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Abstract. We investigate the asymptotics of obstacle problems for non-local energies in a

vector-valued setting. Motivations arise, in particular, in phase field models for ferroelectric

materials and variational theories for dislocations.

1. Introduction

The homogenization of obstacle problems for non-local energies has been object of recent
researches. Interesting applications can be found in several fields such as fractional diffusion,
contact mechanics, theories of Markov processes, and stock options pricing (see [7] and [14]
for an exhaustive list of references).
In a simplified setting, the problem consists in understanding the asymptotic behaviour of

the (global) minimizers of the energies in the sequel supplemented by appropriate boundary
conditions

Fj(u) =
ˆ
U×U

|u(x)− u(y)|p

|x− y|n+sp
dx dy if u ∈W s,p(U,Rm), ũ ∈ E caps,p q.e. on Tj ∩ U

(1.1)
+∞ otherwise in Lp(U,Rm). Here, U ⊂ Rn, n ≥ 1, is a Lipschitz open set, W s,p(U,Rm) is
the Sobolev-Slobodeckij space for s ∈ (0, 1), p ∈ (1,+∞) and sp ∈ [1, n], caps,p is the related
variational (p, s)-capacity, and ũ denotes the precise representative of u ∈W s,p(U,Rm) which
is defined except on a caps,p-negligible set (see subsections 2.3 and 2.4). In addition, with
fixed a set E in Rm, a bounded subset T of Rn, and a discrete and homogeneous distribution
of points Λ = {xi}i∈Zn (see Definition 2.1), for all j ∈ N the obstacle set Tj ⊆ Rn is defined
by Tj = ∪i∈Zn

(
εj xi + λj T

)
, where (εj)j∈N and (λj)j∈N are positive infinitesimal sequences.

The scalar framework with bilateral or unilateral conditions on the obstacles, corresponding
to the choices m = 1 and E = {0} or E = (0,+∞) respectively, has been analyzed by
means of different approaches (cp. with [6], [7], [13], [14]). In particular, in the Hilbertian
framework, i.e. choose p = 2 in (1.1), the asymptotic analysis can be reduced to the case
of energies defined on standard (weighted) Sobolev spaces building upon an extension result
analogous to the classical harmonic extension of W 1/2,2 functions (see [8]). Very recently a
direct proof working directly at the level of non-local energies has been proposed in [14] for
values of the parameters s, p such that sp ∈ (1, n). Several possible generalizations are also
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highlighted there, for instance obstacles with random sizes and shapes or centred on random
distribution of points are also analyzed (see [14, Section 4]).
In this paper we push forward the approach introduced in [14] into another direction by

extending it to vector-valued problems motivated by phase fields models for ferroelectric
solids and for dislocations.
In a first model, the vector valued field u : U ⊆ R2 → {z ∈ R2 : ‖z‖ ≤ r} represents the

spontaneous polarization of a ferroelectric material, the obstacles are then to be considered
as zones where an insulator is present, and the non-local energy represents the electrostatic
energy related to the electric field created by the charges induced by the spontaneuos polariza-
tion field on ∂U (see [12] for more details). In Theorem 3.3 we determine the homogenization
limit of the model. Let us remark that the additional constraint that admissible fields take
values into a disk is actually not affecting the asymptotics below (see Remark 3.2 for more
comments).
Instead, in the second occurrence we refer to the variational theory for dislocations in an

elastic crystal under the action of an applied shear stress introduced in [19] (see also [9]
for related analytical results). In this model, supposing that only one slip system is active,
u : R2 → R2 is the slip field induced by the presence of dislocations, the obstacle sets can
be interpreted as pinning sites modeling impurities in the material restraining the motion of
those line defects. The free energy is given by the sum of two competing terms: a nonlocal
term analogous to the W 1/2,2-seminorm, representing the long-range elastic interaction energy
related to dislocations, and a nonconvex multiwell potential favouring vector-valued phase
fields taking integer values, in order to penalize slips not compatible with the underlying
crystalline structure. In the analysis below the latter extra energy contribution shall not be
included (for the study of the full model in the scalar case, with p = 2 and sp = 1, see [16]
and [17]), in the spirit of the second order Γ-development performed in the one-dimensional
case in [15].
The description of the asymptotics of the energies (Fj)j∈N is addressed in this paper via

Γ-convergence. This variational theory is known to be particularly well-suited to study the
behaviour of the sequence of (global) minimizers corresponding to (Fj)j∈N under appropriate
boundary conditions or by adding appropriate forcing terms (see [11], [3] and [4]). In what
follows, we shall consider only the leading part of the energy since neither forcing terms nor
Dirichlet boundary conditions imposed on ∂U , if properly formulated (cp. with Remark 2.6),
change the asymptotics of the problem.
We will show that Γ(Lp)-limits of the family (Fj)j∈N take the form

F(u) =
ˆ
U×U

|u(x)− u(y)|p

|x− y|n+sp
dxdy + ϑ

ˆ
U
ϕ(u(x))β(x) dx (1.2)

if u ∈ W s,p(U,Rm), +∞ otherwise in Lp(U,Rm). In the previous formula the prefactor
ϑ is related to the mutual relationship between the scalings of the problem (see (3.12) or
(3.35) for a precise definition according to the different ranges of sp in [1, n]), β describes
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the limit distribution of the points in Λ (see (3.2)); eventually the function ϕ is defined in
formulas (3.11) if sp = n, and in (3.34) if sp ∈ [1, n). More precisely, the previous result
holds true upon the extraction of subsequences in the scaling-invariant framework. Actually,
we will analyze energies as in (1.1) comparable to the fractional seminorms, that is defined
through singular kernels K that are anisotropic versions of those above. In such a generality,
Γ-convergence to a functional analogous to that in (1.2) holds true only up to subsequences
unless extra-assumptions are imposed on the kernel K (cp. with Theorems 3.3 and 3.6 and
Section 4).
The energy density of the obstacle penalization term, the function ϕ in (1.2), describes the

asymptotic behaviour of non-linear, vector-valued relative capacitary problems defined by
the non-local energy under consideration.
We will focus our attention mainly on the scaling invariant case, corresponding to the choice
sp = n in (1.1), since the subcritical framework sp ∈ [1, n) can be deduced from the results
of the ensuing sections combined with those in [14] (see Subsection 3.2). Actually, we will
slighlty improve upon [14] by including the case sp = 1 which was not covered there.
From a technical point of view the main novelties of the paper are contained in Proposi-

tion 2.8 (see also Proposition 2.9 for related results) where instrumental properties of the
mentioned non-linear, vector-valued (relative) capacitary problems are established. The lat-
ter, combined with a joining lemma in varying domains for non-local energies established
by the Author in [14, Lemma 3.9], are relevant in the analysis developed in the subsequent
sections.
Finally, the homogenization of obstacle problems for gradient energies in the local frame-

work, i.e. defined on the standard Sobolev spaces W 1,p, has been studied by several Authors.
We mention [2], [4], [6], [7], [13], [14] and [21] for exhaustive references. Here, we only stress
that such a problem was recently addressed by [2] in the subcritical case, i.e. p ∈ (1, n), and
by [21] in the scaling-invariant case, p = n. Vector-valued problems for quasiconvex energies
with E = {0} were analyzed in both papers. Extensions to more general constraint sets E
using the methods of Proposition 2.8 are likely to be obtained in that setting, too.
A brief resume of the paper is as follows: Section 2 is devoted to introduce the notations

adopted throughout the whole paper and the instrumental preliminary results. In particular,
Subsection 2.4 deals with (relative) capacities for Sobolev-Slobodeckij spaces both in the
scaling invariant and subcritical cases.
In Section 3 we prove the Γ-convergence statements contained in Theorems 3.3 and 3.6.

