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We discuss in a model case some results concerning the homogenization and relaxation of free-discontinuity energies sub-
jected to (unilateral) obstacle conditions.

1 Introduction

Homogenization of particle-reinforced composites and porous bodies may involve minimum problems for free-discontinuity
energies with obstacle conditions. In the framework of Griffith theory of brittle fracture, we consider bodies with a periodic
distribution of holes and study in the antiplane setting the behaviour of the total energy as the diameter of the holes tends to 0.
Thus, by selecting the Mumford-Shah energy as a prototype, we analyze the asymptotics as ε → 0+ of the minimum problems

inf
{∫

Ω

|∇u|2 dx + Hn−1(Su) : u ∈ SBV (Ω), u+ = 0 Hn−1 a.e. on Eε, u = ϕ Hn−1 a.e. on ∂Ω
}

. (1)

In formula (1) above Ω ⊂ Rn is a given regular bounded open set, Eε is the set of perforations obtained by repeating
periodically a copy of the reference perforation set E ⊆ (−1/2, 1/2)n rescaled by a factor rε ∈ (0, ε), namely Eε =
Ω ∩ ∪i∈Znrε(i + E), and ϕ ∈ W 1,2

loc (Rn) is a given boundary datum. The admissible displacements u belong to the space of
Special functions with Bounded Variation introduced by De Giorgi and Ambrosio. Such a functional setting has been widely
used in the last years to give weak formulations of variational problems in fracture mechanics (see [1]). In particular, ∇u and
Su in (1) are respectively the (approximate) gradient and the set of (approximate) discontinuities of u, u+ is a suitable Ln

representant of u, and the equality u = ϕ on ∂Ω has to be intended in the sense of traces (see [1]). The total energy is the sum
of a bulk and surface term, the former representing the elastic energy stored in the uncraked part of the material Ω \Su (which
is assumed to be hyperlastic), the latter the energy dissipated to make the crack Su grow.

Periodically perforated domains in Sobolev space have been the object of many researches after the pioneering works of
Marchenko and Khruslov [5], Rauch and Taylor [6], [7] and Cioranescu and Murat [2]. It turns out that if one restricts the
competitors in (1) to W 1,2 functions the minimum problems converge to a limit problem where the energy to be minimized
contains an extra term which is a finite penalization keeping track of the local capacity density of the homogenizing holes.
In order to handle this relaxation phenomenon De Giorgi, Dal Maso and Longo [4] took up a variational viewpoint by using
Γ-convergence1 analysis for the associated Dirichlet energies. Along this line of thought we study the asymptotic behaviour
of the problems (1) via the Γ-convergence of the energies

Fε(u) =
∫

Ω

|∇u|2 dx +Hn−1(Su) if u ∈ SBV (Ω), u+ = 0 Hn−1 a.e. on Eε, u = ϕ Hn−1 a.e. on ∂Ω (2)

+∞ otherwise in L1(Ω) (see Theorem 2.1 below). With this notation (1) rewrites as infL1(Ω) Fε, and the Γ-convergence of
the family (Fε) enforces the convergence of (1) as ε → 0+ to the corresponding minimum problem for the limit functional.

In addition, Γ-convergence implies the L1 convergence of minimizers of (1) to mimimum points of the limit problem.
To ensure the existence of minimizers for (1) the Direct Methods of the Calculus of Variations call for coercivity and lower
semicontinuity of Fε in L1(Ω). While the former is ensured by a well known result of Ambrosio provided a control on the L∞

norm is added (see [1]), in principle the energies in (2) are not L1 lower semicontinuous since we allow also thin obstacles, i.e.
Ln(E) = 0. More generally, in [9] we characterize the lower semicontinuous envelope (the relaxation) of free-discontinuity
energies subjected to unilateral constraints. Hence, in our model setting we consider the functionals

Fψ(u) =
∫

Ω

|∇u|2dx + Hn−1(Su) if u ∈ SBV (Ω), u+ ≥ ψ Hn−1 a.e. on Ω, u = ϕ Hn−1 a.e. on ∂Ω (3)
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Gε ≡ G the Γ-limit always exists and coincides with the d-lower semicontinuous envelope of G.
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and +∞ otherwise in L1(Ω), where ψ : Ω → R ∪ {±∞} is a given a Borel function. In order to deal with this relaxation
problem we consider a variational measure σ introduced by De Giorgi [3] for minimal surfaces with obstacles and prove that
the L1 lower semicontinuous envelope of Fψ can be written in terms of the measure σ (see Theorem 2.2 below).

