≡ Q J0K, with

η ◦ u :=
1

Q

Q∑
i=1

ui ≡ 0. (3.1)

As explained in [9, Lemma 3.23] the mean value condition in (3.1) does not
introduce any substantial restriction on the space of Dir-minimizing functions.
Moreover, in this case ∆Q reduces to the set {x ∈ Ω : u(x) = Q J0K}. Note
that, if u 6≡ Q J0K, then ∆Q ⊂ Singu by [9, Theorem 0.11].

3.1. Frequency function. We start by introducing the following quantities:
for every x ∈ Ω and s > 0 such that Bs(x) ⊂ Ω we set

Du(x, s) :=

ˆ
Bs(x)

|Du|2

Hu(x, s) :=

ˆ
∂Bs(x)

|u|2

Iu(x, s) :=
sDu(x, s)

Hu(x, s)
.
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Iu is called the frequency function of u. Since u is Dir-minimizing and nontrivial,
it holds that Hu(x, s) > 0 for every s ∈ (0,dist(x, ∂Ω)) (cp. [9, Remark 3.14]),
from which Iu is well-defined.

We recall that the functions s 7→ Du(x, s), s 7→ Hu(x, s), and s 7→ Iu(x, s) are
absolutely continuous on (0,dist(x, ∂Ω)). Similarly for fixed s ∈ (0,dist(x, ∂Ω))
one can prove the continuity of x 7→ Du(x, s), x 7→ Hu(x, s) and x 7→ Iu(x, s)
for x ∈ {y : dist(y, ∂Ω) > s}. The former follows by the absolute continuity of
Lebesgue integral; while for the remaining two it suffices the following estimate:∣∣∣√Hu(x, s)−

√
Hu(y, s)

∣∣∣ ≤ (ˆ
∂Bs(y)

||u|(z)− |u|(z + x− y)|2 dz

) 1
2

≤ |x− y|

(ˆ
∂Bs(y)

ˆ 1

0
|∇|u|(z + t (x− y))|2 dt dz

) 1
2

≤ |x− y|

(ˆ
Bs+|x−y|(y)\Bs−|x−y|(y)

|Du|2
) 1

2

(3.2)

where we use the fact that |u| ∈ W 1,2(Ω) with |∇|u|| ≤ |Du| (cp. [9, Defini-
tion 0.5]).

3.1.1. The following monotonicity formula discovered by Almgren in [2]
is the main estimate about Dir-minimizing functions (cp. [9, Theorem 3.15 &
(3.48)]): for all 0 ≤ r1 ≤ r2 < dist(x, ∂Ω) it holds

Iu(x, r2)− Iu(x, r1)

=

ˆ r2

r1

t

Hu(t)

(ˆ
∂Bt(x)

|∂νu|2
ˆ
∂Bt(x)

|u|2 −
( ˆ

∂Bt(x)
〈∂νu, u〉

)2)
dt. (3.3)

We finally recall that from [9, Corollary 3.18] we also deduce that

Hu(z, r) = O(rn+2 Iu(z,0+)−1) (3.4)

where Iu(z, 0+) = limr↓0 Iu(z, r).

3.2. Compactness. From [9, Proposition 2.11 & Theorem 3.20], if (uj)j∈N is
a sequence of Dir-minimizinig functions in Ω such that

sup
j
‖uj‖L2(Ω) + sup

j

ˆ
Ω
|Duj |2 < +∞,

then there exists u ∈ W 1,2(Ω,AQ) such that u is Dir-minimizing, and up to
passing to a subsequence (not relabeled in the sequel) G(uj , u) → 0 in L2(Ω),
and for every Ω′ ⊂⊂ Ω

‖G(uj , u)‖L∞(Ω′) → 0 and

ˆ
Ω′
|Duj |2 →

ˆ
Ω′
|Du|2.

In particular this implies that (|Duj |2)j∈N are equi-integrable in Ω′, and

lim
j→+∞

Iuj (x, s) = Iu(x, s) ∀ x ∈ Ω, ∀ 0 < 2s < dist(x, ∂Ω). (3.5)
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3.3. Homogeneous Q-valued functions. We discuss next some properties
of the class of homogeneous Q-valued functions: w ∈W 1,2

loc (Rn,AQ(Rm)) satis-
fying

(1) w is locally Dir-minimizing with η ◦ w ≡ 0,

(2) w is α-homogeneous, in the sense that

w(x) = |x|αw
(
x

|x|

)
∀x ∈ Rn \ {0},

for some α ∈ (0,Λ0], where Λ0 is a constant to be specified later.

We denote this class by HΛ0 . Note that Iw(x, 0+) = 0 if w(x) 6= Q J0K. The
following lemma is an elementary consequence of the definitions.

3.3.1. Lemma. Let w ∈ HΛ0. Then Iw(·, 0+) is conical in the sense of
Definition 2.3.2 (1).

Proof. Firstly Iw(·, 0+) is upper semi-continuous. Indeed since w is Dir-
minimizing, we can use (3.3) and deduce that Iw(x, 0+) = infs>0 Iw(x, s),
i.e. Iw(·, 0+) is the infimum of continuous (by (3.2)) functions x 7→ Iw(x, s)
and hence upper semi-continuous.

We need only to show that Iw(·, 0+) is 0-homogeneous at every point z such
that Iw(z, 0+) = Iw(0, 0+). We can assume without loss of generality that w is
nontrivial, i.e. w 6≡ Q J0K. We start noticing that if Iw(z, 0+) = Iw(0, 0+) then

Iw(z, 0+) = Iw(0, 0+) = Iw(0, 1) > 0

where in the last equality we used the homogeneity of w. Therefore in particular
w(z) = Q J0K. Next we show that Iw(z, r) = Iw(0, 0+) for all r > 0. By a simple
estimate we get

Iw(z, r) =
r Dw(z, r)

Hw(z, r)
≤ Iw(0, r + |z|) Hw(0, r + |z|)

Hw(0, r)

Hw(0, r)

Hw(z, r)
. (3.6)

Since w is homogeneous with respect to the origin and the frequency of w at 0
is exactly α (cp. [9, Corollary 3.16]), we have also

Hw(0, r) = Hw(0, 1) rn+2α−1

Dw(0, r) = Dw(0, 1) rn+2α−2.