Some possible generalizations are considered in Section 4.

2. Preliminaries and Notations

2.1. Basic Notations. The Euclidean norm in Rn shall be denoted by | · |, the maximum
one by | · |∞. We will write Br(x) for the Euclidean ball in Rn with centre x and radius r > 0,
and simply Br in case x = 0. As usual, we will set ωn := Ln(B1).
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Given a set E ⊂ Rn its complement will be indifferently denoted by Ec or Rn \E; instead,
its interior and closure will be denoted by int(E) and E, respectively.
Given an open set A ⊆ Rn the collections of its open subsets will be indicated by A(A),

the diagonal set in Rn ×Rn by ∆, and for every δ > 0 its open δ-neighborhood by ∆δ :=
{(x, y) ∈ Rn ×Rn : |x− y| < δ}. Accordingly, for any set E ⊆ Rn and for any δ > 0

Eδ := {x ∈ Rn : dist(x,E) < δ}. (2.1)

In the following, U will always be an open and connected subset of Rn whose boundary is
Lipschitz regular.
We shall use standard notations for Lebesgue and Hausdorff measures, and for Lebesgue and

Sobolev function spaces. In addition, uO will denote the mean value of a summable function
u on a Ln-measurable set O with positive measure, i.e. uO =

ffl
O u dx.

In several computations below the letter c shall generically denote a positive constant. We
assume this convention since it is not essential to distinguish from one specific constant to
another, leaving understood that the constant may change from line to line. The parameters
on which each constant c depends will be explicitely highlighted.

2.2. Non-periodic tilings. Aperiodic sets of points are considered in the ensuing sections.
More precisely, the Voronöı tessellation related to a Delone set of points Λ will substitute
the usual periodic lattice.
The book by M. Senechal [20] is the standard reference for all the results quoted below.

Definition 2.1. A point set Λ ⊂ Rn is a Delone (or Delaunay) set if it satisfies

(i) Discreteness: there exists r > 0 such that for all x, y ∈ Λ, x 6= y, |x− y| ≥ 2r;
(ii) Homogeneity: there exists R > 0 such that Λ ∩BR(x) 6= ∅ for all x ∈ Rn.

It is then easy to show that Λ is countably infinite. Hence, from now on we use the notation
Λ = {xi}i∈Zn . By the very definition the quantities

rΛ :=
1
2

inf{|x− y| : x, y ∈ Λ, x 6= y}, RΛ := inf{R > 0 : Λ ∩BR(x) 6= ∅ ∀x ∈ Rn} (2.2)

are finite and strictly positive; RΛ is called the covering radius of Λ.

Definition 2.2. Let Λ ⊂ Rn be a Delone set, the Voronöı cell of a point xi ∈ Λ is the set of
points

V i := {y ∈ Rn : |y − xi| ≤ |y − xk|, for all i 6= k}.

The Voronöı tessellation induced by Λ is the partition of Rn given by {V i}i∈Zn.

The sets V i’s are closed, convex polytopes intersecting only along their boundaries. Several
other interesting properties of Voronöı tessellations are collected in [20, Propositions 2.7, 5.2]
(see also [14, Propositions 2.4 and 2.5]). Here, we will only recall some results that will be
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used in the subsequent analysis. We omit their proofs since they are justified by elementary
counting arguments. For any A ∈ A(Rn) set

IΛ(A) := {i ∈ Zn : V i ⊆ A}, IΛ(A) := {i ∈ Zn : V i ∩ ∂A 6= ∅}, (2.3)

then the following results hold true.

Proposition 2.3. Let Λ ⊂ Rn be a Delone set and {V i}i∈Zn its induced Voronöı tessellation.
Then,

ωnr
n
Λ#(IΛ(A)) ≤ Ln(A), (2.4)

ωnr
n
Λ#(IΛ(A)) ≤ Ln((∂A)RΛ

), (2.5)

There exists a constant c = c(n) > 0 such that if RΛ ≤ 1 for every i ∈ Zn and h ∈ N it
holds

#{k ∈ IΛ(A) : hrΛ < |xi − xk|∞ ≤ (h+ 1)rΛ} ≤ c hn−1. (2.6)

2.3. Sobolev-Slobodeckij spaces. Let A ⊆ Rn be any bounded open Lipschitz set and fix
s ∈ (0, 1) and let p ∈ (1,+∞) be such that sp ∈ [1, n]. By W s,p(A,Rm) we denote the usual
Sobolev-Slobodeckij space, or Besov space Bs

p,p(A,R
m). The space is Banach if equipped

with the norm ‖u‖W s,p(A,Rm) = ‖u‖Lp(A,Rm) + |u|W s,p(A,Rm), where

|u|pW s,p(A,Rm) :=
ˆ
A×A

|u(x)− u(y)|p

|x− y|n+sp
dxdy .

We will use several properties of fractional Sobolev spaces, giving precise references for those
employed in the sequel in the respective places mainly referring to [1] and [22].
In the indicated ranges for the parameters p, s the space W s,p turns out to be reflexive and

separable (see [22, Thm 4.8.2]).
We recall Poincaré-Wirtinger and Poincaré inequalities in fractional Sobolev spaces.

Theorem 2.4. Let n ≥ 1, s ∈ (0, 1) and p ∈ (1,+∞) as above. Let A ⊂ Rn be a bounded,
connected open set, and O any Ln-measurable subset of A with Ln(O) > 0. Then for any
function u ∈W s,p(A,Rm),

‖u− uO‖pLp(A,Rm) ≤ cPW |u|
p
W s,p(A,Rm), (2.7)

for a constant cPW = cPW (n, s,O,A).
Moreover, for any u ∈W s,p

0 (A,Rm) we have

‖u‖pLp(A,Rm) ≤ cP |u|
p
W s,p(A,Rm), (2.8)

for a constant cP = cP (n, s,A).

Remark 2.5. A scaling argument and Hölder inequality yield for any x ∈ Rn and r > 0 and
for some c = c(n, s,O,A) > 0

‖u− ux+rO‖pLp(x+rA,Rm) ≤ c r
sp|u|pW s,p(x+rA,Rm). (2.9)

A similar conclusion holds for Poincaré inequality (2.8).
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Remark 2.6. In case sp = 1 traces are not well defined. Indeed, equality W s,p(A,Rm) =
W s,p

0 (A,Rm) holds (see [22, Theorem 4.3.2/1]). Hence, Dirichlet boundary value data can be
imposed by fixing the inner trace on A \A′, A′ a bounded open set in Rn with A′ ⊂⊂ A.

We end this subsection by recalling an useful elementary bound on standard singular kernels
(cp. with [14, Lemma A.1]): there exists a positive constant c = c(n, p, s) such that for any
Ln-measurable set O and for any point x with dist(x,O) > 0 it holdsˆ

O

1
|y − x|n+sp

dy ≤ c (dist(x,O))−sp . (2.10)

2.4. Fractional capacities. Capacitary type problems for fractional Sobolev spaces are
introduced and analyzed in what follows. For any set T ⊆ Rn define

caps,p(T ) := inf
{A∈A(Rn):A⊇T}

inf
{
|u|pW s,p(Rn) : u ∈W s,p(Rn), u ≥ 1Ln a.e. on A

}
, (2.11)

with the usual convention inf ∅ = +∞. It is also worth introducing relative capacities. To
this aim, first localize (2.11) for open sets A ∈ A(Rn) setting

Cs,p(A,Bρ) := inf
{
|w|pW s,p(Rn) : w ∈W s,p(Rn), w = 0 on Rn \Bρ, w ≥ 1Ln a.e. on A

}
and then extend it to all subsets of Rn by outer regularity as

Cs,p(T,Bρ) := inf
{A∈A(Bρ):A⊇T}

Cs,p(A,Bρ). (2.12)

Arguing as in [10, Section 3], the set functions above turn out to be Choquet capacities
(see also [1, Chapter V] and [18, Theorem 2.2]). Recall that a set T in Rn is said to be of
(s, p)-capacity zero if

Cs,p(T ∩Bρ, Bρ) = 0

for all ρ > 0. We also say that a property holds (s, p)-quasi everywhere, in short caps,p
q.e., if it holds up to a set of (s, p)-capacity zero. In particular, any function u in W s,p(A),
A ∈ A(Rn), has a precise representative ũ defined caps,p q.e. and the following formula holds
(see [10, Section 4]),

Cs,p(T,Bρ) = inf
{
|u|pW s,p(Rn) : u ∈W s,p(Rn), u = 0 on Rn \Bρ, ũ ≥ 1 q.e. on T

}
.

