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Abstract. We prove, using direct variational arguments, an explicit energy-treshold cri-

terion for regular points of 2-dimensional Mumford-Shah energy minimizers. From this we

infer an explicit constant for the density lower bound of De Giorgi, Carriero and Leaci.

1. Introduction

The Mumford-Shah model stands as a prototypical example of variational problem in image
segmentation (see [13]). It consists in minimizing (adding either boundary or confinement
conditions or fidelity terms) the energy

E(v,K) :=
ˆ

Ω\K
|∇v|2 dx+H1(K),

where Ω ⊂ R2 is a fixed open set, K is a rectifiable closed subset of Ω, and v ∈ C1(Ω \K).
This energy has been then borrowed and conveniently modified in Fracture Mechanics, mainly
to model quasi-static irreversible crack-growth for brittle materials (see [2, Section 4.6.6]).
One of the first existence theories for minimizers of E hinges upon a weak formulation in

the space SBV of Special functions of Bounded Variation, the subspace of BV functions
with singular part of the distributional derivative concentrated on a 1-rectifiable set. In this
approach the set K is substituted by the (Borel) set Sv of approximate discontinuities of the
function v (throughout the paper we will use standard notations and results concerning BV
and SBV , following the book [2]). This is the reason for the terminology free-discontinuity
problem introduced by De Giorgi. The Mumford-Shah energy of a function v in SBV (Ω) on
an open subset A ⊆ Ω then reads as

MS(v,A) =
ˆ
A
|∇v|2dx+H1(Sv ∩A). (1.1)

In case A = Ω we drop the dependence on the set of integration. In what follows u will
always denote a local minimizer, that is any u ∈ SBV (Ω) with MS(u) < +∞ and such that

MS(u) ≤ MS(w) whenever {w 6= u} ⊂⊂ Ω.

The class of all local minimizers shall be denoted by M(Ω).
As established in [9] in all dimensions (and proved alternatively in [5] in dimension two),

if u ∈ SBV is a minimizer of the energy MS, then the pair (u, Su) is a minimizer of E.
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The main point is the identity H1(Su \ Su) = 0, which holds for every u ∈ M(Ω). The
groundbreaking paper [9] proves this identity via the following density lower bound

MS(u,Br(z))
2r

≥ θ for all z ∈ Su, and all r ∈ (0,dist(z, ∂Ω)) (1.2)

with θ a dimensional constant independent of u. Building upon the same ideas, in [4] it is
proved that for some dimensional constant θ0 independent of u it holds

H1(Su ∩Br(z))
2r

≥ θ0 for all z ∈ Su, and all r ∈ (0, dist(z, ∂Ω)). (1.3)

The argument for (1.2) used by De Giorgi, Carriero & Leaci in [9], and similarly in [4]
for (1.3), is indirect: it relies on Ambrosio’s SBV compactness theorem, an SBV Poincaré-
Wirtinger type inequality and the asymptotic analysis of blow-ups of minimizers with van-
ishing Dirichlet energy. In this paper we give a simpler proof in 2 dimensions, which does not
require any Poincaré-Wirtinger inequality, nor any compactness argument. Our argument
differs from those used in [5] and [6] to derive (1.3) in the two dimensional case as well.
We first introduce some useful notation, which we borrow from [8]. Given u ∈M(Ω), z ∈ Ω

and r ∈ (0, dist(z, ∂Ω)) let

ez(r) :=
ˆ
Br(z)

|∇u|2dx, `z(r) := H1(Su ∩Br(z))

mz(r) := MS(u,Br(z)), and hz(r) := ez(r) +
1
2
`z(r).

Clearly mz(r) = ez(r) + `z(r) ≤ 2hz(r), with equality if and only if ez(r) = 0.

Theorem 1.1. Let u ∈M(Ω). Then

mz(r)
r
≥ 1 for all z ∈ Su and all r ∈ (0, dist(z, ∂Ω)). (1.4)

More precisely, the set Ωu := {z ∈ Ω : (1.4) fails} is open and Ωu = Ω \ Ju = Ω \ Su.

The quantity mz(·) in Theorem 1.1 allows us to take advantage of a suitable monotonicity
formula, discovered independently by David and Léger in [8] and Maddalena and Solimini
in [12]. A simple iteration of Theorem 1.1 gives a density lower bound as in (1.3) with an
explicit constant θ0.

Corollary 1.2. If u ∈M(Ω), then H1(Su \ Ju) = 0 and

`z(r)
2r
≥ π

224
for all z ∈ Su and all r ∈ (0,dist(z, ∂Ω)). (1.5)

A natural question is the sharpness of the estimates (1.4) and (1.5). The analysis performed
by Bonnet [3] suggests that π

224 in (1.5) should be replaced by 1
2 and 1 in (1.4) by 2. Note

that the square root function u(r, θ) =
√

2
π r · sin(θ/2) satisfies `0(r) = e0(r) = r for all r > 0.

Thus both the constants conjectured above would be sharp by [7, Section 62]. Unfortunately,
we cannot prove any of them.
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Instead, in Corollary 1.3 below we prove an infinitesimal version of (1.4) for quasi-minimizers
of the Mumford-Shah energy, that is any function v in SBV (Ω) with MS(v) < +∞ and
satisfying for some ω ≥ 0 and α > 0 and for all balls Bρ(z) ⊂ Ω

MS(v,Bρ(z)) ≤ MS(w,Bρ(z)) + ω ρ1+α whenever {w 6= v} ⊂⊂ Bρ(z). (1.6)

We denote the class of quasi-minimizers satisfying (1.6) by Mω(Ω).

