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This paper deals with fracture mechanics in periodically perforated domains. Our aim is to
provide a variational model for brittle porous media in the case of anti-planar elasticity.

Given the perforated domain . C RV (e being an internal scale representing the size of the
periodically distributed perforations), we will consider a total energy of the type

Fo(u) = /Z V()2 de + HYY(S,).

Here u is in SBV().) (the space of special functions of bounded variation), S, is the set of
discontinuities of u, which is identified with a macroscopic crack in the porous medium 2., and
HN-1(S,) stands for the (N — 1)-Hausdorff measure of the crack S,,.

We study the asymptotic behavior of the functionals F. in terms of I'-convergence as ¢ — 0.
As a first (nontrivial) step we show that the domain of any limit functional is SBV(2) despite
the degeneracies introduced by the perforations. Then we provide explicit formula for the bulk
and surface energy densities of the I'-limit, representing in our model the effective elastic and
brittle properties of the porous medium, respectively.
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1. Introduction

There is a huge mathematical literature concerning the dependence of solutions of
partial differential equations, as well as minimum problems, on their domain of defi-
nition. In particular, the asymptotic behavior for minimizers u,, defined in varying
domains §2,, with homogenizing small holes, usually referred to as perforated domains
(we refer to the books Refs. 11, 13, 21 and 37) has been extensively studied. Typically,
the integral functionals to be minimized depend on u and on its gradient, and on the
perforations it is imposed either a Dirichlet type boundary condition (see Refs. 9, 18, 22,
27, 40, 43, 44 and references therein) or a Neumann type boundary condition (see
Refs. 13,15, 16, 20, 24, 42 and references therein). Under standard growth assumptions
this kind of minimization problems can be settled in the framework of Sobolev spaces.

The aim of this paper is to study the problem of periodic homogenization of small
holes in the framework of fracture mechanics, i.e. for total energies involving not only
a bulk term, but also a surface term, obtaining in the homogenized limit a variational
model for brittle porous media (see Refs. 19 and 39 for related topics). The hom-
ogenizing holes represent traction free micro-cracks in the body, so that our analysis
will focus on natural Neumann boundary conditions on the perforations. The case of
Dirichlet conditions has been considered in Ref. 32 in connection with the study of the
asymptotic limit of obstacle problems for Mumford—Shah type functionals (see
Ref. 41) in perforated domains.

From a mathematical point of view, the minimization of total energies involving
both bulk and surface terms can be settled within the theory of SBV-deformations.
The functional space SBV of special functions of bounded variation has been intro-
duced by De Giorgi and Ambrosio™ to deal with free discontinuity problems arising
in image segmentation (see Ref. 41), and was proposed by Ambrosio and Braides® as
a suitable framework for fracture mechanics.

Variational models to describe equilibria of brittle hyperelastic bodies have been
largely developed in recent years. Inspired by Griffith’s theory of crack propagation,
these models in fracture mechanics are based on the assumption that the cracked
deformed configuration of the body is reached through a minimization process driven
by the competition of surface and bulk energies. The surface energy represents the
energy dissipated to break atomic bonds, and hence spent to enlarge the crack, while
the bulk energy represents the elastic energy stored in the body, and partially
released during the crack growth.

Let us consider for a while a non-porous brittle body (i.e. without perforations).
We will consider only the case of generalized anti-planar elasticity, in which Q c RY
represents a section of a cylindrical body (in the relevant physical case we have
N = 2), the displacement function u € SBV () is assumed to be scalar, and the
crack is implicitly identified with the set S, of discontinuities of u. Concerning the
total energy, we will consider for simplicity the following model case:

Bu) ::/Q|Vu(x)|2dm+HN*1(Su). (1.1)
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Here HY~1 stands for the (N — 1)-Hausdorff measure, so that if N =2 and 9, is a
smooth curve, H¥~1(S,) is just the usual length of the crack. More general energies
could be considered, as for instance surface energies eventually depending also on the
normal v of the crack, due to anisotropy of the body, while the dependence on the
opening of the crack for cohesive models would require a specific analysis. Critical
points (and in particular minimum points) of the total energy (1.1) represent stable
configurations of the cracked domain according to Griffith’s theory.

To study the effect that the perforations have on the variational problem, let us
begin by discussing the case of a single crack K present in the body. Assume that K is
a closed subset of 2 and that in Q\ K the elastic behavior of the body is unperturbed,
so that the density of the elastic energy remains the same in Q\ K, while the surface
energy will be dissipated only to enlarge the pre-existing crack K. We have that the
total energy is now given by

B(K,u) = /Q\K|vu(a;)|2dx+HN-1(SU,\K). (1.2)

This kind of energy plays an essential role in the variational approaches to quasi-
static crack growth as proposed by Francfort and Marigo® and developed in many
subsequent papers in the framework of SBV-functions (we refer to Refs. 34, 26, 36
and the references therein).

We model the presence of homogenizing cracks considering a sequence
K. :=e(K +7Z"), with ¢ — 0 and K closed, and study the asymptotic behavior in
terms of T'-convergence of the corresponding energy functionals F.(u) := E(K,,u).”
The bulk and surface energy densities of the I'-limit F,,, will represent the effective
elastic and brittle properties of the porous brittle medium. Notice that we do not
prescribe the shape of the holes, assuming only that they are closed sets, each com-
ponent well contained in its periodic cell. They may have positive Lebesgue measure,
being for instance small holes, as well as finite length, being one-dimensional cracks.
In any case, we will refer to them as micro-cracks.