In particular

Iw(0, r + |z|) = α = Iw(0, 0+) = Iw(z, 0+)

Hw(0, r + |z|)
Hw(0, r)

→ 1 as r ↑ +∞.

For what concerns the third factor in (3.6)

Hw(0, r)

Hw(z, r)
= 1 +

Hw(0, r)−Hw(z, r)

Hw(z, r)
(3.7)
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and from (3.4) and (3.2) we infer that

|Hw(0, r)−Hw(z, r)| =
(√

Hw(0, r) +
√
Hw(z, r)

)
|
√
Hw(0, r)−

√
Hw(z, r)|

≤ C r
n+2 Iu(0,0

+)−1
2 |z|

(
Dw(0, r + |z|)−Dw(0, r − |z|)

) 1
2

≤ C |z| r
n+2 Iu(0,0

+)−1
2

(
(r + |z|)n+2α−2 − (r − |z|)n+2α−2

) 1
2

≤ C |z|
3
2 rn+2α−2. (3.8)

This in turn implies

Hw(0, r)

Hw(z, r)
→ 1 as r ↑ +∞

and from (3.6)

lim
r→+∞

Iw(z, r) ≤ lim
r↓0+

Iw(z, r),

i.e. by Almgren’s monotonicity estimate (3.3) we deduce that Iw(z, r) =
Iw(z, 0+) for all r > 0. As a consequence (cp. [9, Corollary 3.16]) w
is α-homogeneous at z which straightforwardly implies that Iw(·, 0+) is 0-
homogeneous at z. �

3.3.2. Spines. We can then define the spine of a homogeneous Q-valued
function w ∈ HΛ0 :

Sw := {x ∈ Rn : Iw(x, 0+) = Iw(0, 0+)}.

By the proof of Lemma 3.3.1 it follows that w is α-homogeneous at every point
x ∈ Sw. Similarly it is simple to verify that Sw is the largest vector space which
leaves w invariant, as well as Iw(·, 0+):

Sw =
{
z ∈ Rn : w(y) = w(z + y) ∀ y ∈ Rn

}
. (3.9)

Indeed it is enough to prove that every z ∈ Sw leaves w invariant (the other
inclusion is obvious). To show this, note that by the α-homogeneity of w at z
and 0 it follows that for every y ∈ Rn

w(y) = w (z + y − z) = 2αw

(
z +

y − z
2

)
= 2αw

(
y + z

2

)
= w (z + y) .

3.3.3. We denote by Ck for k ∈ {0, . . . , n} the set of k-invariant homogeneous
Q-functions

Ck := {w ∈ HΛ0 : dim(Sw) ≥ k}. (3.10)

Note that Cn = Cn−1 = {Q J0K}, i.e. these sets are singleton consisting of the
constant function w ≡ Q J0K. For Cn this is follows straightforwardly from the
definition and (3.9). While for Cn−1 one can argue via the cylindrical blowup
in [9, Lemma 3.24]. Assume without loss of generality that

w ∈ Cn−1, w 6≡ Q J0K and Sw = Rn−1 × {0}.
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Then by the invariance of w along Sw it follows that w is a function of one
variable. By [9, Lemma 3.24] it follows that w̃ : R → AQ(Rm) is locally Dir-
minimizing and

w̃ 6≡ Q J0K , η ◦ w̃ ≡ 0.

This is clearly a contradiction because the only Dir-minimizing function of one
variable are non-intersecting linear functions (cp. [9, 3.6.2]).

Finally, a simple consequence of (3.9) is that {w|B1 : w ∈ Ck} is a closed
subset of L2(B1,AQ(Rm)).

3.3.4. Lemma. Let (wj)j∈N ⊂ Ck and w ∈ W 1,2
loc (Ω,AQ(Rm)) be such that

wj → w in L2
loc(Rn,AQ(Rm)). Then w ∈ Ck.

Proof. Let αj be the homogeneity exponent of wj . Since for Dir-minimizing
α-homogeneousQ-valued functions w it holds thatDw(1) = αHw(1), we deduce
from αj ≤ Λ0 and wj → w that the functions wj have equi-bounded energies in
any compact set of Rn. Therefore by the compactness in § 3.2 it follows that
wj → w locally uniformly and w ∈ HΛ0 .

For every j ∈ N let now Vj be a k-dimensional linear subspace of Rn contained
in Swj . By the compactness of the Grassmannian Gr(k, n), we can assume that
up to passing to a subsequence (not relabeled) Vj converges to a k-dimensional
subspace V . Using the uniform convergence of wj to w we then conclude that
for every z ∈ V and y ∈ Rn

w(z + y) = lim
j
wj(zj + y) = lim

j
wj(y) = w(y)

where zj ∈ Vj is any sequence such that zj → z. This shows that V ⊂ Sw, thus
implying that dim(Sw) ≥ k. �

3.4. Blowups. Let u be a Dir-minimizing Q-valued function, η ◦ u ≡ 0 and
u 6≡ Q J0K. Fix any r0 > 0. For every y ∈ ∆Q ∩ Ωr0 , i.e. for every y such that
u(y) = Q J0K and dist(y, ∂Ω) ≥ 2r0, we define the rescaled functions of u at y
as

uy,s(x) :=
s
m−2

2 u(y + sx)

D
1/2
u (y, s)

∀ 0 < s < r0, ∀ x ∈ B r0
s

(0).