(2.13)
The behaviour of relative capacities can be distinguished according to whether sp = n or
sp ∈ [1, n). Before proceeding into this direction let us enlarge the framework of interest to a
vector-valued setting and also to singular kernels different from those defining the fractional
seminorms.
More generally, we shall be concerned in the sequel with non-linear, vector-valued capacitary

problems related to translation-invariant singular kernels K : Rn \ {0} → (0,+∞) satisfying
for some constant α ≥ 1 and for all x ∈ Rn \ {0}

α−1|x|−(n+sp) ≤ K(x) ≤ α|x|−(n+sp) (2.14)
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(see Section 4 for generalizations). For every A ∈ A(Rn), the kernel K defines a functional
K : Lp(A,Rm)→ [0,+∞] by

K(u,A) =
ˆ
A×A

K(x− y)|u(x)− u(y)|pdxdy (2.15)

if u ∈ W s,p(A,Rm), +∞ otherwise on Lp(A,Rm). We shall drop the dependence on A if
A = Rn. A relevant notion related to K is that of locality defect : for any Ln-measurable
function w and any Ln×n-measurable set E ⊆ Rn ×Rn

DK(w,E) :=
ˆ
E
K(x− y)|w(x)− w(y)|p dxdy.

Clearly, K(w,A) = DK(w,A×A); the terminology is justified since given two disjoint subdo-
mains A,B ⊆ Rn, for C = A ∪B we get

K(w,C × C) = K(w,A×A) +K(B ×B) +DK(w,A×B) +DK(w,B ×A). (2.16)

2.4.1. The scaling-invariant case. Let us first focus our attention to parameters p ∈ (1,+∞)
and s ∈ (0, 1) satisfying sp = n (for related results and references in the local case see [21]).
The scaling invariance of the kernel yields that for any subset T of Rn and any λ > 0

lim inf
ρ→+∞

Cs,p(T,Bρ) = lim inf
ρ→+∞

Cs,p(λT,Bρ), lim sup
ρ→+∞

Cs,p(T,Bρ) = lim sup
ρ→+∞

Cs,p(λT,Bρ).

(2.17)
In addition, the following estimates can be obtained as in [10, Theorem 3.11]: for some
constant c = c(n, p) > 0

c−1
(

ln
ρ

t

)1−p
≤ Cs,p(Bt(x), Bρ(x)) ≤ c

(
ln
ρ

t

)1−p
(2.18)

for every x ∈ Rn and for every pairs of positive numbers t, ρ such that t < ρ/2. Hence, one
can show that caps,p(T ) = 0 for all sets T as in the standard (local) Sobolev setting.
By formula (2.18) a logarithmic rescaling is then needed. We have not been able to prove

that the function ρ→ (ln ρ)p−1Cs,p(Bt, Bρ) has actually a limit as ρ diverges. Such a property
is well-known for (standard) Sobolev relative n-capacities (for a homogenization-like proof
see [21, Proposition 5.1]).
Despite this, (2.17) and (2.18) imply that for all bounded subsets T of Rn with non-empty

interior part we have

c−1 ≤ lim inf
ρ→+∞

(ln ρ)p−1Cs,p(B1, Bρ) = lim inf
ρ→+∞

(ln ρ)p−1Cs,p(T,Bρ)

≤ lim sup
ρ→+∞

(ln ρ)p−1Cs,p(T,Bρ) ≤ lim sup
ρ→+∞

(ln ρ)p−1Cs,p(B1, Bρ) ≤ c (2.19)

for some constant c = c(n, p) ≥ 1.
With fixed subsets T ⊆ Rn and E ⊆ Rm, radii ρ and R such that T ⊂⊂ Bρ ⊂⊂ BR, and a

point z ∈ Rm define
ϕK,Tρ,R (z) := (ln ρ)p−1 inf

w∈ADz(T,Bρ)
K(w,BR), (2.20)
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where the set of admissible test functions is given by

ADz(T,Bρ) :=

{
w ∈ Lploc(R

n,Rm) : w − z ∈W s,p(Rn,Rm),

w = z on Rn \Bρ, w̃(x) ∈ E caps,p q.e. on T

}
. (2.21)

For the sake of simplicity we shall drop the dependence on T and K in the quantities defined
in (2.20) and (2.21) when there will be no risk of confusion, and write only ϕρ if in addition
R = +∞.

Remark 2.7. Note that if m = 1, E = {0} and K(x− y) = |x− y|−2n, then ϕTρ (z) reduces
to |z|p| ln ρ|p−1Cs,p(T,Bρ) for all ρ > 0. With the same choices of E and K a similar
characterization can be given in the vectorial setting, too.

In general, the properties enjoyed by (ϕρ,R)ρ>0, as described in what follows, are not obtained
by explicit characterizations.

In the next proposition we shall establish several properties of the families (ϕρ,R)ρ>0. We
remark that the estimates below will always be uniform for those kernels satisfying the growth
conditions in (2.14). In addition, in what follows the letter α will always denote the constant
introduced there.

Proposition 2.8. Suppose T bounded. Then, for every 0 < ρ < R it holds

(i) (ϕρ,R)ρ>0 is pointwise equi-bounded: there exist a non-negative constant c1 and a
positive constant c2 depending on T , m and α such that for every z ∈ Rm

0 ≤ ϕρ,R(z) ≤ c2 distp(z, E), (2.22)

and in addition,

c1 distp(z, E) ≤ ϕρ(z). (2.23)

(ii) (ϕρ,R)ρ>0 is locally equi-Lipschitz continuous: there exists a positive constant c de-
pending only on E, T , m, p and α such that for all z1, z2 ∈ Rm

|ϕρ,R(z2)− ϕρ,R(z1)| ≤ c
(
1 + |z1|p−1 + |z2|p−1

)
|z1 − z2|; (2.24)

(iii) there exists a positive constant c depending on m, n, p and α such that

ϕρ,R(z) ≤ ϕρ(z) ≤
(

1 + c

(
ρ

R− ρ

)n)
ϕρ,R(z). (2.25)

Proof. We start off with item (i). Given ε > 0 and take a test function ψ for the capacitary
problem of T in Bρ such that

|ψ|pW s,p(Rn) ≤ (1 + ε)Cs,p(T,Bρ).
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For any point ζ ∈ E consider w := ψζ + (1− ψ)z, then w ∈ ADz(T,Bρ) and satisfies

K(w,BR) ≤ α|z − ζ|p|ψ|pW s,p(Rn).

The latter inequality implies

ϕρ,R(z) ≤ α(1 + ε)(ln ρ)p−1|z − ζ|pCs,p(T,Bρ).