Corollary 1.3. Let v ∈Mω(Ω), then

Su = Ju =
{
z ∈ Ω : lim inf

r↓0+

mz(r)
r
≥ 2

3

}
. (1.7)

Plan of the paper. In section 2 we prove Theorem 1.1. The main ingredient, i.e. the
David-Léger-Maddalena-Solimini monotonicity formula is proved in Appendix A. In section 3
we prove the Corollaries 1.2 and 1.3. The latter needs three additional tools: a Poincaré-
Wirtinger type inequality, a technical lemma on sequences of MS minimizers and a decay
lemma, proved in Appendices B, C and D, respectively. The technical lemma and the decay
lemma are well-known facts. The Poincaré-Wirtinger inequality instead refines some results
obtained in [11]: it is to our knowledge new and might be of independent interest.

2. Main result

As already mentioned, the main ingredient of Theorem 1.1 is the following monotonicity
formula discovered independently in [8] and in [12] (cp. with [8, Proposition 3.5]).

Lemma 2.1. Let u ∈M(Ω), then for every z ∈ Ω and for L1 a.e. r ∈ (0, dist(z, ∂Ω))
ˆ
∂Br(z)

((
∂u

∂ν

)2

−
(
∂u

∂τ

)2
)
dH1 +

`z(r)
r

=
1
r

ˆ
Ju∩∂Br(z)

|〈ν⊥u (x), x〉|dH0(x), (2.1)

∂u
∂ν and ∂u

∂τ being the projections of ∇u in the normal and tangential directions to ∂Br(z),
respectively.

We will also need the following elementary well-known facts.

Lemma 2.2. Every u ∈M(Ω) is locally bounded and

MS(u,Br(z)) ≤ 2πr for all Br(z) ⊂ Ω. (2.2)

We are now ready to prove the main result of the paper.

Proof of Theorem 1.1. Introduce the set J?u of points x ∈ Ju for which

lim
r↓0

H1(Ju ∩Br(x))
2r

= 1 . (2.3)

Since Ju is rectifiable, H1(Ju \ J?u) = 0. Next let z ∈ Ω be such that

mz(R) < R for some R ∈ (0,dist(z, ∂Ω)). (2.4)
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We claim that z 6∈ J?u. W.l.o.g. we take z = 0 and drop the subscript z in e, `,m and h.
In addition we can assume e(R) > 0. Otherwise, by the Co-Area formula and the trace

theory of BV functions, we would find a radius r < R such that u|∂Br is a constant. In turn,
u would necessarily be constant in Br because the energy decreases under truncations, thus
implying z 6∈ J?u. We can also assume `(R) > 0, since otherwise u would be harmonic in BR

and thus we would conclude z 6∈ J?u.
We start next to compare the energy of u with that of an harmonic competitor on a suitable

disk. The inequality `(R) ≤ m(R) < R is crucial to select good radii.

Step 1: For any fixed r ∈ (0, R− `(R)), there exists a set Ir of positive length in (r,R) such
that

h(ρ)
ρ
≤ 1

2
· e(R)− e(r)
R− r − (`(R)− `(r))

for all ρ ∈ Ir. (2.5)

Define Jr := {t ∈ (r,R) : H0(Su ∩ ∂Bt) = 0}. We claim te existence of J ′r ⊆ Jr with
L1(J ′r) > 0 and such thatˆ

∂Bρ

|∇u|2dH1 ≤ e(R)− e(r)
R− r − (`(R)− `(r))

for all ρ ∈ J ′r. (2.6)

Indeed, we use the Co-Area formula for rectifiable sets (see [2, Theorem 2.93]) to find

L1((r,R) \ Jr) ≤
ˆ

(r,R)\Jr
H0(Su ∩ ∂Bt)dt =

ˆ
Su∩(BR\Br)

∣∣∣∣〈ν⊥u (x),
x

|x|
〉
∣∣∣∣ dH1(x) ≤ `(R)− `(r).

In turn, this inequality implies L1(Jr) ≥ R − r − (`(R) − `(r)) > 0, thanks to the choice of
r. Then, define J ′r to be the subset of radii ρ ∈ Jr for whichˆ

∂Bρ

|∇u|2dH1 ≤
 
Jr

(ˆ
∂Bt

|∇u|2dH1

)
dt .

Formula (2.6) follows by the Co-Area formula and the estimate L1(Jr) ≥ R−r−(`(R)−`(r)).
We define Ir as the subset of radii ρ ∈ J ′r satisfying both (2.1) and (2.6). Therefore

ˆ
∂Bρ

(
∂u

∂τ

)2

dH1 =
1
2

ˆ
∂Bρ

|∇u|2dH1 +
`(ρ)
2ρ

∀ρ ∈ Ir. (2.7)

Clearly, Ir has full measure in J ′r, so that L1(Ir) > 0.
For any ρ ∈ Ir, we let w be the harmonic function in Bρ with trace u on ∂Bρ. Then, as
∂w
∂τ = ∂u

∂τ H
1 a.e. on ∂Bρ, the local minimality of u entails

m(ρ) ≤
ˆ
Bρ

|∇w|2dx ≤ ρ
ˆ
∂Bρ

(
∂u

∂τ

)2

dH1 (2.7)
=

ρ

2

ˆ
∂Bρ

|∇u|2dH1 +
`(ρ)

2
.

The inequality (2.5) follows from the latter inequality and from (2.6):

h(ρ) = e(ρ) +
`(ρ)

2
≤ ρ

2

ˆ
∂Bρ

|∇u|2dH1 ≤ ρ

2
· e(R)− e(r)
R− r − (`(R)− `(r))

.