From [9, Theorem 3.20] we deduce that for every sk ↓ 0 there exists a subse-
quence s′k ↓ 0 such that uy,s′k converges locally uniformly in Rn to a function

w : Rn → AQ(Rm) such that w ∈ HΛ0 with

Λ0 = Λ0(r0) :=
r0

´
Ω |Du|

2

minx∈Ωr0 Hu(x, r0)
. (3.11)

Note that minx∈Ωr0 Hu(x, r0) > 0. Indeed, by the continuity of x 7→ Hu(x, r0)
and the closure of Ωr0 , the minimum is achieved and cannot be 0 because of
the condition u 6≡ 0. In particular, Λ0 ∈ R.
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4. Stratification for Dir-minimizing Q-valued functions

In this section we apply Theorems 1.2, 1.4 and 1.6 to the case of Almgren’s
Dir-minimizingQ-valued functions. Keeping the notation Ωs and U as in § 1.0.1,
we set

(1) Θs : Ωs → [0,+∞) given by

Θ0(x) := lim
r↓0+

Iu(x, r) and Θs(x) := Iu(x, s) for s > 0, x ∈ Ωs ,

(2) for every k ∈ {0, . . . , n}, dk : U → [0,+∞) is given by

dk(x, s) := min
{
‖G(ux,s, w)‖L2(∂B1) : w ∈ Ck

}
.

Note that since {w|B1 : w ∈ Ck} is a closed subset of L2(B1) the mini-
mum in the definition of dk is achieved.

It follows from Almgren’s monotonicity formula (3.3) that conditions (a) and
(b) of § 1.0.1 are satisfied.

We verify next that the Structural Hypotheses 1.0.2 are fulfilled. For sim-
plicity we write the corresponding statements for fixed r0. The corresponding
Λ0 > 0 is defined as in (3.11) above. Therefore, the sets HΛ0 and Ck, introduced
respectively in § 3.3 and (3.10), are defined in terms of Λ0 = Λ0(r0).

4.0.1. Lemma. For every ε1 > 0 there exist 0 < λ1(ε1), η1(ε1) < 1/4 such
that, for all (x, s) ∈ U with x ∈ Ωr0 and s < r0, it holds

Iu(x, s)− Iu(x, λ1s) ≤ η1 =⇒ ∃ w ∈ C0 : ‖G(ux,s, w)‖L2(∂B1) ≤ ε1.

Proof. We argue by contradiction and assume there exist points (xj , sj)
with xj ∈ Ωr0 and sj < r0 such that

Iu(xj , sj)− Iu(xj ,
sj
2j

) ≤ 2−j and ‖G(uxj ,sj , w)‖L2(∂B1) ≥ ε1 ∀ w ∈ C0

or equivalently, setting uj := uxj ,sj ,

Iuj (0, 1)− Iuj (0, 2−j) ≤ 2−j and ‖G(uj , w)‖L2(∂B1) ≥ ε1 ∀ w ∈ C0. (4.1)

From [9, Corollary 3.18] it follows that

sup
j
Duj (0, 2) ≤ 2n−2+2 Iuj (0,2) Iuj (0, 2)

Iuj (0, 1)
≤ C (4.2)

where C = C(Λ0) because Iuj (0, 2) ≤ Λ0 by definition of Λ0. We can then use
the compactness for Dir-minimizing functions in § 3.3 to infer the existence of
a Dir-minimizing w such that (up to subsequences) uj → w locally strongly in
W 1,2(B2) and uniformly. We then can pass into the limit in (3.3) and using
(4.1) we obtain

ˆ 1

0

t

Hw(t)

(ˆ
∂Bt

|∂νw|2
ˆ
∂Bt

|w|2 −
(ˆ

∂Bt

〈∂νw,w〉
)2
)
dt = 0.



20 M. Focardi, A. Marchese & E. Spadaro

This implies that w is α-homogeneous (cp. [9, Corollary 3.16]) with α =
limj Iuj (0, 1) ≤ Λ0 because of § 3.2. This contradicts ‖G(uj , w)‖L2(∂B1) ≥ ε1 for
all w ∈ C0 in (4.1) and proves the lemma. �

4.0.2. Remark. Using the regularity theory of Dir-minimizing functions
proven in [9] it is in fact possible to prove a stronger claim then Lemma 4.0.1,
namely that for every ε1 > 0 there exists 0 < η1(ε1) < 1/4 such that for all
(x, s) ∈ U with x ∈ Ωr0 and s < r0

Iu(x, s)− Iu(x, s/2) ≤ η1 =⇒ ∃ w ∈ C0 : ‖G(ux,s, w)‖L2(∂B1) ≤ ε1. (4.3)

Since (4.3) is not needed in the sequel, we leave the details of the proof to the
reader.

For what concerns (ii) we argue similarly using a rigidity property of homo-
geneous Dir-minimizing functions.

4.0.3. Lemma. For every 0 < ε2, τ < 1 there exists 0 < η2(ε2, τ) ≤ ε2 such
that if (x, 5s) ∈ U , with x ∈ Ωr0 and 5s < r0, dk(x, 4s) ≤ η2 and dk+1(x, 4s) ≥
ε2 for some k ∈ {0, . . . , n− 1} then there exists a k-dimensional affine space V
such that

d0(y, 4s) > η2 ∀ y ∈ Bs(x) \ Tτs(V ).

Proof. We prove the statement for V = Sw with w ∈ Ck such that
‖G(u,w)‖L2(∂B4s(x)) = dk(x, 4s). We argue by contradiction. Reasoning as
above with the rescalings of u (eventually composing with a rotation of the do-
main to achieve (4) below for a fixed space V ), we find a sequence of functions
uj ∈W 1,2(B5,AQ(Rk) such that

(1) supj Duj (0, 5) < +∞;

(2) there exists wj ∈ Ck such that ‖G(uj , wj)‖L∞(B4) ↓ 0;

(3) ‖G(uj , w)‖L2(B4) ≥ ε2 for every w ∈ Ck+1;

(4) there exists yj ∈ B1 \ Tτ (V ) such that d0(yj , 4) ↓ 0 and V = Swj is the
k-dimensional spine of wj (note that by (2) & (3) the dimension of the
spine of wj cannot be higher than k).