A natural question is whether a quasi-static crack growth corresponding to the
energy F. (i.e. in the perforated domain) converges (as ¢ — 0 and with respect to a
suitable topology) to a quasi-static growth in the porous brittle material represented
by From- We believe that this happens in the framework of the variational approach
to crack evolution proposed by Francfort and Marigo.”” The reason is that the key
condition that the displacement v has to satisfy in their definition of crack growth is a
suitable minimality property, called unilateral minimality, that enjoys good stability
properties with respect to I'-convergence (see Ref. 36). In our opinion this is the main
justification to identify the homogenized brittle porous material with Fy,,,. On the
other hand, the asymptotic behavior of stable configurations in the sense of Griffith

2In our anti-planar setting both the crack S, and the perforations K, are defined in a horizontal section 2
of the cylindrical body and they are assumed to be invariant with respect to the vertical direction of the
body. This assumption has to be understood as a mere mathematical simplification of the problem.
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theory that are not unilateral minimizers of the corresponding total energy (being for
instance local minima or just critical points) is not catched by our analysis based on
I'-convergence, and requires a specific challenging analysis. Summarizing, we expect
that in a material with fine microstructure, the quasi-static crack growth by
Francfort and Marigo is governed by the macroscopic properties of the homogenized
material, since it is based on global minimization and it admits brutal growth of the
crack. Therefore, we consider our total energy Fi,, to be the natural candidate to
represent a porous brittle material in this approach to crack evolution.

A similar mathematical problem has been considered in Ref. 36 in connection to
stability properties of equilibria in fracture mechanics for sequences of (N — 1)-rec-
tifiable sets satisfying H"~1(K,) < c. In that case they prove that the I-limit of the
functionals E(K,,, -) still has the form (1.2), where K is a suitable (N — 1)-rectifiable
set which represents the limit fracture, in a suitable sense, corresponding to the
sequence K,,. In that model the fractures K, represent the cracks created in the body
during a load process. Therefore the assumption H¥~1(K,,) < c is very natural in
their setting, meaning that K, have finite energy according to Griffith’s theory. Our
situation of periodically distributed cracks K. = e(K + Z") is very different, having
K., by definition diverging area as € — 0. Indeed, in our case the homogenizing micro-
cracks will affect both bulk and surface energies in the I'-convergence process.

Our main result is twofold: in the first part of the paper we deal with the natural
lack of coercivity of the problem, establishing a compactness property for sequences
with equi-bounded energies, under some natural assumptions ensuring that K. does
not disconnect the body. Furthermore, we prove that the energy functionals F.
I-converge (with respect to a suitable topology) to the functional Fy,,, given by

fhom(u) = /Ifhom(vu) dI+/S ghom(yu) dHN_lv

where fi,,, and gy, are defined through cell type formulas below, and represent the
material properties of the porous medium.
Concerning fi,,,, we have for every £ € RV

Jrom(§) == inf {/Q\K|VW+§|2dfﬂi we W;’Q(Q\K)}» (1.3)

where @ is the unit cube and Wﬁl’Q(Q\K ) denotes the class of @Q-periodic functions in
W1L2(Q\K), i.e. Sobolev functions on Q\ K whose traces on opposite faces of Q
coincide.

This homogenization formula is well known in the context of periodic homogen-
ization in Sobolev spaces and represents the effective energy density in perforated
domains subject to Neumann conditions (see for instance Ref. 1). It turns out that the
same formula represents the effective bulk energy density also for brittle materials. In
this respect we conclude that there is no interaction between macroscopic cracks and
micro-cracks for the elastic properties of a brittle porous medium.
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Passing to the density of the homogenized surface energy gy, for all (a,b,v) €
R x R x SN1let u,;, : RY — R be given by

W) b ify-v>0, (1.4)
Ugpp\Y) = . .
v a ify-v<O0.

The surface energy density gnom : SV~! — [0, +00) is given by
Gnom (¥) = lim {H¥1(S,\K.) : w € P(Q"\Ky),
£—
w = 1y, on a neighborhood of 9Q"}. (1.5)

Above Q¥ is any unit cube centered at the origin with one face orthogonal to v, and
P(QV\ K.) is the family of characteristic functions (see (2.2)). We show the existence
of the limit in (1.5) in Lemma 5.1. Note that formula (1.5) involves only locally
constant functions. We deduce that the toughness of the porous medium does not
depend on the elastic properties of the corresponding non-porous material.

Let us finally discuss our result under a slightly different perspective. The porous
brittle material in our model has been obtained by homogenizing a constituent
material with holes. The problem can be settled in the framework of homogenization
of composite materials, in which one of the constituent materials is the void. From a
mathematical point of view, we deal with energy densities fast oscillating with respect
to z, taking values in 0 and 1, and the presence of the coefficient 0 (that is of the void)
brings high degeneracy into the problem. Homogenization problems in SBV spaces
have been largely studied in the last years, as for instance in Refs. 5, 6 and 14. Our
homogenization formulas extend those given in the mentioned papers to our context,
in which the homogenizing coefficients do not satisfy standard ellipticity conditions.
The lack of ellipticity produces many specific difficulties in our analysis, the most
remarkable being in the proof of suitable compactness properties for minimizers. In
this respect, our approach has been to provide a localized Poincaré type inequality in
SBYV in dimension two, which allows us to truncate the minimizers at suitable levels
around each perforation (see Sec. 4.2 for a comparison with De Giorgi’s Poincaré
inequality in SBV). In view of this, we can extend the minimizers by means of
standard cutoff techniques inside the perforations, filling the holes with good control
of the total energy. Finally we are in a position to use Ambrosio’s compactness results
for sequences in SBV with bounded energy. The general N-dimensional case is then
recovered by a slicing argument, using the results obtained in dimension two. A
different approach to the problem, based on excision techniques introduced by De
Giorgi, Carriero and Leaci® (see also Ref. 8, Chap. 7), has been developed in the
recent paper.'” Their approach provides, as for the Sobolev setting, a family of
uniformly bounded extension operators to fill the holes.