Step 2: We now show that 0 6∈ J?u.
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Let ε ∈ (0, 1) be fixed such that m(R) ≤ (1 − ε)R, and fix any radius r ∈ (0, R − `(R) −
1

1−εe(R)). Step 1 and the choice of r then imply

h(ρ)
ρ
≤ 1

2
e(R)− e(r)

R− r − (`(R)− `(r))
≤ e(R)

2(R− `(R)− r)
<

1− ε
2

,

in turn giving m(ρ) ≤ 2h(ρ) < (1 − ε)ρ. Let ρ∞ := inf{t > 0 : m(t) ≤ (1 − ε)t}, then
ρ∞ ∈ [0, ρ]. Note that if ρ∞ were strictly positive then actually ρ∞ would be a minimum.
In such a case, we could apply the argument above and find ρ̃ ∈ (r∞, ρ∞), with r∞ ∈
(0, ρ∞ − `(ρ∞)− 1

1−εe(ρ∞)), such that m(ρ̃) < (1− ε)ρ̃ contradicting the minimality of ρ∞.
Hence, there is a sequence ρk ↓ 0+ with m(ρk) ≤ (1 − ε)ρk. Then, clearly condition (2.3) is
violated, so that 0 6∈ J?u.

Conclusion: We first prove that Ωu is open. Let z ∈ Ωu and let R > 0 and ε > 0 be such
that mz(R) ≤ (1− ε)R and BεR(z) ⊂ Ω. Let now x ∈ BεR(z), then

mx(R− |x− z|) ≤ mz(R) ≤ (1− ε)R < R− |x− z|,

therefore x ∈ Ωu.
As J?u ∩Ωu = ∅ by Step 2, we have H1(J?u ∩Ωu) = H1(Ju ∩Ωu) = H1(Su ∩Ωu) = 0. Hence,
u is in W 1,2 of the open set Ωu, and by minimality it is actually harmonic there. Thus,
Su ∩ Ωu = ∅ and Su ⊆ Ω \ Ωu. Moreover, let z /∈ J?u and r > 0 be such that Br(z) ⊆ Ω \ J?u.
Since H1(Su \ J?u) = 0, u ∈ W 1,2(Br(z)) and thus u is an harmonic function in Br(z) by
minimality. Therefore z ∈ Ωu, and in conclusion Ω \ Ωu = J?u = Ju = Su. �

Remark 2.3. The same arguments of Theorem 1.1 complemented by Theorem 3.1 show that

Ω \ Ju = {z ∈ Ω : mz(R) ≤ R for some R ∈ (0, d(z, ∂Ω))}. (2.8)

Indeed, assuming z = 0 and dropping the subscript z, if e(R) = 0 or `(R) = 0, then 0 ∈ Ω\Ju.
In the former case, the assertion follows since u is constant on Bρ for some ρ ∈ (0, R) by
Theorem 3.1; in the latter case, u is harmonic on BR by minimality. Hence, both e(R) and
`(R) are in (0, R). By Step 1 in Theorem 1.1 we have h(ρ) ≤ ρ/2 for some ρ ∈ (0, R). If
e(ρ) = 0 then 0 ∈ Ω \ Ju, otherwise, m(ρ) < 2h(ρ) ≤ ρ. In the last instance, we are back
to Theorem 1.1, so that 0 ∈ Ω \ Ju. In any case, the set on the rhs of (2.8) is contained in
Ω \ Ju. The opposite inclusion is trivial.

3. Proof of Corollaries 1.2 and 1.3

Proof of Corollary 1.2. Assume by contradiction that (1.5) fails for some z ∈ Su and some
R1 ∈ (0,dist(z, ∂Ω)). W.l.o.g. we take z = 0 and drop the subscript z in e, `,m and h.
Note that R1/4 − `(R1) > R1/8 since `(R1) < 2πR1/224 < R1/8. Then, choosing r1 ∈

(R1/8, R1/4 − `(R1)) we have 2(R1 − `(R1) − r1) > 3R1/2, and by applying Step 1 in
Theorem 1.1 we infer, by (2.2),

h(ρ1)
ρ1

≤ 1
2(R1 − `(R1)− r1)

e(R1) <
2
3
e(R1)
R1

≤ 4
3
π
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for some ρ1 ∈ (r1, R1). Note that

`(ρ1)
2ρ1

≤ R1

ρ1

`(R1)
2R1

< 8
`(R1)
2R1

<
π

221
<

1
16
.

Hence, we may use again Step 1 of Theorem 1.1 with the new radii R2 = ρ1, and r2 satisfying
r2 ∈ (R2/8, R2/4− `(R2)) accordingly. Then, for some ρ2 ∈ (r2, R2) we get

h(ρ2)
ρ2

≤ 1
2(R2 − `(R2)− r2)

e(R2) <
2
3
e(R2)
R2

=⇒ h(ρ2)
ρ2

≤
(

2
3

)2

2π.

In general, for 2 ≤ k ≤ 7 given Rk−1, rk−1 and ρk−1 set Rk := ρk−1, choose rk such that
rk ∈ (Rk/8, Rk/4− `(Rk)), and use Step 1 of Theorem 1.1 to find ρk ∈ (rk, Rk) satisfying

h(ρk)
ρk

≤
(

2
3

)j
2π.

Note that for any 2 ≤ k ≤ 6

`(ρk)
2ρk

< 8
`(ρk−1)
2ρk−1

<
π

23(8−k)
<

1
16
,

and thus the construction is well defined. In addition,

h(ρ7)
ρ7

≤
(

2
3

)7

2π <
1
2

=⇒ m(ρ7) ≤ 2h(ρ7) < ρ7.

From Theorem 1.1 we deduce that 0 /∈ Su, which gives clearly a contradiction.
Eventually, standard density estimates imply H1

(
Su \ Su

)
= 0 (cp. with [2, Theorem 2.56]),

and being Su = Ju (see Theorem 1.1) we get H1
(
Su \ Ju

)
= 0. �

In the proof of Corollary 1.3 we will need a Poincaré-Wirtinger type inequality (see Appen-
dix B), and a closure theorem for minimizers of the Mumford-Shah energy.