Possibly passing to subsequences (as usual not relabeled), we can assume
that uj → w, wj → w locally in L2(Rn,AQ(Rm)) and yj → y for some

w ∈ W 1,2
loc (Rn,AQ(Rm)) and y ∈ B̄1 \ Tτ (V ). By Lemma 3.3.4 we deduce

that w ∈ Ck with Sw ⊃ V ; since by (3) w 6∈ Ck+1, we conclude Sw = V .
It follows from (4) that wy,s = wy,1 for every s ∈ (0, 1]. Indeed there exist

zj ∈ C0 such that ‖G((uj)yj ,1, zj)‖L2(∂B4) ↓ 0 and by continuity (uj)yj ,1 → wy,1 ∈
C0. In particular w(y) = 0 and by the upper semi-continuity of x 7→ Iw(x, 0+)
we deduce also that Iw(y, 0+) = Iw(0, 0+), i.e. y ∈ Sw which is the desired
contradiction. �

We can then infer that Theorem 1.2 holds for Q-valued functions.

4.1. Theorem. Let u : Ω → AQ(Rm) be a nontrivial Dir-minimizing func-
tion with average η ◦ u ≡ 0.
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For every 0 < κ0, δ < 1 and r0 > 0, there exists a constant C =
C(κ0, δ, r0, n) > 0 such that

|Tr(∆Q ∩ Skr,r0,δ)| ≤ C r
n−k−κ0 ∀ k ∈ {1, . . . , n− 1}

and S0
r0,δ is countable.

In particular, Theorem 1.4 applies and we conclude that dimH(Skr0) ≤ k and

that S0
r0 is at most countable. We shall improve upon the latter estimate on

the stratum Sn−1
r0 in the next paragraph.

4.2. Minkowski dimension. We can actually give an estimate on the
Minkowski dimension of the set of maximal multiplicity points ∆Q by means
of Theorem 1.6. An ε-regularity result is the key tool to prove this.

4.2.1. Proposition. There exists a constant δ0 = δ0(r0) > 0 such that

Sn−1
r = Sn−2

r = Sn−2
r,δ0

∀ r ∈ (0, r0). (4.4)

Proof. The first equality is an easy consequence of Cn = Cn−1 = {Q J0K}
that gives dn ≡ dn−1.

Set δ0 := (Λ0 + 1)−1/2, we show that Sn−2
r,δ ⊂ Sn−2

r,δ0
for every δ ∈ (0, δ0).

Assume by contradiction that there exists x ∈ Sn−2
r,δ \S

n−2
r,δ0

for some δ as above.

From Cn−1 = {Q J0K} we deduce the existence of s ∈ (0, r) such that

0 < δ ≤ ‖ux,s‖L2(∂B1) < δ0.

In particular, the condition
´
B1
|Dux,s|2 = 1 gives

Iux,s(0, 1) =

´
B1
|Dux,s|2´

∂B1
|ux,s|2

≥ 1

δ2
0

> Λ0.

By recalling that Iu(x, s) = Iux,s(0, 1), the desired contradiction follows from
Almgren’s monotonicity formula (3.3) and the very definition of Λ0 in (3.11).

�

In particular Theorem A follows from Theorem 1.6.

Proof of Theorem A. It is a direct consequence of Proposition 4.2.1 and
Theorem 1.6. Given u : Ω → AQ(Rm) a nontrivial Dir-minimizing function
(i.e. ∆Q 6= Ω), we can consider the function

v(x) :=
∑
i

Jui(x)− η ◦ u(x)K .

Then by [9, Lemma 3.23] v is Dir-minimizing with η ◦ v ≡ 0. Moreover, the set
of Q-multiplicity points of u in Ωr0 corresponds to the set Sn−2

r0 for the function
v and the conclusion follows straightforwardly. �
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4.3. White’s stratification. In this section we show that Theorem 2.4 applies
in the case of Q-valued functions, as well. In particular, this implies that the
singular strata for Dir-minimizing Q-valued functions can also be characterized
by the spines of the blowup maps, thus leading to the proof of Theorem B in
the introduction.

By following the notation in § 2.4.1 (1), we set

f(x) := Iu(x, 0+) ∀ x ∈ Ω.

For every x ∈ Ω such that f(x) = 0 (or, equivalently, u(x) 6= Q J0K) we define
G (x) to be the singleton made of the constant function 0, i.e. G (x) = {Q J0K};
otherwise

G (x) :=
{
Iw(·, 0+) : w ∈W 1,2

loc (Rn,AQ(Rm)) blowup of u at x
}
. (4.5)

As explained in § 3.3 G (x) is never empty because there always exist (possibly
non-unique) blowup of u at any multiplicity Q point.

Since every blowup of u is a nontrivial homogeneous Dir-minimizing function,
it follows from Lemma 3.3.1 that every function g ∈ G (x) is conical in the sense
of Definition 2.3.2 (1). We need then to show the following.

4.3.1. Lemma. For every x ∈ Ω the class G (x) is compact in the sense of
Definition 2.3.2 (2).

Proof. If x is not a multiplicity Q point, then there is nothing to prove.
Otherwise consider a sequence of maps gj = Iwj (·, 0+) ∈ G (x), with wj blowup

of u at x. By § 3.3 wj is Dir-minimizing α-homogeneous with α = Iu(x, 0+)
and Dwj (1) = 1. Then by the compactness in § 3.2, there exists w such that

wj → w locally in L2 up to subsequences (not relabeled) with Dw(1) = 1. By
a simple diagonal argument it follows that w is as well a blowup of u at x,
i.e. g = Iw(·, 0+) ∈ G(x). For every yj ∈ B1 with yj → y ∈ B1 and for every
s > 0, we then deduce

lim sup
j↑+∞

gj(yj) ≤ lim sup
j↑+∞

Iwj (yj , s)

= lim sup
j↑+∞

(
sDwj (y, s)

Hwj (y, s)

Dwj (yj , s)

Dwj (y, s)

Hwj (y, s)

Hwj (yj , s)

)
= Iw(y, s)

where we used

- the monotonicity of Iwj (yj , ·) in the first line,
- the continuity of x 7→ Dwj (x, s) and x 7→ Hwj (x, s),
- and the convergence of the frequency functions Iwj (y, s) → Iw(y, s)

(cp. 3.2).