Finally, we mention that a related problem concerns fiber reinforced brittle
materials, in which, instead of homogenizing holes, the composite material is made by
homogenizing reinforced (e.g. unbreakable) fibers. In this direction we refer to the
recent papers Refs. 10, 28 and 45.
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The paper is organized as follows. In Sec. 2, we provide some preliminary results
used in the rest of the paper. In Sec. 3, we set the mathematical framework to study
the asymptotic behavior of energy functionals F .. In Sec. 4, we provide a Poincaré
typeinequality in SBVin dimension two, and we prove suitable compactness properties
for sequences with bounded energy. In Sec. 5, we prove the I'-convergence result of the
functionals F., and in Sec. 6, we give the analogous I'-convergence result for energy
functionals taking into account Dirichlet boundary conditions on 9f2. Finally, in Sec. 7,
we will discuss the validity of our results for more general energy functionals.

2. Preliminaries

In this section we will fix some notation and introduce some notions of geometric
measure theory we will need in the sequel.
For every r,s with 0 < r < s we set

Q,={r e R :|lz]l <7r/2}, Q. :={zeRY:r/2<|al.<s/2}, (21)

and, for simplicity we denote the unitary cube @, by Q.

Throughout the paper € is a bounded open subset of RY with Lipschitz boundary
and A(Q) denotes the family of all open subsets of Q. Let A € A(2). We denote by
SBV(A) the space of special functions of bounded variation, and by SBV?2(A) the
subspace

SBV?(A) := {u € SBV(A) : Vu € L*(A,RY), HN"1(S,) < +o0}.

Here H~! stands for the (N — 1)-dimensional Hausdorff measure, and S, denotes
the jump set of u. For the notations and the general theory concerning the function
space SBV(A) we refer the reader to Ref. 8. We indicate by SBV,(A) the subset of
piecewise constant functions in SBV(A) defined by

SBVy(A) := {u € SBV(A): Vu =0 for LY ae. z € A}.

Moreover, let us consider the family of sets with finite perimeter in A, which will be
identified by the functional space P(A) defined by

P(A) = {u € SBVy(A) : u(z) € {0,1} for LY ae. z € A}. (2.2)

2.1. Rectifiable sets and Coarea formula

In this subsection we recall the definition of rectifiable sets and several notions
dealing with the tangential calculus which can be developed on them (see Ref. 8,
Definition 2.57 and Proposition 2.76).

Definition 2.1. Let £ C RN be an H"-measurable set. We say that Fis countably
H™-rectifiable if £ C N UJ;>1 I'; where H™(N) = 0 and each I'; is the graph of a
function f; € C*(R™,RY).

Countably H™-rectifiable sets E have nice tangential properties. In particular,
they can be endowed with a tangent space Tan™(E, z), called approzimate tangent
space, for H™ a.e. x € E. Essentially, this follows from the locality property of the
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tangent space of C'! graphs and the decomposition of E into such sets (see Ref. 8,
Proposition 2.85 and Definition 2.86).

Furthermore, any Lipschitz function f: RY — R* exhibits good differentiability
properties on E. Indeed, it turns out that for H™ a.e. x € E the restriction of f to the
affine space x + Tan™(F, x) is differentiable at . The tangential differential of f on F
at z, d¥ f,, is then defined as the differential of the restriction of f to the affine space
x4 Tan™(E,x) for H™ a.e. x € E (see Ref. 8, Definition 2.89 and Theorem 2.90).

Given this, we can state a version of the Coarea formula valid on countably
rectifiable sets (see Ref. 8, Theorem 2.93).

Theorem 2.1. Let f:RY — R* be a Lipschitz function and let ECRY be a
countably H™-rectifiable set, withm > k. Then the functiont — H™ F(E N f~1(t)) is
L* measurable in R*, E N f~1(t) is countably H™ *-rectifiable for LF a.e. t € R¥ and

/E CudE ) (@) = [ HrHEn ) an (2.3)

In the formula above Ci(dF f,) is the k-dimensional Coarea factor of d¥ f, defined by

Ci(d"f,) = V/det((dPf,) o (dPF,)"),

where (dPf,)* : R¥ — (Tan"(E, z))* is the transpose operator.

3. Formulation of the Problem

In this section we will introduce the perforated domains €2, and the energy func-
tionals F..

3.1. The perforated domain

We consider a compact subset K of the open unitary cube @ such that Q\K is
connected. We stress the fact that neither regularity nor dimensional assumptions are
imposed on the reference perforation K (see Fig. 1). For every € > 0 set

K, =e(K+ ZN)
and
Q. =Q\K..

The sets K. represent the e-perforations, while (). the perforated domains.

3.2. The energy functionals
Let us fix a boundary datum ¢ (which is the trace of a function) in W2(2) N L*>(Q)
and introduce the functionals F¢ : L1(Q) — [0, 4+-00] defined by

") = /IVu|2dw+HN*1(Sftf’8) if u e SBV2(Q,.),
=3 Jo

FY (3.1)

+o00 otherwise in L!(Q),
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Fig. 1. The “larger” obstacle | s and the related perforated domain R,.

where
517 5= (5,19 U s € 0000, 4(a) £ ),

and the inequality is intended in the sense of traces. The set S4 takes into account
the crack formed inside €., and the part of 9€). N 02 where u does not agree with the
imposed deformation v (which is thus considered as part of the crack which has
reached the boundary).