Theorem 3.1. Let u ∈ M(BR) with H1(Su) < 2R, and let λ ∈ (0, 1). Then, u ∈ L∞(Bρ)
for some ρ ∈ (λ(R−H1(Su)/2), R), and for any median med(u) of u on BR we have

‖u−med(u)‖L∞(Bρ) ≤
2

2R−H1(Su)
‖∇u‖L1(BR,R2).

Proposition 3.2. Let (uk)k∈N ⊂ M(Ω) be a sequence converging to some u ∈ SBV (Ω)
strongly in L2. Then u ∈M(Ω) and for all open sets A ⊆ Ω we have

lim
k

ˆ
A
|∇uk|2dx =

ˆ
A
|∇u|2dx, lim

k
H1(Juk ∩A) = H1(Ju ∩A). (3.1)

Furthermore, (Juk)k∈N converges locally in the Hausdorff distance to Ju.

We will also take advantage of the following decay lemma inspired by [9, Lemma 4.9] (cp.
also with [2, Lemma 7.14, Theorem 7.21]) and proved in Appendix D.



DENSITY LOWER BOUND FOR MUMFORD-SHAH MINIMIZERS 7

Lemma 3.3. For all ω ≥ 0, β ∈ (0, 1] and τ ∈ (0, 1) there exist ε = ε(β, τ) ∈ (0, 1) and
R = R(β, τ) > 0 such that if v ∈Mω(Ω) satisfies

MS(v,Bρ(z)) ≤ ερ,

for some z ∈ Ω and ρ ∈ (0, (R/ω1/α) ∧ dist(z, ∂Ω)), then for all k ≥ 1

MS(v,Bτkρ(z)) ≤ τk+1−β ερ.

Proof of Corollary 1.3. Denote by Ωv the complement of the set on the rhs of (1.7). We first
show that Ωv = Ω \ J?v , where as usual J?v is the subset of points z ∈ Jv for which

lim
r↓0

H1(Ju ∩Br(z))
2r

= 1.

Let z ∈ Ω \ J?v , then v ∈W 1,2(BR(z)) for some R > 0. Observe v|∂Bρ(z) ∈W 1,2(∂BR(z)) for
L1 a.e. ρ ∈ (0, R). Testing the quasi-minimality condition (1.6) with the harmonic extension
ϕ of v|∂Bρ(z) to Bρ(z), Lemma 2.1 and the Co-Area formula yield

ez(ρ) ≤ ρ

2
e′z(ρ) + ω ρ1+α.

Integrating this last inequality we get, for α 6= 1,

ez(ρ) ≤
( ρ
R

)2
ez(R) +

2ω
α− 1

ρ2
(
Rα−1 − ρα−1

)
, (3.2)

from which we conclude z ∈ Ωv since mz(ρ) = ez(ρ) = o(ρ) as ρ ↓ 0+. Hence, Ω \ J?v ⊆ Ωv.
We can proceed analogously if α = 1.
To prove the opposite inclusion, let z ∈ Ωv and rk ↓ 0+ be a sequence along which for some
γ ∈ (0, 2/3)

lim inf
r↓0+

mz(r)
r

= lim
k↑∞

mz(rk)
rk

< γ. (3.3)

Let mk be a median of u on Brk(z), and consider the functions vk : B1 → R defined as
vk(y) := r

−1/2
k (v(z + rky) −mk). Note that vk ∈ Mωrαk

(B1). Let λ ∈ (0, 1) be a parameter
whose choice will be specified laater. Since H1(Jvk) < γ we apply Theorem B.6 to find
functions wk : B1 → R which are suitable truncations of vk and such that, for all k,

‖wk‖L∞(Bλ(1−γ/2)) ≤ 2‖∇vk‖L1(B1,R2) ≤ 2π1/2‖∇vk‖L2(B1,R2)

(2.2)

≤ 4π.

In particular, up to a subsequence, (wk)k∈N converges in L2(Bλ(1−γ/2)) to a function w in
SBV (Bλ(1−γ/2)) with MS(w,Bλ(1−γ/2)) < +∞ by Ambrosio’s SBV compactness theorem
(see [2, Theorems 4.7 and 4.8]).
We claim that for all open subsets A of B1 it holds

0 ≤ MS(vk, A)−MS(wk, A) ≤ ω rαk . (3.4)

Indeed, by the very definition of wk we have {wk 6= vk} ⊂⊂ B1 (cp. with formula (B.3) in
Theorem B.6). Then, as vk ∈Mω rαk

(B1), we get

MS(vk, B1)−MS(wk, B1) ≤ ω rαk .
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We conclude (3.4) by the latter estimate and since MS(wk, B) ≤ MS(vk, B) for all Borel
subsets B of B1 (recall that wk is obtained from vk by truncation).
Remark C.1 and (3.4) yield that w ∈M(Bλ(1−γ/2)), with

MS(w,Bρ) = lim
k↑∞

MS(wk, Bρ) for all ρ ∈ (0, λ(1− γ/2)]. (3.5)

By collecting (3.3), (3.4) and (3.5), we deduce for every ρ ∈ (0, λ(1− γ/2)]

MS(w,Bρ) = lim
k↑∞

mz(ρ rk)
rk

≤ lim
k↑∞

mz(rk)
rk

< γ ≤ λ
(

1− γ

2

)
, (3.6)

the last inequality holding true provided λ ∈ (0, 1) is suitably chosen (recall that γ ∈ (0, 2/3)).
In particular, if ρ = λ(1 − γ/2) from (3.6) we infer that 0 /∈ Sw in view of Remark 2.3.