Sending s to 0 provides the conclusion. �
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4.3.2. Finally we prove that the Structure Hypothes1s 2.3.3 (ii) of White’s
theorem holds as well:

lim sup
j↑+∞

f(x+ rijyj) = lim sup
j↑+∞

Iu(x+ rijyj , 0
+)

≤ lim sup
j↑+∞

Iu(x+ rijyj , rijs)

= lim sup
j↑+∞

Iux,rij
(yj , s) = Iw(y, s)

where we used the strong convergence of the frequency of § 3.2.

In particular, Theorem 2.4 holds true, which in turn leads to the proof of
Theorem B by a simple induction argument.

4.4. Stratification: Theorem B. We define now the singular strata Singku
for a Dir-minimizing multiple valued function u : Ω→ AQ(Rm). Consider any
point x0 ∈ Singu, and let

u(x0) =
J∑
i=1

κi JpiK

with κi ∈ N \ {0} such that
∑J

i=1 κi = Q and pi 6= pj for i 6= j. Then by the
uniform continuity of u there exist r > 0 and Dir-minimizing multiple valued
functions ui : Br(x0)→ Aκi(Rm) for i ∈ {1, . . . , J} such that

u|Br(x0) =
J∑
i=1

JuiK ,

where by a little abuse of notation the last equality is meant in the sense u(x) =∑
i ui(x) as measures. For every i ∈ {1, . . . , J} let vi : Br(x0) → Aκi(Rm) be

given by

vi(x) :=

κi∑
l=1

J(ui(x))l − η ◦ ui(x)K .

Then we say that a point x0 ∈ Singu belongs to Singku, k ∈ {0, . . . , n}, if
the spine of every blowup of vi at x0, for every i ∈ {1, . . . , J}, is at most
k-dimensional.

We can then prove Theorem B by a simple induction argument on the number
of values Q.

Proof of Theorem B. Clearly if Q = 1 there is nothing to prove because
every harmonic function is regular and Singu = ∅. Now assume we have proven
the theorem for every Q∗ < Q and we prove it for Q.

We can assume without loss of generality that ∆Q 6= Ω. Then, as noticed,

∆Q = Singu ∩∆Q by [9, Theorem 0.11]. Moreover Singku ∩∆Q = Σk, where Σk

is that of Theorem 2.4. Indeed x0 ∈ Σk if and only if the maximal dimension
of the spine of any g ∈ G(x0) is at most k. By (4.5) g ∈ G(x0) if and only if
g = Iw(·, 0+) for some blowup w of u at x0. Hence by (3.9) x0 ∈ Σk if and only
if the dimension of the spines of the blowups of u at x0 is at most k. Note that
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Singn−2
u ∩ ∆Q = ∆Q since Cn = Cn−1 = {Q J0K} (we use here the notation in

§ 3.3.3) and u is not trivial. Therefore we deduce that

Sing0
u ∩∆Q is countable

dimH(Singku ∩∆Q) ≤ k ∀ k ∈ {1, . . . , n− 2}.

Next we consider the relatively open set Ω \∆Q (recall that both Singu and
∆Q are relatively closed sets). Thanks to the continuity of u we can find a cover
of Ω \ (Singu ∩∆Q) made of countably many open balls Bi ⊂ Ω \ (Singu ∩∆Q)
such that u|Bi =

q
u1
i

y
+

q
u2
i

y
with u1

i and u2
i Dir-minimizing multiple valued

functions taking strictly less than Q values. Since Singku ∩Bi = Singk
u1i
∪ Singk

u2i

by the very definition, using the inductive hypotheses for u1
i and u2

i we deduce
that

Sing0
u ∩Bi is countable

Singn−2
u ∩Bi = Singu ∩Bi

dimH(Singku ∩Bi) ≤ k ∀ k ∈ {1, . . . , n− 2},

thus leading to (0.2) and (0.3). �

5. Applications to generalized submanifolds

In the present section we apply the abstract stratification results in § 1 to
integral varifolds with mean curvature in L∞ and to almost minimizers in codi-
mension one (both frameworks are not covered by the results in [5] although
they can be considered as slight variants of those). This case is relevant in
several variational problems (see the examples in [22, § 4]) most remarkably
the case of stationary varifolds or area minimizing currents in a Riemannian
manifold. For a more complete account on the theory of varifolds and almost
minimizing currents we refer to [1], [3] and the lecture notes [18].