Our aim is to study the asymptotic behavior of the energy functionals F ¥ defined
in (3.1) as e — 0 in terms of I'-convergence with respect to a suitable topology and to
prove compactness properties for sequences of corresponding of minimizers.

Remark 3.1. The choice of the L! setting is rather natural since it provides suitable
compactness properties for minimizers (see Sec. 4). In this respect we notice that
compactness for sequences of functions with bounded energy cannot hold in general
since the energy functionals are not affected by the values of the functions inside the
holes K.. Nevertheless we will see that we can assign the values inside K, for
sequences with bounded energy in order to gain compactness. Furthermore any limit
point obtained with this procedure is uniquely determined by the values outside the
holes K. Indeed, it is easy to prove that if (u,), (v.) C L!(Q) are such that u, — v in
LY(Q),v. »vin LY(Q) and u, = v, in Q,, then u = v LV a.e. in Q.

4. Compactness

The main aim of this section is to prove a compactness result in SBV? for suitable
extensions of sequences of functions in L'(€. ) with bounded energy, where (g,) is a
fixed vanishing sequence. This result will allow us to identify the domain of any
[-limit of the functionals F?¢ defined in (3.1) and to take advantage of integral
representation techniques.

We will consider only sequences uniformly bounded in L. This framework is not

restrictive in our setting of the problem, since the boundary datum ) is in L, and
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the energy functionals decrease by truncation. Therefore we can assume the mini-
mizing sequences to have L> norm bounded by that of 1.

First we focus on sequences of functions defined in more regular perforated
domains obtained substituting the original reference set K with the larger one Q;_o4,
defined according to (2.1) where 0 < ¢ < dist(K,0Q) is a fixed parameter (see
Fig. 1). In addition, let us set

R = {1} S @ N dlSt(fE,aQ) < 6}’ Rn = €7L(R+ ZN) n Q

Notice that R = Q;_9s1, or more explicitly R = Q\Q;_25. Throughout the section
(v,) will be a sequence in L!(R,,) bounded in energy and in L, i.e. satisfying

/R |an\2d$+HN_l(Sv,,,) <ec, lvlloer,) < 1¥llp=r,); (4.1)

n

where c¢ is a constant independent of n.

In our applications the functions v, will be given by the restriction to R, of
functions u, € L'(Q) with uniformly bounded energy. In view of Remark 3.1 the
cluster points of (u,) in L!(£2) (suitably modified on K. ) are determined by those of
(v,) (suitably extended on Q).

For these sequences (v,) we provide the existence of suitable BV and SBV?
extensions (these last ones only in the two-dimensional case) preserving a uniform
bound of the corresponding energy. By a slicing argument and taking advantage of
Remark 3.1 we will then prove that, up to subsequences, we have convergence in
L(9) to a function belonging to SBV2(2) (see Sec. 4.3).

The desired compactness result for sequences defined on general perforated sets
Q. will then be achieved by an approximation argument (see Sec. 4.4).

Under assumption (4.1) we establish the following results (see Secs. 4.1—4.3,
respectively):

(i) BV-compactness: there exist functions v,,,v € BV (Q2) such that v,, = v, in R,
and, up to a subsequence, v,, — v in L1(Q);

(i) Two-dimensional SBV?-compactness: if N =2 there exist functions v,,v €

SBV2(Q) such that ¥, = v, in R, and, up to a subsequence, v,, — v in L'({);

(iii) N-dimensional SBV 2-closure: if v,, — v in L(Q) and v,, = v, in R, then vis in

SBV2(Q).

The most difficult part of this program is to prove the two-dimensional
SBV %-extension result in (ii). The hypothesis on the dimension comes into play only
into a technical result, Lemma 4.1, where the smallness of a set in terms of area and
perimeter implies some estimate on the diameter of its “connected components”. In
view of this estimate we are able to prove a Poincaré type inequality in SBV (see
Theorem 4.1), which allows us to perform the construction of the functions v, in
(ii) without creating new jumps. Moreover, if the original sequence (v,,) belongs to
WL2(R,) or to SBVy(R,), then (v,,) belongs to W12(Q), SBV,(), respectively.
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4.1. BV-compactness
Here we prove a compactness result in BV (€2).

Proposition 4.1. (Compactness in BV (Q2)) Let (v,) C L'(R,) be a sequence such
that

Sup(|Dvn|(Rn) + ||vn||L°°(Rn)) < 00,

then there ezist functions v,, € BV (Q) such that
an = U, 0N Rn and |Dan|(Q) + ”f}n”Lw(Q) < C(|Dvn|(Rn) + ||Un||L°<(R,L))

for a constant ¢ independent of n. In particular, up to a subsequence, (v,,) converges to
vin LY(Q) for some v € BV(Q).

Proof. Let us fix some notation: for i€ ZV set Qi :=¢,(i+Q), Rl :=
g.(i + R)NQ. Let also Z,, = {i € ZN : Q}, N 9Q # B}, and for every Q° C € set
1

mi = v, () dx
n |R’Z,L‘ an IL( ) k)

and

vy(z) if z € R,
/Un(x) = miL if z € QiL\RiH { gIn,
0 elsewhere in €.