Hence, being w harmonic in Bλ(1−γ/2) for every fixed ρ ∈ (0, λ(1− γ/2)] we get

mz(ρ rk)
ρ rk

≤ 2ρ for all k ≥ kρ, (3.7)

so that z ∈ Ω \ J?v . Moreover, if % > 0 is such that 4% ≤ ε ∧ (λ(1 − γ/2)) ∧ (2/3) then
B% rk%/2(z) ⊆ Ωv. For, if x ∈ B% rk%/2(z), the choice of % yields that

mx(% rk%/2)
% rk%/2

≤ 2
mz(% rk%)
% rk%

(3.7)

≤ 4% ≤ ε,

and thus we deduce x ∈ Ωv by iterating Lemma 3.3 along the sequence (2−i% rk%)i∈N. Hence,
Ωv is an open set and Ωv ∩ J?v = ∅, in turn this implies Ω \ J?v = Ωv.
Finally, being Ωv open and v a quasi-minimizer of the Dirichlet energy on Ωv then v ∈
C1,1/2(Ωv) by (3.2) and Campanato’s estimates. In conclusion, Sv ∩ Ωv = ∅, and then
Sv = Jv = Ω \ Ωv. �

Appendix A. The David-Léger-Maddalena-Solimini monotonicity formula

Proof of Lemma 2.1. We start by recalling the first variation formula for local minimizers of
the Mumford-Shah energy (see [2, Section 7.4]): for every vector field η ∈ Lip ∩ Cc(Ω,R2)ˆ

Ω

(
|∇u|2divη − 2〈∇u,∇u∇η〉

)
dx+

ˆ
Ju

divJuη dH1 = 0. (A.1)

With fixed a point z ∈ Ω, r > 0 with Br(z) ⊆ Ω, we consider special radial vector fields
ηr,s ∈ Lip ∩Cc(Br(z),R2), s ∈ (0, r), in formula above. For the sake of simplicity we assume
z = 0, and drop the subscript z in what follows. Let

ηr,s(x) := xχ[0,s](|x|) +
|x| − r
s− r

xχ(s,r](|x|),

then routine calculations leads to

∇ηr,s(x) := Idχ[0,s](|x|) +
(
|x| − r
s− r

Id +
1

s− r
x

|x|
⊗ x
)
χ(s,r](|x|)
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L2 a.e. in Ω. In turn, from the latter formula we infer for L2 a.e. in Ω

divηr,s(x) = 2χ[0,s](|x|) +
(

2
|x| − r
s− r

+
|x|
s− r

)
χ(s,r](|x|),

and, if νu(x) is a unit vector normal field in x ∈ Ju, for H1 a.e. x ∈ Ju

divJuηr,s(x) = χ[0,s](|x|) +
(
|x| − r
s− r

+
1

|x|(s− r)
|〈x, ν⊥u 〉|2

)
χ(s,r](|x|).

Consider the set I := {ρ ∈ (0, dist(0, ∂Ω)) : H1(Ju ∩ ∂Bρ) = 0}, then (0, dist(0, ∂Ω)) \ I is at
most countable being H1(Ju) < +∞. If ρ and s ∈ I, by inserting ηs in (A.1) we find

1
s− r

ˆ
Br\Bs

|x||∇u|2dx− 2
s− r

ˆ
Br\Bs

|x|〈∇u,
(

Id− x

|x|
⊗ x

|x|

)
∇u〉dx

= `(s) +
ˆ
Ju∩(Br\Bs)

|x| − r
s− r

dH1 +
1

s− r

ˆ
Ju∩(Br\Bs)

|x||〈 x
|x|
, ν⊥u 〉|2dH1.

Next we employ Co-Area formula and rewrite equality above as

1
s− r

ˆ r

s
ρ dρ

ˆ
∂Bρ

|∇u|2dH1 − 2
s− r

ˆ r

s
ρ dρ

ˆ
∂Bρ

∣∣∣∣∂u∂τ
∣∣∣∣2 dH1

= `(s) +
ˆ
Ju∩(Br\Bs)

|x| − r
s− r

dH1 +
1

s− r

ˆ r

s
dρ

ˆ
Ju∩∂Bρ

|〈x, ν⊥u 〉|dH0

where ν := x/|x| denotes the radial versor and τ := ν⊥ the tangential one. Lebesgue
differentiation theorem then provides a subset I ′ of full measure in I such that if r ∈ I ′ and
we let s ↑ t− it follows

−r
ˆ
∂Br

|∇u|2dH1 + 2r
ˆ
∂Br

∣∣∣∣∂u∂τ
∣∣∣∣2 dH1 = `(r)−

ˆ
Ju∩∂Br

|〈x, ν⊥u 〉|dH0.

Formula (2.1) then follows straightforwardly. �

Appendix B. A Poincaré-Wirtinger type inequality

The arguments of this appendix refine a truncation procedure introduced by [11] (cp.
with [11, Lemma 4.2, Theorem 4.1]). In what follows given any L2-measurable function
v : BR → R, for every s ∈ R, we denote by Ev,s the s sub-level of v in BR, i.e.,

Ev,s := {x ∈ BR : v(x) ≤ s}, (B.1)

and by med(v) a median of v in BR, for instance we can take

med(v) := sup{s ∈ R : L2(Ev,s) ≤ L2(BR)/2}. (B.2)

Let us begin with the truncation procedure for functions in SBV with zero gradient.

Lemma B.1. For every v ∈ SBV (BR) with ∇v = 0 L2 a.e. BR and H1(Sv) < 2R, the set
I = {r ∈ (0, R) : H0(∂Bt ∩ Sv) = 0} satisfies L1(I) ≥ R−H1(Sv)/2.