By letting first ε ↓ 0+, and then passing to the infimum on ζ ∈ E we deduce the upper bound
in (2.22) by (2.18) with c2 := α lim supρ(ln ρ)p−1Cs,p(T,Bρ).
To show (2.23), choose z ∈ Rn with dist(z, E) > 0 and let δ := 1

mdist(z, E). Given a map
w in ADz(T,Bρ) denote by Ti := {x ∈ T : δ ≤ |w̃i(x) − zi|}. Then, the set T \ ∪mi=1Ti has
(s, p)-capacity zero, and for every ρ > 0 there exists ` ∈ {1, . . . ,m} such that

1
m
Cs,p(T,Bρ) ≤ Cs,p(T`, Bρ).

Note that w` satisfies w` − z` ∈ W s,p(Rn) and w̃` ∈ (−∞, z` − δ] ∪ [z` + δ,+∞) caps,p q.e.
on T`. The embedding of W s,p into VMO (see, for instance [5, Section I.2]) implies that w̃`
takes values either in (−∞, z` − δ] or in [z` + δ,+∞). In the first case, we infer

ϕρ(z) ≥ α−1(ln ρ)p−1 inf
{
|u|pW s,p(Rn) : u− z` ∈W s,p(Rn),

u = z` on Rn \Bρ, ũ(x) ≤ z` − δ caps,p q.e. on T`
}

= α−1δp(ln ρ)p−1Cs,p(T`, Bρ) ≥
distp(z, E)
mp+1α

(ln ρ)p−1Cs,p(T,Bρ).

The second instance is completely analogous. The conclusion follows at once with c1 :=
m−(p+1)α−1 lim infρ(ln ρ)p−1Cs,p(T,Bρ).
We now turn to the proof of item (ii). To this aim we use special external variations.
Clearly, by (2.22) it is not restrictive to assume Rm \E 6= ∅. Fix z1 and z2 ∈ Rm, we shall

estimate the oscillation of ϕρ,R in those points. Fix δ > 0 and first suppose dist(z1, E) ≥ 2δ.
Note then that

δ ≤ dist(z1, Eδ) ≤ dist(z1, E) ≤ dist(z1, Eδ) + δ,

from which we infer

1 ≤ dist(z1, E)
dist(z1, Eδ)

≤ 2. (2.26)

In addition, Kirszbraun’s extension theorem supplies the existence of a map Ψ ∈ Lip(Rm,Rm)
such that Ψ|Eδ = Id and Ψ(z1) = z2, with

Lip(Ψ) = Lip(Ψ|Eδ∪{z1}) = 1 ∨ sup
ζ∈Eδ

|ζ − z2|
|ζ − z1|

≤ 1 +
|z1 − z2|

dist(z1, Eδ)
.

Now take any w ∈ ADz1(T,Bρ), and note that Ψ ◦ w ∈ ADz2(T,Bρ) since Eδ is open and
Ψ|Eδ = Id. It is also immediate to check that

ϕρ,R(z2) ≤ Lipp(Ψ)ϕρ,R(z1).
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In turn, the latter estimate, (2.22), (2.26), and the convexity of R 3 t→ |t|p imply

ϕρ,R(z2)− ϕρ,R(z1) ≤ p
(

1 +
|z1 − z2|p−1

distp−1(z1, Eδ)

)
|z1 − z2|

dist(z1, Eδ)
ϕρ,R(z1)

(2.22), (2.26)

≤ 2pp c2

(
distp−1(z1, E) + |z1 − z2|p−1

)
|z1 − z2|.

Hence, if in addition dist(z2, E) ≥ 2δ, exchanging the roles of z1 and z2 we infer

|ϕρ,R(z2)− ϕρ,R(z1)| ≤ c3

(
1 + |z1|p−1 + |z2|p−1

)
|z1 − z2| (2.27)

for a positive constant c3 depending on E, T , p, m and α, and above all independent from δ.
Hence, the arbitrariness of δ > 0 yields that (2.27) holds for all points z1, z2 /∈ E. Actually,

(2.27) is still valid if z1, z2 ∈ E by (2.22). Finally, if z1 ∈ E and z2 /∈ E we have

|ϕρ,R(z2)− ϕρ,R(z1)| = |ϕρ,R(z2)|
(2.22)

≤ c2 distp(z2, E)

≤ c2|z2 − z1|p ≤ c3

(
1 + |z2|p−1 + |z1|p−1

)
|z2 − z1|.

In conclusion, we have established (2.27) for all couple of points z1, z2 in Rm.
To prove item (iii), fix any test function w in ADz(T,Bρ), for R > ρ we infer from the scaled

Poincaré-Wirtinger inequality in (2.9)

0 ≤ K(w)−K(w,BR)
w|Rn\Bρ=z

= DK(w,Bρ × (Rn \BR)) +DK(w, (Rn \BR)×Bρ)
(2.14)

≤ 2α
ˆ
Bρ

|w(x)− z|p
ˆ
Rn\BR

1
|x− y|2n

dy dx
(2.10)

≤ c

(R− ρ)n

ˆ
Bρ

|w(x)− z|p dx

(2.9)

≤ c

(
ρ

R− ρ

)n
|w|pW s,p(Bρ,Rm)

(2.14)

≤ c α

(
ρ

R− ρ

)n
K(w,Bρ).

Multiplying by (ln ρ)p−1 the previous inequality and taking into account the arbitrariness of
w imply the conclusion.

Furthermore, let us highlight some additional properties enjoyed by the families (ϕρ,R)ρ due
to symmetries of E. Their proof is omitted since it is a straightforward consequence of the
definition of ϕρ,R and Proposition 2.8.

Proposition 2.9. Suppose T bounded, then

(i) E is convex if and only if ϕρ is convex;
(ii) if E is a cone, then ϕρ,R is p-homogeneous;

(iii) if E is invariant under an isometry Φ, then ϕρ,R ◦ Φ = ϕρ,R.

Remark 2.10. The proofs of (2.22) and (2.23) show that the constants c1, c2 depend on
T through the inferior, superior limit of (ln ρ)p−1Cs,p(T,Bρ), respectively. Hence, if T is
bounded and has non-empty interior, those constants do not actually depend on T itself by
(2.19).
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Hence, if in addition the kernel K is (−2n)-homogeneous, under the same hypotheses on T ,
one can argue as in (2.19) and show that for all z ∈ Rn the inferior and superior limits as
ρ→ +∞ of (ln ρ)p−1ϕρ(z) do not depend on T either.

On the other hand, the functions ϕρ do depend on the set E as it follows, for instance, from
item (i) in Proposition 2.9. Note also that E = Rm if and only if ϕρ = 0 by (2.22) and
(2.23), in case lim infρ(ln ρ)p−1Cs,p(T,Bρ) > 0, that is c1 > 0.

2.4.2. The subcritical case. In case sp ∈ [1, n) the behaviour of (relative) capacities is rather
different. Indeed, an elementary scaling argument shows that for all t > 0 and x ∈ Rn

caps,p(Bt(x)) = tn−spcaps,p(B1). (2.28)

One can also show that the latter expression is strictly positive.
Consider a kernel K satisfying (2.14) and let

ϕK,Tρ,R (z) := inf
w∈ADz(T,Bρ)

K(w,BR), (2.29)

ADz(T,Bρ) given by (2.21). Following step by step the arguments of Propositions 2.8 and
2.9 one can establish results completely analogous to those contained there. The proofs being
even easier since in the current range no logarithmic rescaling is needed in the definition of
ϕK,Tρ,R (see also [14, Lemma 2.12]). Details will not be worked-out and left to the interested
reader.
In addition, for all z ∈ Rm the function ρ → ϕK,Tρ (z) turns out to be non-decreasing, thus

monotonicity implies the convergence

ϕK,T (z) := lim
ρ→+∞

ϕK,Tρ (z). (2.30)

Actually, the pointwise convergence above is uniform on compact subsets of Rm thanks to
(2.27) in this setting. Furthermore, by (2.25) we have that similar convergences to ϕK,T hold
for families (ϕK,Tρ,R(ρ)) provided R(ρ)/ρ→ +∞ as ρ→ +∞ (cp. with [14, Lemma 2.12]).