5.1. Tubular neighborhood estimate. In what follows we consider integer
rectifiable varifolds V = (Γ, f), where Γ is an m-dimensional rectifiable set in
the bounded open subset Ω ⊂ Rn, and f : Γ→ N\{0} is locally Hm-integrable.
We assume that V has bounded generalized mean curvature, i.e. there exists a
vector field HV : Ω→ Rn such that ‖HV ‖L∞(Ω,Rn) ≤ H0 for some H0 > 0 and

ˆ
Γ

divTyΓX dµV = −
ˆ
X ·HV dµV ∀ X ∈ C1

c (Ω,Rn)

where µV := f Hm Γ. It is then well-known (cp., for example, [18, Theo-
rem 17.6]) that the quantity

ΘV (x, ρ) := eH0 ρ
µV (Bρ(x))

ωmρm
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is monotone and the following inequality holds for all 0 < σ < ρ < dist(x, ∂Ω)

ΘV (x, ρ)−ΘV (x, σ) ≥
ˆ
Bρ\Bσ(x)

|(y − x)⊥|2

|y − x|m+2
dµV (y) (5.1)

where (y − x)⊥ is the orthogonal projection of y − x on the orthogonal com-
plement (TyΓ)⊥. In particular the family (Θ(·, s))s∈[0,r0] (with the obvious

extended notation Θ(·, 0+) := limr↓0 Θ(·, r)) satisfies assumption (a) in Para-
graph 1.0.1 for every fixed r0 > 0 with

Λ0(r0) := eH0 diam(Ω) µV (Ω)

ωmrm0
. (5.2)

In order to introduce the control functions dk we recall next the definition of
cone.

5.1.1. Definition. An integer rectifiable m-varifold C = (R, g) in Rn is a
cone if the m-dimensional rectifiable set R is invariant under dilations i.e.

λ y ∈ R ∀ y ∈ R, ∀ λ > 0

and g is 0-homogeneous, i.e.

g(λ y) = g(y) ∀ y ∈ R, ∀λ > 0.

An integer rectifiable m-varifold C = (R, g) in Bρ, ρ > 0 is a cone if it is the
restriction to Bρ of a cone in Rn.

The spine of a cone C = (R, g) in Rn is the biggest subspace V ⊂ Rn such
that R = R′ × V up to Hm-null sets.

The class of cones whose spine is at least k-dimensional is denoted by Ck and
its elements are called k-conical.

If d∗ is a distance inducing the weak ∗ topology of varifolds with bounded
mass in B1 (cp., for instance, [17, Theorem 3.16] for the general case of dual
spaces), the control function dk is then defined as

dk(x, s) := inf
{

d∗
(
Vx,s,C

)
: C ∈ Ck, ‖HC ‖L∞(Ω,Rn) ≤ H0

}
(5.3)

where Vx,s := (ηx,s(Γ), f ◦ η−1
x,s) with ηx,s(y) := (y − x)/s.

By very definition, then (b) in Paragraph 1.0.1 is satisfied. We are now
ready to check that the conditions in the Structural Hypotheses are satisfied.
As usual, we write the corresponding statements for fixed r0 and Λ0 := Λ0(r0),
for simplicity.

5.1.2. Lemma. For every ε1 > 0 there exist 0 < λ1(ε1), η1(ε1) < 1/4 such
that for all (x, ρ) ∈ U , with x ∈ Ωr0 and ρ < r0,

ΘV (x, ρ)−ΘV (x, λ1 ρ) ≤ η1 =⇒ d0(x, ρ) ≤ ε1.

Proof. Assume by contradiction that for some ε1 > 0 there exists (xj , ρj) ∈
U , with xj ∈ Ωr0 and ρj < r0, such that

ΘV (xj , ρj)−ΘV (xj , j
−1 ρj) ≤ j−1 and d0(xj , ρj) ≥ ε1. (5.4)
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We consider the sequence (Vj)j∈N with Vj := Vxj ,ρj , and note that for all t > 0

there is an index j̄ such that t ρj < r0 if j ≥ j̄, so that

µVj (Bt ) ≤ ωm tm ΘVj (xj , t ρj) ≤ ωmt
mΛ0 ∀ j ≥ j̄.

Therefore, up to the extraction of subsequences and a diagonal argument,
Allard’s rectifiability criterion (cp., for instance, [18, Theorem 42.7, Remark
42.8]) yields a limiting m-dimensional integer varifold Vj → C = (R, g) with
‖HC ‖L∞(Ω ≤ H0. Since ΘV (xj , s ρj) = ΘVj (0, s)→ ΘC (0, s) except at most for

countable values of s, by monotonicity and (5.4) for all j−1 < r < s < 1 we have
ΘC (0, s) = ΘC (0, 0+) for every s ≥ 0. The monotonicity formula (5.1) applied
to C implies that C is actually a cone, thus contradicting d0(xj , ρj) ≤ ε1. �

5.1.3. Lemma. For every ε2, τ ∈ (0, 1), there exists 0 < η2(ε2, τ) < ε2

such that, for every (x, 5s) ∈ U , with x ∈ Ωr0 and 5s < r0, if for some k ∈
{0, . . . ,m− 1}

dk(x, 4s) ≤ η2 and dk+1(x, 4s) ≥ ε2,

then there exists a k-dimensional affine space x+ V such that

d0(y, 4s) > η2 ∀ y ∈ Bs(x) \ Tτs(x+ V ).

Proof. The proof is by contradiction. Assume that there exist 0 < ε2, τ <
1, k ∈ {0, . . . ,m− 1} and a sequence of points (xj , 5sj) ∈ U , with xj ∈ Ωr0 and

5sj < r0, for 2j ≥ ε−1
2 such that

dk(xj , 4sj) ≤ j−1 and dk+1(xj , 4sj) ≥ ε2, (5.5)

and such that the conclusion of the lemma fails, in particular, for Vj given by
the spine of Cj with

d∗
(
Vxj ,4sj ,Cj

)
≤ 2j−1 (5.6)

(note that by 2j ≥ ε−1
2 necessarily dim(Vj) = k). Without loss of generality

(up to a rotation) we can assume that Vj = V a given vector subspace for every
j. This means that there exist yj ∈ Bsj (xj) \ Tτsj (xj + V ) such that

d0(yj , 4sj) ≤ j−1. (5.7)

Using the compactness for varifolds with bounded generalized mean curvature,
(up to passing to subsequences) we can assume that

(1) sj → s∞ ∈ [0, r0/5];
(2) Cj → C∞ in the sense of varifolds, where C∞ is a cone with
‖HC∞‖L∞(Ω,Rn) ≤ H0;

(3) (yj − xj)/sj → z ∈ B1 \ Tτ (V );
(4) Vxj ,sj → W∞ and Vyj ,sj → Z∞ in the ball B4 in the sense of varifolds,

where W∞ and Z∞ are cones thanks to (5.5) and (5.7), respectively.