In addition, for L1 a.e. r ∈ I the trace of v on ∂BR is constant.
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Proof. Set J := {r ∈ (0, R) : H0(∂Bt ∩ Sv) ≥ 2}, and estimate L1(J) by means of the
Co-Area formula for rectifiable sets as follows

2L1(J) ≤
ˆ
J
H0(∂Bt ∩ Sv) dt ≤ H1(Sv),

from which we infer L1((0, R) \ J) ≥ R−H1(Sv)/2.
To conclude we prove the inequality L1((0, R) \ J) ≤ L1(I). To this aim note that for L1

a.e r ∈ (0, R) \ J the slice vr obtained by restricting v to ∂Br belongs to SBV (∂Br), it
has zero approximate derivative and ∂Br ∩ Sv = Svr (see [2, Section 3.11]). Finally, since
#(∂Br ∩ Sv) ≤ 1 as r ∈ (0, R) \ J , by taking into account that v′r = 0 H1 a.e. on ∂Br, we
infer that actually ∂Br ∩ Sv = ∅. In conclusion, L1((0, R) \ (I ∪ J)) = 0. �

Remark B.2. The estimate L1(I) ≥ R − H1(Sv)/2 proved in Lemma B.1 above, clearly
implies that L1(I ∩ (λ(R−H1(Sv)/2), R)) > 0 for all λ ∈ (0, 1).

In what follows we identify any set of finite perimeter E with its L2-measure theoretic
closure defined by E+ := {x ∈ R2 : lim supt→0+(πt)−2L2(Bt(x) ∩ E) > 0}. Recall that ∂∗E
denotes the essential boundary of E, satisfying Per(E) = H1(∂∗E) (see [2, Definition 3.60,
Theorem 3.61]).
In particular, from Lemma B.1 we immediately deduce the following corollary.

Corollary B.3. For every set of finite perimeter E ⊆ BR with Per(E) < 2R a set of positive
L1 measure in (0, R) exists such that either H1(E ∩ ∂Bt) = 0 or H1(E ∩ ∂Bt) = H1(∂Bt),
for all t in this set.

Under an additional smallness condition on the L2 measure of E, the previous result can be
further improved (cp. to [11, Lemma 4.2]). To this aim we recall that a set of finite perimeter
E ⊂ R2 is said to be decomposable if there exists a partition of E in two L2-measurable sets
A, B with strictly positive measure such that Per(E) = Per(A) + Per(B). Accordingly,
a set of finite perimeter is indecomposable otherwise. Notice that the properties of being
decomposable or indecomposable depend only on the L2-equivalence class of E.

Lemma B.4. If E ⊆ BR is such that L2(E) ≤ L2(BR)/2 and Per(E) < 2R, the set I :=
{t ∈ (0, R) : H1(∂Bt ∩ E) = 0} satisfies L1(I) ≥ R− Per(E)/2.

Proof. According to [1, Theorem 1, Corollary 1] there exists a unique and at most countable
family of pairwise disjoint indecomposable sets Ei, i ∈ I ⊆ N, with L2(Ei) > 0 such that

L2

(
E4

⋃
i∈I

Ei

)
= 0 and Per(E) =

∑
i∈I

Per(Ei).

Given this, an elementary projection argument shows that 2di := 2diam(Ei) ≤ Per(Ei), so
that

2
∑
i∈I

diam(Ei) ≤
∑
i∈I

Per(Ei) = Per(E) < 2R.
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In addition, since for all ε > 0 the sets Ei are contained in Bε+di/2(xi)∩BR, for some xi ∈ BR,
we infer L1(I) ≥ R−

∑
i∈I diam(Ei) ≥ R− Per(E)/2. �

Remark B.5. The estimate L1(I) ≥ R−Per(E)/2 > 0 proved in Lemma B.4 above, clearly
implies that L1(I ∩ (λ(R− Per(E)/2), R)) > 0 for all λ ∈ (0, 1).

From Lemmata B.1 and B.4 we infer that SBV functions with suitably quantified short
jump set enjoy a Poincaré-Wirtinger type inequality.

Theorem B.6 (A Poincaré-Wirtinger type inequality). If v ∈ SBV (BR) with H1(Sv) < 2R,
then there are truncation levels s′ ≤ s′′ and for all λ ∈ (0, 1) radii ρ′ ≤ ρ′′ belonging to
(λ(R−H1(Sv)/2), R) in a way that the function

w :=


v ∨ s′ ∧ s′′ Bρ′

v ∧ s′′ Bρ′′ \Bρ′

v BR \Bρ′′ ,

(B.3)

satisfies H1(Sw \ Sv) = 0 and for any median med(v) of v on BR

‖w −med(v)‖L∞(Bρ′ )
≤ 2

2R−H1(Sv)
‖∇v‖L1(BR,R2).

Proof. First note that if ‖∇v‖L1(BR,R2) = 0 we may apply Lemma B.1 and select ρ ∈ (R/2−
H1(Jv)/4, R) (thanks to Remark B.2) such that the trace of v on ∂Bρ is constant. In this
case we take s′ = s′′ equal to such a value and ρ = ρ′ = ρ′′ to conclude.
Thus, we need to analyze only the case with ‖∇v‖L1(BR,R2) > 0. To this aim set α :=

2R−H1(Sv) > 0, then the BV Co-Area Formula (see [2, Theorem 3.40]) implies
ˆ med(v)

med(v)−2‖∇v‖L1(BR,R2)/α
H1(∂∗Es \ Sv) ds ≤

ˆ
R
H1(∂∗Es \ Sv) ds = ‖∇v‖L1(BR,R2),

where Es is the sub-level of v in BR defined in (B.1) and med(v) is defined in (B.2). By
the Mean Value Theorem, there exists s′ ∈ (med(v) − 2‖∇v‖L1(BR,R2)/α,med(v)) such that
H1(∂∗Es′ \ Sv) ≤ α/2, and so