We claim that (9,,) defined above satisfies the thesis. Indeed, by construction v,, = v,
on R, and [9,|lr~@) < ||lvnllz=(r,). Standard trace results in BV (see Ref. 8,
Theorems 3.84 and 3.87), yield that the function v, belongs to BV(Q) with
distributional derivative

Dé, = Dv,L R, + > Db, (0R;,NQ;NAQ),

i€ZN
and fori ¢ 7,
D'Dn L (8R;z N Q:’L N Q) = ((tl"(’l}n) - mzl)VOR;),HN71 L (aR; N sz),

being tr(v,) the trace left by v, on the boundary OR!. Since by hypothesis
sup,|Dv,|(R,) < 400, to conclude it suffices to give a uniform estimate of the total
variation of D%, concentrated on the union of IR: N Q% N Q.

To this aim notice that #7Z,, < ¢/e !, with ¢ depending only on HV1(9Q) since
0N is Lipschitz. Here # denotes the cardinality of the relevant set. Thus, by taking
into account that HN-1(OR!) < cel ' and supy [0, || L=(r,) < +00, we deduce
supy, Y ez, |DU,[(OR], N2) < 4o00. Furthermore, to control |Dv,[(0R; NQ;,) for
1 €T, we use a scaling argument and the continuity of the Trace Operator on R
(see Ref. 8, Theorem 3.87). For i ¢ Z, let w’ : R — R be defined as wl(y) =
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v, (£,(7 +y)). It is easy to check that w!, € BV(R), the mean value of w’, on R equals
m!, and [Dwi|(R) = L~V |Dwv,|(R%). Moreover, there exists a positive constant c¢(R)
independent of n such that

| fntwl) - milan < (RDu(R)
ORNQ
A scaling argument gives
/ ltr(v,) —mb| dHN ! = 5an1/ ltr(w',) — mb | dHN L,
ORLNQ HRNQ
from which we infer that for every i € 7,

DBJORLNQ = [ (o) = mi | dHY T < (R Du(RE)
OR,NQ5,

and this gives the desired estimate. The rest of the statement is a direct consequence

of the BV compactness theorem (see Ref. 8, Theorem 3.23). O

Remark 4.1. The BV compactness result still holds if we replace the §-neighbor-
hood R, with any connected neighborhood C of 0@ with Lipschitz continuous
boundary. It is also possible to consider varying domains C,,, provided they ensure
the continuity of the trace operator together with a uniform estimate on the relative
constants.

4.2. Compactness in SBV?2(Q): The case N =2

This subsection is focused on SBV compactness properties in dimension two. In this
setting given a sequence (v,) C L!(R,,) with bounded energy (see (4.1)) we construct
an SBV?(Q) extension with uniform control on the increase of the energy. In this
respect we remark that the BV extensions of Sec. 4.1 have diverging jump energy and
so cannot be exploited to infer SBV regularity of their limit. Further arguments are
then needed.

We first extend any function v € SBV?(R) with quantified small jump set (see
Proposition 4.2) to a function v € SBV?(Q) such that v =7 in R and

1902 +3050) < ( v +HN1<SU>),
Q R

with ¢ independent of v and depending only on the geometry of R. Then, the
extension for v,, is obtained by exploiting the periodicity of the problem by repeating
the construction in each ¢,-square contained in € in which v,, has small jump set (up
to the usual scaling argument) and using the BV-extension ¥, in the holes of the
remaining squares (see Proposition 4.3 for more details).

To describe briefly the idea to accomplish the extension in the case of fixed
geometry consider a function v € SBV?2(R), and by a standard argument based
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on composition with bi-Lipschitz functions assume that v e SBV?(Q, 1), with
1 —2dist(K,0Q) <1y < 1—26. Set now ry =1 —26 and let r; € (ry,ry) be arbi-
trarily chosen. In Theorem 4.1 and Proposition 4.2 we will show that if the jump set
of v is sufficiently small, we are able to modify v in a region containing @, , and
contained in @, ,,- The construction acts by truncating v at suitable levels, in such a
way that this truncated function has oscillation on @, , controlled in terms of
|D*|(Q,,r,), and above all without creating any new jump. In view of this Poincaré
type inequality, the extension of v to the whole @ is obtained by joining it smoothly
to a suitable constant through a cutoff function (see Fig. 2 for a sketch of the
construction).

A Poincaré type inequality for SBV functions in any space dimension has been
first established in Ref. 30 (see Ref. 8, Theorem 4.14). There the truncation levels are
selected via the BV Coarea Formula to control the L? oscillation on the whole set of
the modified function from its median only by its gradient energy.

In this respect the main difference of our approach is the selection procedure of the
truncation levels which preserves the boundary values of the original function and
which does not introduce new jump set. Such a requirement is essential for the
compactness issue in the homogenization problem (see Proposition 4.3) and can be
developed in dimension N = 2 thanks to a capacitary argument (see Lemmas 4.1, 4.2
and Remark 4.3).

Let us begin with the truncation procedure that we set primarily for functions in
SBV,. Let us fix some more preliminary notation. As already mentioned we fix
positive radii r¢, r;, 7y as follows:

ro € (1 —2dist(K,0Q),1 —26), 1,=1-26, 1 € (rg, 7).
Moreover, for every s € R we denote by E; the s sub-level of vin Q, ,,, i.e.

B = {2€Q,,: o) <sh (4.2)

[ ro/2=1/2-6

) AN /2

>

N\ ’ n@\ constant area
%mv + (1 =9
Nt e interpolation area

Y

— original function

Fig. 2. Definition of v in different areas.
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and by med(v) a median of vin @, ,,, namely
med(v) :=sup{s € R: |E| <|Q,,,|/2}. (4.3)

In formula above, the two-dimensional Lebesgue measure £2 has been indicated with
| - |, a notation that we will use for the rest of the subsection.