2 Overview of the results

Let us first deal with the homogenization problem. In the following statement we summarize in the model case presented above
the results contained in Theorems 3.1 and 4.1, Propositions 3.3 and 3.4 in [8] (see also Theorem 5.1 there for generalizations).
To avoid technicalities we exemplify the Γ-limit only for functions in SBV (Ω).

Theorem 2.1 (Γ-convergence) Let E ⊆ Ω be Hn−1 measurable, and suppose that the limit β = limε→0+ rε/ε
n

n−1 ∈
[0, +∞] exists. Then the family (Fε) defined in (2) Γ-converges in the L1 topology to a functional F : L1(Ω) → [0, +∞]
given for every u ∈ SBV (Ω) by

F(u) =
∫

Ω

|∇u|2 dx + Hn−1(Su)

+C1(E)βn−1Ln ({x ∈ Ω : u(x) �= 0}) + Hn−1({x ∈ ∂Ω : u(x) �= ϕ(x)}), (4)

where C1(·) is the functional capacity of degree 1.
The last term in (4) is due to a well known relaxation phenomenon in BV for the non-attainment of the Dirichlet boundary

conditions imposed on ∂Ω. Instead, the third term comes from the presence of the obstacles. In particular, if β = 0 the holes
are too small and their effect disappears in the limit, while if β = +∞ they are too big and only the trivial displacement u ≡ 0
is allowed. At the critical scale rε ∼ ε

n
n−1 a non-trivial finite penalization appears (see [8] for further comments and details).

Notice that the relevant scale depends only on the dimension n contrary to the Sobolev setting (see [2], [4]).
Let us now pass to the relaxation topic. In this setting we follow the approach of De Giorgi to study parametric Plateau

problems with an obstacle [3] and introduce the Borel measure σ on Ω defined by

σ(E) = sup
ε>0

(
inf

{
Per(D) + ε−1Ln(D) : D ⊆ Ω open, D ⊇ E

})
.

In the formula above Per(·) is the perimeter according to De Giorgi (see [1]). Among the properties of σ collected in [3] we
recall the following ones: there exist two constants ci = ci(n) > 0 such that c1Hn−1(E) ≤ σ(E) ≤ c2Hn−1(E) for every
set E ⊆ Ω, and σ(E) = 2Hn−1(E) if E is a Hn−1-rectifiable set.

In the next theorem we summarize in the model case mentioned in the introduction the results contained in Theorems 4.1
and 5.1 in [9] (see also Theorem 6.1 there for generalizations). To avoid technicalities we exemplify the relaxed functional
only on SBV (Ω).

Theorem 2.2 (Relaxation) Suppose that there exists w ∈ SBV (Ω) such that Fψ(w) < +∞ with Fψ defined in (3). Then
the lower semicontinuous envelope Fψ : L1(Ω) → [0,+∞] of the functional Fψ is given for every u ∈ SBV (Ω) by

Fψ(u) =
∫

Ω

|∇u|2 dx + Hn−1(Su) +
1
2
σ

({x ∈ Su : u+(x) < ψ(x)})
+σ

({x ∈ Ω \ Su : u+(x) < ψ(x)}) + Hn−1({x ∈ ∂Ω : u(x) �= ϕ(x)}).
In view of the properties of σ recalled before, one can approximate with finite energy functions u which violate the

constraint if and only if Hn−1({x ∈ Ω : u+(x) < ψ(x)}) < +∞. Moreover, such a set appears in the relaxed functional via
the measure σ (see [9] for further comments and details).
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