Note that by (5.6) it follows that Cj → W∞ and therefore W∞ ∈ Ck because
all the Cj are invariant under translations in the directions of V . Moreover,
arguing as above it also follows from dk+1(xj , 4sj) ≥ ε2 that the spine of W∞
is exactly V .
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Note that η(yj − xj)/sj ,1 corresponds to the translation of vector (yj − xj)/sj.
By the equality of (η(yj − xj)/sj ,1)]Vxj ,sj and Vyj ,sj in B3, we deduce that
(η(yj − xj)/sj ,1)]W∞ = Z∞ as varifolds in B3, i.e. W∞ is a cone around z too. We
claim that this implies that W∞ is invariant along the directions of Span{z, V },
thus contradiction the fact that the spine of W∞ equals V . To prove the claim,
let W∞ = (R∞, g) with R∞ cone around the origin and z. It suffices to show
that y + z ∈ R∞ for all y ∈ R∞. Indeed (z + y)/2 = z + y − z/2 ∈ R∞ being R∞
a cone with respect to z; and then y + z ∈ R∞ being R∞ a cone with respect
to 0. �

In particular we deduce that Theorem 1.2 and Theorem 1.4 hold in the case
of varifolds with generalized mean curvature in L∞.

5.2. Almost minimizer in codimension one. It is well-known by the clas-
sical examples by Federer [14] that no Allard’s type ε-regularity results can hold
for higher codimension generalized submanifolds without any extra-hypotheses
on the densities. Vice versa for generalized hypersurfaces one can strengthen
the results of the previous subsection giving estimates on the Minkowski di-
mension of the singular set. The arguments in this part resemble very closely
those in [7], therefore we keep them to the minimum.

In what follows we consider sets of finite perimeter, i.e. borel subsets E ∈ Ω
such that the distributional derivative of corresponding characteristic function
has bounded variation: DχE ∈ BVΩ. Following [3, 21], a set of finite perimeter
is almost minimizing in Ω if for all A ⊂⊂ Ω open there exist T ∈

(
0,dist(A, ∂Ω)

)
and α : (0, T )→ [0,+∞) non-decreasing and infinitesimal in 0 such that when-
ever E4F ⊂⊂ Br(x) ⊂ A

Per(E,Br(x)) ≤ Per(F,Br(x)) + α(r) rn−1 ∀ r ∈ (0, T ) (5.8)

and

(0, T ) 3 t 7→ α(t)

t
is non-increasing, and

ˆ T

0

α1/2(t)

t
dt <∞. (5.9)

Examples of almost minimizing sets not only include minimal boundaries on
Riemannian manifolds, but also boundaries with generalized mean curvature in
L∞, minimal boundaries with volume constraint, and minimal boundaries with
obstacles (cp. [21, § 1.14]).

We use here again the control functions introduced in Section 1.7.1 in terms
of flat distance: given a set of finite perimeter E, we denote by ∂E its boundary
(in the sense of currents) and set

dk(x, s) := inf
{
F
(
(∂Ex,s − C) B1

)
: C k-conical & area minimizing

}
where the dimension of the cones C is always n−1, and Ex,s is the push-forward
of E via the rescaling map ηx,s. In particular dn−1 denotes the distance of the
rescaled boundary ∂Ex,s rescaling of the from flat (n − 1)-dimensional vector
spaces.

The main ε-regularity result for almost minimizing sets can be stated as
follows (cp. [21, Theorem 1.9], [3, Lemma 17] and [18, Theorem B.2]).
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5.3. Theorem. Suppose that E is a perimeter almost minimizer in Ω sat-
isfying (5.8) and (5.9) for a given function α. Then, there exists ε > 0 and
ω : [0,+∞)→ [0,+∞) continuous, non-decreasing and satisfying ω(0) = 0 with
the following property: if

ρ+ dn−1(x, ρ) +

ˆ ρ

0

α1/2(t)

t
dt ≤ ε,

then ∂E ∩Bρ/2(x) is the graph of a C1 function f satisfying

|∇f(x)−∇f(y)| ≤ ω(|x− y|). (5.10)

Moreover, there are no singular area minimizing cones with dimension of the
singular set bigger than n− 8, i.e. equivalently

dn−7 = dn−6 = . . . = dn−1. (5.11)

5.3.1. Remark. The smallness condition dn−1 ≤ ε, together with the al-
most minimizing property, implies the more familiar smallness condition on the
Excess, i.e.

Exc(E,Br(x)) := r1−n ‖DχE‖(Br(x))− r1−n |DχE(Br(x))| ≤ ε′

for some ε′ = ε′(ε) > 0 infinitesimal as ε goes to 0 because of the continuity of
the mass for converging uniform almost minimizing currents. Therefore (5.10)
readily follows from [21, Theorem 1.9].

By a simple use of Theorem 5.3 we can the prove the following.

5.3.2. Corollary. Under the hypotheses of Theorem 5.3 there exist constants
δ0 = δ0(Λ0, n, α) > 0 and ρ0 = ρ0(Λ0, n, α) > 0 such that

Sn−8
r0,δ0

= Sn−8
r0 = Sn−7

r0 = . . . = Sn−2
r0 ∀ r0 ∈ (0, ρ0].

Proof. Set δ0 = ε/2 and let ρ0 be sufficiently small to have

ρ0 +

ˆ ρ0

0

α1/2(t)

t
dt ≤ ε/2.