Lemma 4.1. (Truncation lemma in SBVy(Q, ,,)) For every v € SBVy(Q,, ,,) with
HY(S,) < (ry —711)/2, the set I ={r e (r,ry):H’0Q,NS,) =0} is such that
LY(I) > 0. In particular, for L' a.e. 7 € I the trace of v on 0Q, is constant.

Proof. Set
J = {T € (T17T2) : Ho(aQr N Sv) Z 1}7

then the thesis is equivalent to proving that L'(J) <ry—7; (see Ref. 8,
Theorem 3.87).

In order to estimate £!(J) we use the Coarea Formula 2.1 applied with k = 1,
m=1, f(y) =]yl and E=S,. A simple computation shows that d°f, =
(Vf(z),vi(z))vy(z) for H! ae. z € S, so that

Cl(dsufz) = |<Vf, Uzj)_(x»'
Since f71(r/2) = Q, and |Vf| =1 L2 a.e. in R?, by (2.3) we infer

LYJ) < /”HO(GQT NS,)dr < 2HY(S,) <ry — 1y,
J

from which the result follows. O

Remark 4.2. The same result can also be obtained by using classical slicing results
(separately in suitable sectors of @, ,,), instead of the Coarea Formula.

In the following we will deal with one-dimensional sections of a set of finite per-
imeter E. To make the framework rigorous we could fix a £2-representantive of E,
e.g. E* ={z € R? : limsup,_o, r2|B.(x) N E| > 0}. A careful reading shows any-
way that all the statements below are independent of the £? representantive of E.

Given a set of finite perimeter E, we denote by 0*E the essential boundary of E
(see Ref. 8, Definition 3.60). By applying Lemma 4.1 to the characteristic function of
a set with finite perimeter we immediately deduce the following corollary.

Corollary 4.1. For any set of finite perimeter E C Q, ,, with H'(0*F) <
(ry —1r1)/2 there exists a set of positive L' measure in (r1,79) such that for any r

in this set either HY(EN0Q,) =0 or HY(EN0Q,) = H'(0Q,).

Under some additional conditions on the smallness of both |E| and H!(9*E) the
previous result can be refined.

Lemma 4.2. There exists a constant C; € (1,+00) depending only on r; and ry
such that the following holds true. For any set of finite perimeter E C Q,, ,,, with
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|E| <@y, 1,1/2 and H (0 E) < (ry —11)/C}, there exists a set T C (r1,75) of positive
L' measure such that HY(EN0Q,) =0 for L' a.e.r € T.
Proof. Let us set
I:={re(ri,r) : H(0Q, NE) =H'(0Q,)},
J:={re(r,r):0<H (0Q,NE)<H (IQ,)}.

We have to prove that if C, is large enough, then L1(I U J) < 1y — 71.
By the Coarea Formula we have

/ “HY(0Q, N E)dr = 2|E|.

If ¢ is the constant of the Relative Isoperimetric Inequality in @, ,, (see Ref. 8,
formula (3.43)), a rearrangement argument” gives

ri+LY(I)
/ 4rdr < /HI(BQT) dr = /Hl(fl‘Q,.ﬂE) dr
r1 I I

c

2|E| < 26(H'(0"E))? <25 (ry — 1),
1

IN

from which we immediately obtain

LYI) < (ry = 11). (4.4)

Ve
1
In order to estimate £!(J) we use a slicing argument and notice that for £! a.e.

r € J 0Q, N E is a set of finite perimeter on each side of 0Q),. Since by assumption

0Q, N E is not of full measure in AQ, nor it is the empty set, hence H°(9Q, N O*E) > 1

for £ a.e. 7 € J. As a consequence by the Coarea Formula we infer

To — T

&

L) < /HO(aQT NO*E)dr <2HYO*E) <2 : (4.5)
J

From (4.4) and (4.5) we easily conclude. m|

Remark 4.3. In dimension greater than two the result of Lemma 4.2 is no longer
true. Indeed, one can exhibit sets with small perimeter intersecting the boundary of
each Q, in a set of positive H~~! measure. In this case an analogous of Lemma 4.2
should deal with a suitable quantification of the measure of the subset intersecting
the boundary of each cube. We did not investigate further this kind of result since our
techniques allow us to prove the closure and compactness result in any dimension
arguing by sections, taking advantage of the two-dimensional case.

bTo justify the first inequality it is enough to consider the function mapping [ry,sup I] in [ry, 7 + £1(I)]
whose derivative is equal to the characteristic function of the set I. By taking into account that this map is
1-Lipschitz, monotone increasing and surjective, changing variables by means of the Coarea Formula 2.1
yields the desired inequality.
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From Lemmas 4.1 and 4.2 we can deduce a localized Poincaré type inequality for
functions in SBV(Q,, 1)

Theorem 4.1. (A Poincaré type inequality in SBV(Q,, ;)) Let C; be as in
Lemma 4.2 and let v € SBV(Q,, 1) with H*(S,) < (ry —r1)/2C,. Then there exist a
function denoted by T'(v) in SBV(Q,, 1) and a constant m, € R satisfying

(i) T(v) =vin R;
(ii) |DT'(v)| < |Dv| in Q,, 1 in the sense of measures;
(iii) [[T(v) = mylli~(,,,) < 2C11D[(Qy,,)/(r2 —11).

Proof. If [D|(Q,, ,,) = 0, we apply Lemma 4.1 and select 7 € (ry,75) such that the
trace of v on 0Q); is constant. In particular, choosing m,, equal to such a constant and
setting T'(v) := m, in @, all the conditions of the theorem are satisfied.