3. Γ-convergence statement

Consider Delone sets Λj = {xij}i∈Zn , and let rj := rΛj Rj := RΛj , Ij(A) := IΛj (A), for all
A ∈ A(U), dropping the dependence on the set if A = U , that is Ij := Ij(U) (see (2.3) for
the definition of IΛj (·)). Assume that the Λj ’s are such that

lim
j
rj = 0, (1 ≤) lim sup

j
(Rj/rj) < +∞, (3.1)

µj :=
1

#Ij(U)

∑
i∈Ij(U)

δxij
→ µ := β Ln U w∗-(Cb(U))∗, (3.2)

for some β ∈ L1(U, (0,+∞)) with ‖β‖L1(U) = 1.
It has been shown in [14, Remark 3.2] that condition (3.2) above holds true upon the

extraction of subsequences. Some non-trivial, i.e. non-periodic, examples of Delone sets are
discussed there, too (cp. with [14, Examples 3.5-3.7]).
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Note that by (2.4), (2.5) and (3.1) we infer

0 < lim inf
j

rnj #Ij ≤ lim sup
j

rnj #Ij < +∞. (3.3)

With fixed subsets E ⊂ Rm, and T ⊂ Rn bounded, for all j ∈ N define the obstacle set
Tj := ∪i∈ZnT i

j where
T i
j := xij + λjT, and λj ∈ (0, rj). (3.4)

Note that T i
j ⊆ V i

j for all i ∈ Zn, j ∈ N. Then define functionals Kj : Lp(U,Rm)→ [0,+∞]
by

Kj(u) =

K(u, U) if u ∈W s,p(U,Rm), ũ ∈ E caps,p q.e. on Tj ∩ U

+∞ otherwise.
(3.5)

Subsections 3.1 and 3.2 contains the asymptotic analysis of the energies above in the scaling-
invariant and subcritical cases, respectively. The proofs are strongly linked though some
details are different. In particular, in the former case the energy does not concentrate at the
same scale as the radii of the perforations.
The Γ-convergence statement established in Theorems 3.3 and 3.6 relies upon a technical

result proved in [14, Lemma 3.9] in the scalar case. There is no difficulty in extending that
result in the vector-valued setting currently under investigation, thus we limit ourselves to
present its statement only. On a technical side, it reduces the verification of liminf and limsup
inequalities on sequences of functions almost matching the values of their limit on suitable
annuli surrounding the obstacle sets. Following an early idea by De Giorgi, a clever slicing
and averaging argument is exploited to change boundary values increasing the energy in a
controlled and infinitesimal way (for more comments see [14, Subection 3.2]).
To recall the statement of [14, Lemma 3.9] we fix some more notation: for all i ∈ Ij , N and
h ∈ N let

Bi,h
j := {x ∈ Rn : |x−xij | < N−3hrj}, Ci,h

j := {x ∈ Rn : N−3h−2rj < |x−xij | < N−3h−1rj}.

Clearly, the inclusions Ci,h
j ⊂ Bi,h

j \B
i,h+1
j ⊂ V i

j hold true.

Lemma 3.1. Let (uj)j∈N be converging to u in Lp(U,Rm) with supj |uj |W s,p(U,Rm) < +∞.
With fixed N ∈ N, for every j ∈ N there exists hj ∈ {1, . . . , N} and wj ∈W s,p(U,Rm) such
that

wj = uj on U \ ∪i∈Ij (B
i,hj
j \Bi,hj+1

j ), (3.6)

wj = (uj)
C

i,hj
j

on C
i,hj
j , (3.7)

for some c = c(m,n, p, s, α) > 0 it holds for every measurable set E in U × U

|DK(uj , E)−DK(wj , E)| ≤ c

N
K(uj , U), (3.8)

and the sequence (wj)j∈N converge to u in Lp(U,Rm). If, in addition uj ∈ L∞(U,Rm), then

‖wj‖L∞(U,Rm) ≤ ‖uj‖L∞(U,Rm). (3.9)
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Eventually, if ζj :=
∑

i∈Ij (uj)Ci,hj
j

χV i
j

, then (ζj)j∈N converges to u in Lp(U,Rm).

Remark 3.2. A similar statement can be proved in case sequences (uj)j∈N taking values into
a convex set are considered. Indeed, the method to change boundary data performed in [14,
Lemmata 3.8, 3.9], is realized through a convexity argument, which is then compatible with
the constraint on the target codomain.

This clarification is necessary to fit the analysis of the phase-field model for ferroelectric
solids mentioned in the Introduction in our setting.

3.1. The scaling-invariant case. In the sequel we will consider parameters s ∈ (0, 1) and
p ∈ (1,+∞) fixed and such that sp = n. Notice then that p > n.
To describe the asymptotic behaviour of the sequence (Kj)j∈N we shall use the auxiliary

functions in (2.20) given by

ϕqj(z) := ϕ
λ2n
j K(λj ·)
ρqj

(z), where ρqj := qλ−1
j rj , (3.10)

for any q ∈ Q+. In what follows we shall assume that the sequences (ϕqj)j∈N converge
uniformly on compact subsets of Rm to functions ϕq for every q ∈ Q+. Note that since
ϕq2 ≤ ϕq1 if q1 ≤ q2 there exists the limit

ϕ(z) := lim
q→0+

ϕq(z) = lim
q→0+

lim
j→+∞

ϕqj(z) (3.11)

and the convergence is uniform on compact sets of Rm.
The convergence assumptions in (3.11) are not restrictive, they are always satisfied upon

the extraction of subsequences thanks to (i) and (ii) in Proposition 2.8.

Theorem 3.3. Let U ∈ A(Rn) be bounded and connected with Lipschitz regular boundary.
Given sets of points Λj satisfiying (3.1)-(3.2), and functions ϕqj satisfiying (3.11), suppose

that the following limit exists

ϑ := lim
j

#Ij | lnλj |1−p ∈ [0,+∞]. (3.12)

Then, the sequence (Kj)j∈N Γ-converges in the Lp(U,Rm) topology to the functional K :
Lp(U,Rm)→ [0,+∞] defined by

K (u) = K(u, U) + ϑ

ˆ
U
ϕ(u(x))β(x) dx (3.13)

if u ∈W s,p(U,Rm), +∞ otherwise in Lp(U,Rm), where ϕ is defined in (3.11).

3.1.1. Proof of the Γ-convergence. In Propositions 3.4 below we show the lower bound in-
equality. By Lemma 3.1 we may consider only sequences assuming constant values around
the obstacles, which are then approximately mean values of the target function close to the
T i
j ’s (cp. with (ζj) in Lemma 3.1). Then, a separation of scale argument shows that the ca-

pacitary contribution is concentrated along any neighborhood of the diagonal set ∆. Instead,
the remaining part of the energy provides the long range interaction term since the kernel is
no longer singular far from ∆.



14 MATTEO FOCARDI

Proposition 3.4. For every uj → u in Lp(U,Rm) we have

lim inf
j
Kj(uj) ≥ K (u).