H1(∂∗Es′) ≤ H1(∂∗Es′ \ Sv) +H1(Sv) < 2R. (B.4)

Analogously, we can find s′′ ∈ (med(v),med(v) + 2‖∇v‖L1(BR,R2)/α) such that

H1(∂∗Es′′) < 2R. (B.5)

The definition of median (B.2) and the choice s′ < med(v) yield L2(Es′) ≤ L2(BR)/2, and
by arguing similarly, the same inequality holds for the set BR \ Es′′ as well. By taking into
account inequalities (B.4), (B.5) we may apply Lemma B.4 separately to the two sets Es′ ,
BR \ Es′′ and find radii λ(R − H1(Sv)/2) < ρ′ ≤ ρ′′ < R with H1(Es′ ∩ ∂Bρ′) = 0 and
H1((BR \ Es′′) ∩ ∂Bρ′′) = 0 (thanks to Remark B.5).
The conclusion then follows at once by the very definition of w in (B.3). �
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In case v is a local minimizer of the Mumford-Shah energy we deduce Theorem 3.1.

Proof of Theorem 3.1. By keeping the notation of Theorem B.6, the function w defined in
(B.3) turns out to be an admissible function to test the minimality of u on BR. By construc-
tion H1(Sw \ Su) = 0 and |∇w| ≤ |∇u| L2 a.e. in BR, from this we infer that u = w L2 a.e.
in Bρ′ being the Mumford-Shah energy decreasing under truncation. �

Remark B.7. If the length of the jump set exceeds 2R a similar Poincaré-Wirtinger type
inequality does not hold. Take, for instance, v = 1 if y > 0 and −1 otherwise (see [2,
Proposition 6.8] for a proof that such a function is in M(BR) if R is sufficiently small).

Appendix C. Limits of sequences of local minimizers

In this section we prove that limits of converging sequences of local minimizers are local
minimizers as well (cp. with [2, Theorem 7.7] in case the measure of the jump sets is vanishing,
and with [10, Proposition 5.1] if the Dirichlet energies are infinitesimal).

Proof of Proposition 3.2. Let v be an admissible function to test the minimality of u, that is
v ∈ SBV (Ω) and {v 6= u} ⊂⊂ Ω. Moreover, let Ω′ be an open set such that {v 6= u} ⊂⊂
Ω′ ⊂⊂ Ω and ϕ ∈ C1

c (Ω) be such that ϕ = 1 on Ω′ and |∇ϕ| ≤ 2/dist(Ω′, ∂Ω). Define
vk := ϕv+ (1−ϕ)uk. Then vk ∈ SBV (Ω) and it is an admissible test function for uk. Thus,
for some fixed constant C > 0, routine calculations lead to

MS(uk) ≤ MS(vk) ≤ MS(v)+C MS(v,Ω\Ω′)+C MS(uk,Ω\Ω′)+C
ˆ

Ω\Ω′
|u−uk|2dx. (C.1)

To get the last term on the rhs above we have used the equality v = u on Ω \ Ω′.
Note that the sequence of Radon measures (MS(uk, ·))k∈N is equi-bounded in mass in view of

the energy upper bound (2.2). Hence, up to the extraction of a subsequence (not relabeled),
(MS(uk, ·))k∈N converges to some Radon measure µ on Ω. Without loss of generality we may
also assume that µ(∂Ω′) = 0. Furthermore, we recall that, by Ambrosio’s lower semicontinuity
theorem, we have, for every open set A ⊆ Ω,

lim inf
k

ˆ
A
|∇uk|2dx ≥

ˆ
A
|∇u|2dx, lim inf

k
H1(Juk ∩A) ≥ H1(Ju ∩A), (C.2)

(see [2, Theorems 4.7 and 4.8]). As k ↑ ∞ in (C.1), thanks to condition µ(∂Ω′) = 0 and
(C.2), we find

MS(u) ≤ lim inf
k

MS(uk) ≤ lim sup
k

MS(uk) ≤ MS(v) + C MS(v,Ω \ Ω′) + C µ(Ω \ Ω′).

Then, by letting Ω′ increase to Ω (enforcing the condition µ(∂Ω′) = 0) we conclude

MS(u) ≤ lim inf
k

MS(uk) ≤ lim sup
k

MS(uk) ≤ MS(v). (C.3)

Hence, u belongs to M(Ω). In addition, by choosing v equal to u itself, we can perform the
same construction above for every open set A ⊆ Ω (with Ω′ ⊂⊂ A) and infer (C.3) localized
onto A, so that equalities in (3.1) follow at once.
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Finally, the density lower bound in Corollary 1.2 and the equalities in (3.1) imply easily the
claimed local Hausdorff convergence. �

Remark C.1. The same conclusion of Proposition 3.2 holds provided we are given a sequence
(uk)k∈N converging in L2(Ω) to u ∈ SBV (Ω), with uk satisfying, for some ϑk ↓ 0+,

MS(uk) ≤ MS(w) + ϑk whenever {w 6= uk} ⊂⊂ Ω.

Appendix D. A decay Lemma

We start off by proving a preliminary decay property of the energy.

Lemma D.1. For all β ∈ (0, 2) and τ ∈ (0, 1) there exist ε = ε(β, τ) and ϑ = ϑ(β, τ) in
(0, 1) such that if v ∈ SBV (Ω) satisfies, for some z ∈ Ω and ρ > 0,

MS(v,Bρ(z)) ≤ ερ,

and

(1− ϑ) MS(v,Bρ(z)) ≤ MS(w,Bρ(z)) whenever {w 6= v} ⊂⊂ Bρ(z),

then

MS(v,Bτρ(z)) ≤ τ2−β MS(v,Bρ(z)).