Otherwise we have |D%|(Q,, ,) > 0, then the BV Coarea Formula (see Ref. 8,
Theorem 3.40) implies

med(v)
/ W@ ENS)ds < [ H(0°ENS) ds = [D0l(@,.)
med(1)~2C,|D0l(Q,, )/ (ra—r1) R

where E; is the sub-level of v in @, ,, defined in (4.2) and med(v) is defined in (4.3).

By the Mean Value Theorem, there exists s’ € (med(v) — 2C;|D|(Q,, ,,)/(rs —
r1), med(v)) such that

Hl(a*Es’\Sv) < (TQ - Tl)/201
and so
HY(O*Ey) <HNI'ELNS,) +H(S,) < (ry —11)/Ch. (4.6)

Analogously, we can find s” € (med(v), med(v) + 2C,|D*|(Q,, ,,)/(rs — 1)) such
that

Hl(a*Es") < (ry —1m1)/Ch. (4.7)

The definition of median (4.3) and the choice s" < med(v) yield |E/| < |Q,, ,,[/2, and
by arguing similarly, the same inequality holds for the set @, ,\E,» as well. By
taking into account (4.6) and (4.7) we may apply Lemma 4.2 separately to the two
sets Eg, Q, ,\Es and find radii v <r' <r” <ry with H'(E, N9Q,,) =0 and
H((Qr, p,\Esr) NOQ,n) = 0. Set m, := med(v) and define T'(v):=s"VvAs" in
Qryrs T(0) :=vAs" in Qv and T(v) = v in Q\Q,~. The thesis follows easily by
construction. O

Proposition 4.2. (An extension result) There exists a constant Cy > 0 depending
only on 1y, r1, r9 such that for any ve SBV?(R) with H'(S,) < (ry —11)/2C,
there exists v € SBV?(Q) such that v = v in R, ||[V||r2q) < Cof[Vvl|p2g) and
HNL(S;) < CoHNTL(S,). Moreover, if ve WI2(R) (ve SBVy(R)), then v €
W2(Q) (v e SBY(Q)).
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Proof. Thanks to the regularity of the sets @, ;, by a standard technique that relies
on inner composition with bi-Lipschitz functions (see Ref. 8, Theorem 3.16 and also
Ref. 7 for a deeper insight) we may assume the function v to be extended in @, ; in
such a way that

J

for a universal constant ¢ > 0 depending only on the geometry of R.

Let now T'(v) and m,, be as in Theorem 4.1. If v € SBV{(Q,, ;) define v simply by
extending T'(v) to the whole of @ with constant value m,. Otherwise, we consider a
cutoff function ¢ € C'1(Q, [0,1]) such that ¢ =0 on Q,, ¢ =1 on Q,, ;. Define the
function v on @ as v := ¢T'(v) 4+ (1 — p)m,. A straightforward computation shows
that

|Vo|? dz < c/ |Vol2dz, HNL(S,) <cHY (S, NR),
R

rg.1

/ |Vo|?dx < / |Vo|?dx + c/ T (v) — m,|? d. (4.8)
Q 1

o Qryr

Taking into account (iii) of Theorem 4.1 and using Jensen inequality we obtain

/Q IT(v) —m,|?dz < ¢ / Vo] 2dz. (4.9)

0.1 QT‘I.TZ
From (4.8) and (4.9), noticing that S; C S, the thesis follows. mi

Remark 4.4. We notice that with the same techniques used in the proof of
Proposition 4.2 one can prove an extension result for functions v in SBV(R) with
HY(S,) < (ry —71)/2C; to functions which are in SBV(Q).

We are now in a position to prove the compactness of sequences (v,) satisfying
(4.1).
Proposition 4.3. (Compactness in SBV?(Q), Q C R?) Let (v,) C LY(R,) be
satisfying (4.1). Then there exist functions v, € SBV2(Q) satisfying v,, = v, in R,
such that (up to a subsequence) (v,) converges in L1(Q) to some v € SBV2(Q).

Proof. Set J, = {i € Z" : cither @}, ¢ Q or H'(S, N Q1) > &,(ry —r)/2C, } with
C, as in Lemma 4.2. For every i € J, we define 7, on Q’, to be equal to the BV
extension v,, defined in Proposition 4.1. By the Lipschitz regularity of 02 and the
fact that sup, H'(S, ) < +oo we deduce that #(7,) < ¢/e,,. This together with the
assumption sup ||v, [|~(g,) < +00 provides the estimate

/ |V, dr + H(S;, NUies Qh) < c
Uza’ll an

for some c¢ independent of n.
Let us now consider a square Q°, contained in 2 and satisfying HE(S,, N QL) <
£n(ry —11)/2C;. Let vl : R — R be defined as v (y) = v,(e,(i +y)). It can be
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checked that v’ satisfies the hypotheses of Proposition 4.2. Let v, € SBV2(Q) be
its extension provided by Proposition 4.2 and define 9, as o°, scaled back to Q%.
Using a standard scaling argument, we obtain ||V, ||2qi) < CollVu,lLeri),
HL(S;, NQL) < CoHY(S, NRY), and |[U,]lz~) < [[vnll~(r,)- The compactness
then follows by Ambrosio’s SBV Theorem (see Ref. 8, Theorem 4.8). O

4.3. Compactness in SBV?(Q): The general case

Let us turn our attention to prove that in dimension greater than 2 the L! limit of
any (extension of) (v,) as in (4.1) is actually in SBV?(2). We argue by a slicing
procedure that allows us to infer the result from Proposition 4.3.