Proof. Without loss of generality we shall assume ϑ > 0 in what follows, the lower bound
inequality being trivial otherwise.
Fix δ > 0, N ∈ N, and consider the sequence (wj)j∈N provided by Lemma 3.1. Then,

(wj)j∈N converges to u in Lp(U,Rm) and for some c = c(m,n, p, s, α) > 0 it holds(
1 +

c

N

)
lim inf

j
Kj(uj) ≥ lim inf

j
Kj(wj). (3.14)

Upon extracting a subsequence, not relabeled for convenience, we may assume that the right
hand side above is actually a limit, and in addition the index hj ∈ {1, . . . , N} in Lemma 3.1
to be independent of j. Hence, from now on we shall denote it simply by h.
Note that for j sufficiently big ∪i∈Ij (V i

j × V i
j ) ⊆ ∆δ, and thus

lim inf
j
Kj(wj) ≥ lim inf

j

DK(wj , U × U \∆δ) +
∑
i∈Ij

K(wj , V i
j )


≥ DK(u, U × U \∆δ) + lim inf

j

∑
i∈Ij

K(wj , V i
j ), (3.15)

thanks to Fatou’s lemma. We claim that for q = N−(3h+2)

lim inf
j

∑
i∈Ij

K(wj , V i
j ) ≥ (1− εN )ϑ

ˆ
U
ϕq(u(x))β(x)dx, (3.16)

with εN > 0 infinitesimal as N → +∞. Given this for granted, by (3.14) inequality (3.15)
rewrites as(

1 +
c

N

)
lim inf

j
Kj(uj) ≥ DK(u, U × U \∆δ) + (1− εN )ϑ

ˆ
U
ϕq(u(x))β(x)dx.

The thesis then follows by passing to the limit first as N → +∞ and then as δ → 0+ in the
last inequality.
To conclude we are left with proving (3.16). We keep the notations of Lemma 3.1 and

formula (3.10) with q = N−(3h+2); note that BλjNρqj (x
i
j ) ⊆ V i

j for all i ∈ Ij , and that
λjρ

q
j = qrj .

A change of variables and item (iii) in Proposition 2.8 give

K(wj , V i
j )

≥ inf
{
K(w,BλjNρqj (x

i
j )) : w ∈W s,p(Rn,Rm), w = (uj)Ci,h

j
on Ci,h

j , w̃ ∈ E q.e. on T i
j

}
≥ inf

{ˆ
B
Nρ

q
j
×B

Nρ
q
j

λ2n
j K(λj(x− y))|w(x)− w(y)|p dx dy : w ∈W s,p(Rn,Rm),

w = (uj)Ci,h
j

on Rn \Bρqj
, w̃ ∈ E q.e. on T

}
= (ln ρqj)

1−p ϕ
λ2n
j K(λj ·)
ρqj ,Nρ

q
j

(
(uj)Ci,h

j

)
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(2.25)

≥
(ln ρqj)

1−p

1 + c(N − 1)−n
ϕqj

(
(uj)Ci,h

j

)
= (1− εN )(ln ρqj)

1−p ϕqj

(
(uj)Ci,h

j

)
. (3.17)

Hence, if A ∈ A(U) is such that A ⊂⊂ U , for j sufficiently big we infer∑
i∈Ij

K(wj , V i
j ) ≥ (1− εN )(ln ρqj)

1−p #Ij
ˆ
A
ϕqj (ζj(x)) Ψj(x) dx,

where ζj is defined in Lemma 3.1 and Ψj(x) := (#Ij)−1
∑

i∈Ij (L
n(V i

j ))−1χV i
j
(x). Note that

‖Ψj‖L∞(U) ≤ (ωn rnj #Ij)−1, so that (Ψj)j∈N is equi-bounded in L∞(U) by (2.4), (2.5) and
(3.1). Furthermore, it is easy to show that Ψj → β weak∗ L∞(U) (cp. with [14, Proposition
3.10]). Then, recalling that ϕqj → ϕq uniformly on compact subsets of Rm, and ζj → u in
Lp(U,Rm) (see Lemma 3.1), it follows

lim inf
j

∑
i∈Ij

K(wj , V i
j ) ≥ (1− εN ) ϑ

ˆ
A
ϕq(u(x))β(x) dx.

Eventually, estimate (3.16) follows at once by letting A increase to U .

In the next proposition we prove that the lower bound established in Proposition 3.4 is sharp.
Thanks to the insight provided by Proposition 3.4, we are able to construct a sequence for
which there’s no loss of energy asymptotically in all the estimates there.

Proposition 3.5. For every u ∈ Lp(U,Rm) there exists a sequence (uj)j∈N such that uj → u

in Lp(U,Rm) and
lim sup

j
Kj(uj) ≤ K (u).

Proof. To begin with we note that it is not restrictive to take ϑ < +∞.
Furthermore, we may assume u ∈W 1,∞(U,Rm) by a standard density argument, the lower

semicontinuity of Γ- lim supKj , and the continuity of K (·) with respect to strong convergence
in W s,p as follows from item (ii) in Proposition 2.8.
In addition, we may also take u ∈ W 1,∞(U ′,Rm) on an open and bounded smooth set U ′

such that U ⊂⊂ U ′.
Fix N ∈ N, and let (wj)j∈N be the sequence obtained from u by applying Lemma 3.1 on
U ′. To simplify the notation introduced there set

ϕj(z) := ϕN
−(3hj+2)

j (z), φj(z) := ϕN
−5

j (z), %j := λ−1
j rj N

−(3hj+2).

Note that since hj ∈ {1, . . . , N}, then ϕj ≤ φj . In addition, if i ∈ I ′j := Ij ∪Ij(U) let

Bi
j := BλjN%j (x

i
j ), uij := u

C
i,hj
j

, Uj := U \
(
∪i∈I′jB

i
j

)
,

and notice then that Ci,hj
j ⊂ Bi

j .
For every j ∈ N consider ξij ∈ ADuij

(T,B%j ) such that

K(ξij , B%j ) ≤ | ln %j |1−p
(
ϕj
(
uij
)

+
1
N

)
.
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Then, define

uj(x) :=

wj(x) Uj

ξij

(
λ−1
j (x− xij )

)
Bi
j ∩ U, if i ∈ I ′j .

(3.18)

For the sake of notational simplicity we have not highlighted the dependence of the sequence
(uj)j∈N on the parameter N ∈ N. Clearly, (uj)j∈N converges strongly to u in Lp(U,Rm),
and moreover it satisfies the obstacle condition by construction. The rest of the proof is
devoted to show that uj ∈W s,p(U,Rm) with

lim sup
j
Kj(uj) ≤ K (u) + εδ + εN , (3.19)

where εδ → 0+ as δ → 0+ and εN → 0+ as N → +∞. A recovery sequence as in the
statement of Proposition 3.5 can be then constructed via a diagonal arument.
We first reduce ourselves to compute the energy of uj on a neighborhood of the diagonal ∆.

Indeed, let δ > 0, Lebesgue dominated convergence and the stated convergence of (uj)j∈N to
u in Lp(U,Rm) imply

lim
j
DK(uj , (U × U) \∆δ) = DK(u, (U × U) \∆δ).

In addition, since uj = wj on Uj by (3.8) in Lemma 3.1 we have for some positive constant
c = c(m,n, p, s, α)

lim sup
j
DK(uj , (Uj × Uj) ∩∆δ)

≤ lim sup
j
DK(wj , (U × U) ∩∆δ) ≤

(
1 +

c

N

)
DK(u, (U × U) ∩∆δ) = εδ. (3.20)

The conclusion then follows provided we show that

lim sup
j

(
DK(uj , (U × (U \ U j)) ∩∆δ) +DK(uj , ((U \ U j)× Uj) ∩∆δ)

)
≤ ϑ
ˆ
U
ϕ(u(x))β(x) dx+ εN + εδ. (3.21)

In order to prove this we introduce the following splitting of the left hand side above:

DK(uj , (U × (U \ U j)) ∩∆δ) +DK(uj , ((U \ U j)× Uj) ∩∆δ)

≤
∑
i∈I′j

K(uj , Bi
j ) +

∑
{(i,k)∈I′j×I′j : 0<|xij−xkj |<δ}

DK(uj , Bi
j ×Bk

j )

+ 2
∑
i∈I′j

DK(uj , (Bi
j × Uj) ∩∆δ) =: I1

j + I2
j + I3

j .