If x 6∈ Sn−2
r0,δ0

, r0 ∈ (0, ρ0], then there exists 0 < z0 ≤ r0 such that dn−1(x, z0) <

δ0. In particular, by the choices of δ0 and of ρ0 the assumptions of Theorem 5.3
are satisfied at s0. Therefore, it turns out that x is a regular point of ∂E and
that Bz0/2(x) ∩ ∂E can be written as a graph of a function f satisfying (5.10).
In particular, lims↓0 dn−1(x, s) = 0. Therefore, given any δ′ < δ0, we have that

x 6∈ Sn−2
r0,δ′

, thus implying that Sn−2
r0 = Sn−2

r0,δ0
. By taking into account (5.11) we

conclude the corollary straightforwardly. �

In particular, Theorem 1.6 holds and we deduce the following refinement of
the Hausdorff dimension estimate of the singular set.

5.4. Theorem. Let E ⊂ Ω be a almost minimizing set of finite perimeter in
a bounded open set Ω ⊂ Rn according to (5.8) and (5.9). Then there exists a
closed subset Σ ⊂ ∂E∩Ω such that ∂E∩Ω\Σ is a C1 regular (n−1)-dimensional
submanifold of Rn and dimM(Σ) ≤ n− 8.
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Proof. Let Ω′ ⊂⊂ Ω be compactly supported and set r0 := dist(Ω′, ∂Ω).
By the regularity Theorem 5.3, a point x ∈ Ω is regular if and only if there
exists r > 0 sufficiently small such that dn−1(x, r) ≤ ε/2. In particular, the set
of singular points Σ coincides with Sn−2

r0,ε/2
and the conclusion follows combining

Theorem 1.6 with Corollary 5.3.2. �

In addition, a higher integrability estimate for almost minimizers with
bounded generalized mean curvature can be also derived. Given a set of fi-
nite perimeter E ⊂ Ω, one can associate to ∂E a varifold in a canonical way
(cp. [18]). One can then talk about sets of finite perimeter with bounded gen-
eralized mean curvature. Important examples of such an instance are:

(1) the minimizers of the area functional in a Riemannian manifold;
(2) the minimizers of the prescribed curvature functional in Ω ⊂ Rn

F(E) := ‖DχE‖(Ω) +

ˆ
Ω∩E

H

with H ∈ L∞(Ω);
(3) minimizers of the area functional with volume constraint;
(4) more general Λ-minimizers for some Λ > 0, i.e. sets E such that

‖DχE‖(Ω) ≤ ‖DχF ‖(Ω) + Λ |E \ F | ∀ F ⊂ Ω.

Given a point x ∈ ∂E such that Br(x) ∩ ∂E is the graph of a C1 function f , if
the generalized mean curvature H of ∂E is bounded then we can also talk about
generalized second fundamental form A in Br/2(x), because in a suitable chosen
system of coordinates f solves in a weak sense the prescribed mean curvature
equation

div

(
∇f√

1 + |∇f |2

)
= H ∈ L∞. (5.12)

Note that, since in this case f satisfies (5.10), we can choose a suitable system
of coordinates and use the Lp theory for uniformly elliptic equations to deduce
that actually A ∈ Lp(Br/4(x),Hn−1 ∂E) for every p < +∞ with uniform
estimate ˆ

B r
4

(x)∩∂E
|A|pHn−1 ≤ C rn−p−1 (5.13)

for some dimensional constant C > 0. For convenience we set A ≡ +∞ on the
singular set Σ ⊂ ∂E.

5.5. Theorem. Let E ⊂ Ω be as in Theorem 5.4 and assume moreover that
the varifold induced by ∂E has bounded generalized mean curvature. Then, for
every p < 7 there exists a constant C > 0 such thatˆ

∂E∩Ω
|A|p dHn−1 ≤ C. (5.14)



30 M. Focardi, A. Marchese & E. Spadaro

Proof. Let ρ0 > 0 be the constant in Corollary 5.3.2 and ε that of Theo-
rem 5.3. Then Σ = Sn−8

ρ0,ε/2
. In then follows that for a fixed k̄ > log2(ρ0/10)(

supp (∂E) \ Σ
)
∩ Ω =

⋃
k≥k̄

Sn−8
2−k,ρ0,ε/2

\ Sn−8
2−k−1,ρ0,ε/2

.

Applying Theorem 1.2 we infer that for every η > 0 there exists C > 0 such
that ∣∣T2−k(Sn−8

2−k,ρ0,ε/2
)
∣∣ ≤ C 2−k(8−η). (5.15)

By Lemma 2.1.2 there exists a cover of T2−k−2/5(Sn−8
2−k,ρ0,ε/2

\ Sn−8
2−k−1,ρ0,ε/2

) by

balls {B2−k−3(xki )}i∈Ik with xki ∈ S
n−8
2−k,ρ0,ε/2

\ Sn−8
2−k−1,ρ0,ε/2

whose cardinality is

estimated by (2.2) as

H0(Ik) ≤ C 2−k(8−η−n) (5.16)

where C > 0 is a dimensional constant.

We start estimating the integral in (5.14) as follows:ˆ
∂E∩Ω

|A|p dHn−1 =
∑
k≥k̄

ˆ
Sn−8

2−k,ρ0,ε/2
\Sn−8

2−k−1,ρ0,ε/2

|A|p dHn−1

≤
∑
k≥k̄

∑
i∈Ik

ˆ
∂E∩B

2−k−3 (xki )
|A|p dHn−1

Since xki ∈ S
n−8
2−k,ρ0,ε/2

\ Sn−8
2−k,ρ0,ε/2

it follows that there exists rki ∈ [2−k−1, 2−k)

such that dn(xki , r
k
i ) < ε/2. In particular by Theorem 5.3 ∂E ∩ B2−k−2(xki ) is a

graph of a C1 function satisfying (5.10). From (5.13) we conclude thatˆ
∂E∩Ω

|A|p dHn−1 ≤ C
∑
k≥k̄

H0(Ik) 2−k(n−p−1) ≤ C
∑
k≥k̄

2−k(7−η−p) < C

as soon as η < 7− p. �
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