Proof. We argue by contradiction and suppose that there are sequences vk ∈ SBV (Ω), εk ↓
0+, ϑk ↓ 0+, ρk ↓ 0+ and zk ∈ Ω with Bρk(zk) ⊂ Ω such that for some τ and β ∈ (0, 2)

MS(vk, Bρk(zk)) = εkρk, (D.1)

(1− ϑk) MS(vk, Bρk(zk)) ≤ MS(w,Bρk(zk)) (D.2)

for all w ∈ SBV (Ω) with {w 6= vk} ⊂⊂ Bρk(zk), but

MS(vk, Bτρk(zk)) > τ2−β MS(vk, Bρk(zk)). (D.3)

Denote by wk : B1 → R the functions wk(y) = (εkρk)−1/2(vk(zk + ρky) −mk) and by mk a
median of vk on Bρk(zk), so that, if we set,

Fk(v,Bρ) :=
ˆ
Bρ

|∇v|2dy +
1
εk
H1(Sv ∩Bρ),

then (D.1), (D.2) and (D.3) can be rewritten respectively as

Fk(wk, B1) = 1, Fk(w,B1) ≥ 1− ϑk, and Fk(wk, Bτ ) > τ2−β, (D.4)

for all w ∈ SBV (B1) with {w 6= wk} ⊂⊂ B1.
In particular, from the first condition in (D.4) we infer thatH1(Swk) ≤ εk. Thus, by applying

Theorem B.6 to the wk’s, we find functions w̃k ∈ SBV (B1) satisfying, for all r ∈ (0, 1),

Br ⊂⊂ {w̃k 6= wk} ⊂⊂ B1, ‖w̃k‖L∞(Br) ≤ 2 for k ≥ kr. (D.5)
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Then, Ambrosio’s SBV compactness theorem and a diagonal argument provide a subsequence
(not relabeled) and a function w̃ ∈ W 1,2 ∩ L∞(B1) such that (w̃k)k∈N converges to w̃ in
L2
loc(B1). Note that by lower semicontinuity and (D.4), we have

ˆ
B1

|∇w̃|2dx ≤ lim inf
k

Fk(w̃k, B1) ≤ 1. (D.6)

Next, we claim that w̃ is harmonic in B1 and that for all r ∈ (0, 1)

lim
k
Fk(wk, Br) =

ˆ
Br

|∇w̃|2dx. (D.7)

Given this for granted, we get a contradiction, since from (D.4) and (D.7)

τ2−β ≤
ˆ
Bτ

|∇w̃|2dx,

but on the other hand the harmonicity of w̃ on B1 and (D.6) yield that
ˆ
Bτ

|∇w̃|2dx ≤ τ2.

To prove (D.7), let r < s ∈ (0, 1) and ϕ ∈ C∞c (Bs) be such that ϕ = 1 on Br. Define
ζk = ϕw̃+ (1− ϕ)w̃k, since wk = w̃k on Bs for k ≥ ks (see (D.5)), elementary computations,
the first two conditions in (D.4), and the locality of the energy lead to

Fk(wk, Br) = Fk(w̃k, Br) ≤ Fk(ζk, Bs) + ϑk ≤ Fk(w̃, Br)

+ C Fk(w̃k, Bs \Br) + C Fk(w̃, Bs \Br) + C

ˆ
Bs\Br

|w̃k − w̃|2dx+ ϑk.

The sequence of Radon measures (Fk(w̃k, ·))k∈N is equi-bounded in mass in view of (D.4).
Hence, up to a subsequence not relabeled for convenience, (Fk(w̃k, ·))k∈N converges to some
Radon measure µ on B1. Assume that µ(∂Bs) = 0, by passing to the limit as k ↑ ∞ and by
Ambrosio’s lower semicontinuity result we find
ˆ
Br

|∇w̃|2dx ≤ lim inf
k

Fk(wk, Br) ≤ lim sup
k

Fk(wk, Br)

≤
ˆ
Br

|∇w̃|2dx+ C µ(Bs \Br) + C

ˆ
Bs\Br

|∇w̃|2dx.

Equality (D.7) then follows by letting s ↓ r+ along values satisfying µ(∂Bs) = 0.
Eventually, the harmonicity of w̃ is easily deduced from its local minimality for the Dirichlet

energy. This last property is obtained as above by modifying any test function ζ ∈W 1,2(B1)
such that {ζ 6= w̃} ⊂⊂ B1 into a test-function for w̃k in order to exploit again the quasi-
minimality condition satisfied by wk in (D.4). �

We are now ready to prove Lemma 3.3.
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Proof of Lemma 3.3. We argue as in [2, Theorem 7.21], and take z = 0 for the sake of
simplicity. We claim that

MS(v,Bτρ) ≤ ε τ2−βρ (D.8)

if we set R := (ε ϑ τ2−β)1/α, with ε = ε(β, τ) and ϑ = ϑ(β, τ) provided by Lemma D.1.
Indeed, either both the assumptions of Lemma D.1 are satisfied or not. In the former case

the thesis of that lemma gives exactly inequality (D.8), otherwise for some w ∈ SBV (Ω) with
{w 6= v} ⊂⊂ Bρ(z) ⊂ Ω we have by the quasi-minimality of v

MS(v,Bτρ) ≤ MS(v,Bρ) ≤
1
ϑ

(MS(v,Bρ)−MS(w,Bρ)) ≤
ω

ϑ
ρ1+α.

Thus, (D.8) follows since ρ ≤ R/ω1/α. As τ ∈ (0, 1), we can iterate (D.8) to conclude. �
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