Next we estimate separately each term Irj , r ∈ {1, 2, 3}. All the constants c appearing in
the rest of the proof will depend only on m, n, p, s, α and ‖u‖W 1,∞(U ′,Rm). Hence, this
dependence will no longer be indicated.
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Step 1. Estimate of I1
j :

lim sup
j

I1
j ≤ ϑ

ˆ
U
ϕ(u(x))β(x) dx+ εN . (3.22)

A straightforward change of variables, the very definition of uj and (2.22) yield

I1
j ≤ | ln %j |1−p

∑
i∈I′j

(
ϕj(uij ) +

1
N

)

≤ #Ij | ln %j |1−p
ˆ
U

(
φj(ζj(x)) +

1
N

)
Ψj(x) dx+

(
c+

1
N

)
#(Ij(U)) | ln %j |1−p (3.23)

where Ψj(x) = (#Ij)−1
∑

i∈Ij (L
n(V i

j ))−1χV i
j
(x) and ζj is defined in Lemma 3.1 and it is

related to the sequence with constant terms equal to u. Arguing as in Proposition 3.4, the
convergences of (φj)j∈N to ϕN

−5
uniform on compact subsets of Rm, and of (Ψj)j∈N to β

weak∗-L∞(U), give (3.22) by passing to the limit as j → +∞ on the right hand side above,
once one notices that

lim
j

#(Ij(U)) | ln %j |1−p = 0. (3.24)

The last equality follows from (2.5), (3.1), (3.3) and (3.12), ϑ < +∞, and the fact that U is
Lipschitz regular.

Step 2. Estimate of I2
j :

lim sup
j

I2
j ≤ εN + εδ. (3.25)

The very definition of uj in (3.18) implies that for any (x, y) ∈ Bi
j ×Bk

j , i 6= k and i, k ∈ I ′j
it holds

uj(x)− uj(y) =
(
uij − ukj

)
+
(
ξij

(
λ−1
j (x− xij )

)
− uij

)
−
(
ξkj

(
λ−1
j (y − xkj )

)
− ukj

)
.

Hence, we can bound I2
j as follows

I2
j ≤ 3p−1α

∑
{(i,k)∈I′j×I′j : 0<|xij−xkj |<δ}

ˆ
Bi
j×Bk

j

|uij − ukj |p

|x− y|2n
dxdy

+ 3pα
∑

{(i,k)∈I′j×I′j : 0<|xij−xkj |<δ}

ˆ
Bi
j×Bk

j

|ξij (λ−1
j (x− xij ))− uij |p

|x− y|2n
dxdy =: I2,1

j + I2,2
j .

To estimate the right hand side above we note that |xij − xkj |/2 ≤ |x− y| ≤ 2|xij − xkj | for any
(x, y) ∈ Bi

j ×Bk
j , i, k ∈ I ′j with i 6= k, and that |uij −ukj | ≤ 2 ‖u‖W 1,∞(U ′,Rm)|xij −xkj |. Hence,

we infer ˆ
Bi
j×Bk

j

|uij − ukj |p

|x− y|2n
dxdy ≤ c

r2n
j

|xij − xkj |2n−p
. (3.26)

In addition, for every fixed i ∈ I ′j we have

{k ∈ I ′j : 0 < |xij − xkj |∞ < δ} ⊆ ∪bδ/rjch=2 {k ∈ I
′
j : h rj ≤ |xij − xkj |∞ < (h+ 1)rj},
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where btc denotes the integer part of t. The latter inclusion together with (2.4), (2.6) and
(3.26) entails

I2,1
j ≤ c

∑
i∈I′j

bδ/rjc∑
h=2

∑
{k∈I′j : h rj≤|xij−xkj |∞<(h+1)rj}

rpj
h2n−p

(2.4), (2.6)

≤ c

bδ/rjc∑
h=2

rp−nj

h1+n−p ≤ c δ
p−n,

(3.27)
since

∑M
h=2 h

−(1+γ) ≤ (M−γ)/(−γ), for any γ < 0 and M ∈ N (recall that p > n if sp = n).
To bound I2,2

j we argue as follows: for every i ∈ I ′j we have

∑
{k∈I′j : k6=i}

ˆ
Bk
j

1
|x− y|2n

dy ≤ c
∑

{k∈I′j : k 6=i}

rnj
|xij − xkj |2n

(2.6)

≤ c

rnj

∑
h≥1

1
h1+n

.

Therefore, a change of variables, Poincaré-Wirtinger inequality, and the very definition of %j
yield

I2,2
j ≤ c

λnj
rnj

∑
i∈I′j

ˆ
B%j

|ξij (x)− uij |pdx ≤
c

Nn(3hj+2)

∑
i∈I′j

|ξij |
p
W s,p(B%j ,R

m)

(2.14)

≤ c

N5n
| ln %j |1−p

∑
i∈I′j

(
ϕj(uij ) +

1
N

)

≤ c

N5n
#I ′j | ln %j |1−p

(ˆ
U
φj(ζj(x))Ψj(x) dx+ c

)
(3.23), (3.24)

= εN . (3.28)

Clearly, (3.27) and (3.28) imply (3.25).

Step 3. Estimate of I3
j :

lim sup
j

I3
j ≤ εδ + εN . (3.29)

Being uj = wj on Uj , we find

I3
j ≤ c

∑
i∈I′j

ˆ
(Bi
j×Uj)∩∆δ

K(x− y)
∣∣∣ξij (λ−1

j (x− xij )
)
− uij

∣∣∣p dxdy
+ c

∑
i∈I′j

ˆ
(Bi
j×Uj)∩∆δ

K(x− y)|uij − wj(x)|p dxdy

+ c
∑
i∈I′j

ˆ
(Bi
j×Uj)∩∆δ

K(x− y)|wj(x)− wj(y)|pdxdy =: I3,1
j + I3,2

j + I3,3
j .

Since ξij = uij out of B%j (x
i
j ), by a change of variables the first integral above can be bounded

by

I3,1
j ≤ c

∑
i∈I′j

ˆ
BN%j

ˆ
BcN%j

λ2n
j K(λj(x− y))|ξij (x)− ξij (y)|p dxdy
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≤ c | ln %j |1−p
∑

i∈I′j

∣∣∣∣ϕj(uij )− ϕλ2n
j K(λj ·)
%j ,N%j

(uij )
∣∣∣∣+

#I ′j
N


(2.25)

≤ c | ln %j |1−p
 1

(N − 1)n
∑
i∈I′j

ϕj(uij ) +
#I ′j
N


≤ c#I ′j | ln %j |1−p

(
1

(N − 1)n

ˆ
U
φj(ζj(x))Ψj(x) dx+

1
N

)
(3.23), (3.24)

= εN . (3.30)

To deal with the term I3,2
j , we use the growth conditions on K in (2.14), integrate out

y thanks to (2.10), and observe that wj |
C

i,hj
j

= uij to apply the scaled Poincaré-Wirtinger

inequality in (2.9) and infer:

I3,2
j

(2.14), (2.10)

≤ c
∑
i∈I′j

ˆ
Bi
j

|wj(x)− uij |p

distn(x, ∂Bi
j )
dx = c

∑
i∈I′j

ˆ
Bλj%j (xij)

|wj(x)− uij |p

distn(x, ∂Bi
j )
dx

≤ c
(
N3hj+1

rj

)n ∑
i∈I′j

ˆ
Bλj%j (xij)

|wj(x)− uij |pdx
(2.9)

≤ c

Nn

∑
i∈I′j

|wj |pW s,p(Bi
j ,R

m)

(2.14)

≤ c

Nn
DK(wj , (U ′ × U ′) ∩∆δ) = εN εδ. (3.31)

Finally, for what I3,3
j is concerned we have

I3,3
j ≤ cDK(wj , (U × U) ∩∆δ)

(3.20)
= εδ. (3.32)

By collecting (3.30)-(3.32) we infer (3.29).

Step 4: Conclusion. The conclusion follows at once from Step 1 - Step 3.

3.2. The subcritical case. We now establish a result analogous to Theorem 3.3 in case
the singular kernel K satisfies (2.14) with sp ∈ [1, n). We limit ourselves to state the result
and comment on it since the scalar setting for homogeneous kernels has been investigated in
details in [14] and few changes are needed to deal with the vector-valued one considered in
this paper once Propositions 2.8 and 2.9 are at disposal.
In doing that we slightly extend the conclusions in [14, Theorem 3] by including the case
sp = 1 that was originally excluded in that statement, the reason for that being the use of
Hardy inequality in some estimates. Indeed, such an inequality does not hold true if sp = 1
(see [22, Theorem 4.3.2/1, Remark 2 pp. 319-320]).
Despite this, in view of the argument leading to (3.31) in Theorem 3.3, an inspection of the

proof of [14, Proposition 3.11] shows that the use of Hardy inequality is actually pointless in
[14, Theorem 3] (cp. with formulas (3.42) and (3.46) there). Hence, in what follows, we state
an asymptotic result for the full subcritical range of values of p and s.
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To describe the limit behaviour of (Kj)j∈N we shall consider auxiliary functions as in (2.29)
given by

ϕqj(z) := ϕ
λn+sp
j K(λj ·)
ρqj

(z), where ρqj := qλ−1
j rj , (3.33)

for any q ∈ Q+. In addition, we shall assume that the sequences (ϕqj)j∈N converge uniformly
on compact subsets of Rm to functions ϕq for every q ∈ Q+. Note that since ϕq2 ≤ ϕq1 if
q1 ≤ q2 there exists the limit

ϕ(z) := lim
q→0+

ϕq(z) = lim
q→0+

lim
j→+∞

ϕqj(z) (3.34)

and the convergence is uniform on compact sets of Rm.
Let us point out that in case the kernel K is (−n− sp)-homogeneous ϕqj reduces to ϕK

ρqj
so

that the convergence in (3.34) holds true as noticed in (2.30). Otherwise, it is guaranteed
only up to subsequences.

Theorem 3.6. Let U ∈ A(Rn) be bounded and connected with Lipschitz regular boundary.
Given sets of points Λj satisfiying (3.1)-(3.2), and functions ϕqj as in (3.33), suppose that

(3.34) holds and that the following limit exists

ϑ := lim
j

#Ij λn−spj ∈ [0,+∞]. (3.35)

Then, the sequence (Kj)j∈N Γ-converges in the Lp(U,Rm) topology to the functional K :
Lp(U,Rm)→ [0,+∞] defined by

K (u) = K(u, U) + ϑ

ˆ
U
ϕ(u(x))β(x) dx (3.36)

if u ∈W s,p(U,Rm), +∞ otherwise in Lp(U,Rm).

4. Generalizations

Several generalizations are possible following the path in [14]. In this section we limit our-
selves to consider energies defined by non-translation invariant kernels in the scaling invariant
case sp = n. Clearly, analogous results can be obtained for sp ∈ [1, n). Given a Ln × Ln-
measurable function K : Rn × Rn \ ∆ → [0,+∞), the growth conditions in (2.14) rewrite
as

α−1|x− y|−2n ≤ K(x, y) ≤ α|x− y|−2n (4.1)

for some α ≥ 1, and for all (x, y) ∈ Rn ×Rn \∆.
We shall also assume that K satisfies the continuity condition

|K(x, y)−K(x+ p, y + p)| ≤ ω(|p|)K(x, y) (4.2)

for all points (x, y) ∈ Rn×Rn \∆, vectors p ∈ Rn \ {0}, and for some modulus of continuity
ω, i.e. ω : [0,+∞)→ [0,+∞] with ω(t)→ 0 as t→ 0+.
For instance, it is straightforward to check that estimate (4.2) holds true in case the function

Rn ×Rn \ ∆ 3 (x, y) → |x − y|2nK(x, y) is 0-homogeneous, i.e. K is (−2n)-homogeneous,
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and belongs to C0(S2n−1). Consequently, a functional K : Lp(A,Rm) × A(Rn) → [0,+∞]
can be defined as in (2.15).
Assuming (4.1) and (4.2), let ϕρ,R : Rm → [0,+∞) be the function defined in (2.20) and

consider the following capacitary problems

ϕρ,R(x, z) := ϕ
K(x+·,x+·),T
ρ,R (z). (4.3)

In turn, the latter identity, Proposition 2.8, (4.1) and (4.2) yield that ϕρ,R belongs to C0(Rn×
Rm) with

|ϕρ,R(x1, z1)− ϕρ,R(x2, z2)|

≤ c (1 + |z1|p + |z2|p)ω(|x1 − x2|) + c (1 + |z1|p−1 + |z2|p−1)|z1 − z2|, (4.4)

for some constant c = c(m,n, p, s, α) > 0 and for all (xi, zi) ∈ Rn×Rm, i ∈ {1, 2}. Actually,
estimate (4.4) is uniform for families of kernels satisfying (4.1) and (4.2). Hence, up to
subsequences, if

ϕqj(x, z) := ϕ
λ2n
j K(x+λj ·, x+λj ·), T
ρqj

(z), where ρqj := qλ−1
j rj , (4.5)

the sequences (ϕqj)j∈N converge uniformly on compact subsets of Rn ×Rm to functions ϕq

for any q ∈ Q+. Then, since ϕq2 ≤ ϕq1 if q1 ≤ q2 there exists the limit

ϕ(x, z) := lim
q→0+

ϕq(x, z) = lim
q→0+

lim
j→+∞

ϕqj(x, z). (4.6)

Notice that ϕ ∈ C0(Rn ×Rm) since the convergence is uniform on compact subsets.
In view of this convergence and of (4.4), it is then easy to adapt the proof and infer a

statement similar to Theorem 3.3, the Γ-limit being given as in (3.36) with the non-local
energy defined by the kernel K above, and with the function ϕ in (4.6) substituting that in
(3.11) in the density of the obstacle penalization term.
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[12] F. Dav́ı, P.M. Mariano, Evolution of domain walls in ferroelectric solids, J. Mech. Phys. Solids 49 (2001),

1701–1726.

[13] M. Focardi, Homogenization of random fractional obstacle problems via Γ-convergence, Comm. Partial

Differential Equations 34 (2009), pp. 1607–1631.

[14] M. Focardi, Aperiodic fractional obstacle problems, Adv. Math. 225 (2010), pp. 3502–3544.

[15] M. Focardi, A. Garroni, A 1D macroscopic phase field model for dislocations and a second order Γ-limit,

SIAM Multiscale Model. Simul. 6 (2007), no. 4, 1098–1124.

[16] A. Garroni, S. Müller, Γ-limit of a phase-field model of dislocations, SIAM J. Math. Anal., 36 (2005), pp.

1943–1964.

[17] A. Garroni, S. Müller, A variational model for dislocations in the line tension limit, Arch. Ration. Mech.

Anal., 181 (2006), pp. 535–578.
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