Proposition 4.4. (SBV? closure) Let (v,) C L'(R,,) be a sequence as in (4.1) and
let v be the L' limit of some sequence (v,) C L*(), with v, =wv, in R,. Then
v € SBV2(Q).

Proof. First note that by Remark 3.1 v is also the L! limit of the sequence of
extensions constructed in Proposition 4.1, thus we deduce that v € BV(Q).

We argue by a slicing procedure that allows us to use the result in Proposition 4.3.
Let V; ; be the two-dimensional subspace in RY generated by the vectors e;, e; of the
canonical base. We use the standard notation ij to denote the space orthogonal to
Vi,

Given z € V;; we denote by v’/ the restriction of the function v to the planar set
Q3% := (Vi ; + 2) N Q. We claim that for HV=2 a.e. z € V;; the function v/ belongs

to SBV2(Q%#), and

/ (/ |Vold?|2dH? + Hl(s,l,i_j,z)> dHYN72(2) < +oo0. (4.10)
vt iz

v
Once claim (4.10) is proved we conclude the proof of the proposition as follows. Fix
1<4,j< N, andlet z € V,fj be such that

/ |Void|2dH? + H(S,i:) == M(2) < +oo. (4.11)
Qigz

For every fixed t € R let us set L= := QN {te; + se; + z, s € R}, and let v*5*! be
the restriction of v to L?/*t. By (4.11) and standard one-dimensional slicing theory
(see Ref. 8, Theorem 3.108), we have that for almost every ¢ € R the function v
belongs to SBV?(L#/*!), and moreover

/ < / |Vobd=t|2 gt + ’HO(Swz,i)> dt < M(2). (4.12)
R Lig.zt

Integrating (4.12) with respect to z and taking into account (4.10), (4.11) we con-
clude that for almost all £ € e7, setting L€ := QN {se; + £, s € R}, the restriction
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v*¢ of v to L€ belongs to SBV2(L*¢), and again by one-dimensional slicing theory
/ (/ |Vols|2dH! + H“(Svg.ﬂ.,)) dHN71(E) < +oc. (4.13)
ef Li€

Since the choice of the direction e; is arbitrary, we have that (4.13) holds true for all
1 <i < N. By standard slicing argument we deduce that v € SBV2(2), that con-
cludes the proof of the proposition using the claim.

It remains to prove the claim (4.10). Let us set R, := R, N Q%% and

M, (z) := /R: |Vl ?|2dH? +’H1(Suin‘j'l)~

n

In view of (4.1), by Fubini Theorem and standard slicing arguments we have that
/ M, (2) dHN2(2) < c. (4.14)
Vi

Hence for HV=2-a.e. z € V7; the values lim inf,, M, () are finite and the restriction
vi# of v, to RZ belongs to SBV2(RZ).

Let usfix z € VZL] such that, up to a subsequence not relabeled, M, (z) is bounded
uniformly in n. We observe that for given n the set RZ either coincides with Q%7% or
with the two-dimensional é-neighborhood of the grid

en(([-1/2, 1/2]2\[—1/2 +6,1/2 - 5]2) + ZZ) N Qe

which we label as R,(2%/*). In both cases we can apply Proposition 4.3 to the

sequence (vi”?) on R, (Q2%9%) and get functions wj’* with wi* = vi* on R, (Q142)
satisfying

[ e s,
Qi n

< o )\Vvi;j’z|2d7-(2+c’?—ll(S,U;,l.J.zﬂRn(QWVZ))gc’Mn(z), (4.15)

where ¢’ is a constant depending only on ¢ and the fixed geometry of the perforations.
In particular, a two-dimensional argument analogous to Remark 3.1 implies that
whi* converge to v* for HV=? a.e. 2 € V*. Finally, (4.15) and Ambrosio’s SBV
Theorem yield

/ |VoldZ2dH2 + H (S,:-) < ' liminf M, (z).
iz n

Integrating with respect to z, in view of (4.14) and using Fatou lemma we conclude

/ (/ |Voiiz|2 dH? + HI(SN,J,:)> dHN2(2)
VLJ} Qigz
< c’/ liminf M,,(2)dHY=2(z) < ¢/ liminf M, (2)dHN72(2) < 4o0.
v

n n 1
Vl.j

This concludes the proof of the claim (4.10) and of the proposition. O
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4.4. L'-compactness

In this section we will state the compactness result for sequences of functions on the
perforated domains bounded in energy. In the sequel we will need the following lemma.

Lemma 4.3. Let K be a closed set in Q). Then there exists a sequence of sets (C™) in
Q that are closures of open sets with Lipschitz boundary such that C™1 cc C™, and
Np>1C™ = K.

In particular, the sequence (C™) converges to K in the Hausdorff metric on Q, and
(xcm) converges to x g in L1(Q).

Moreover, if Q\ K is connected we can choose the sets C™ such that Q\C™ is
connected.

Proof. For every m € N consider an open set A™ with Lipschitz boundary such that
{z €@ :dist(z, K) >1/m} cC A™ cC {zx e Q:dist(z,K)>1/(m+1)}. (4.16)

The existence of such a set can be justified by taking a finite covering of the set
{z € Q:dist(z,K) >1/m} made of cubes compactly contained in {z €@ :
dist(z, K) > 1/(m + 1)}. Then the first part of the statement is proved choosing
C™ as the closure of the complementary of A™ by (4.16).

Assume now that @\ K is connected. Let B™ denote the connected component of
A™ whose closure contains 9@, in this case we set C™ = @Q\ B™. Clearly C™ is the
closure of an open set with Lipschitz boundary and Q\C™ = B™ is connected.
Moreover, since B™,B™*! are two connected components intersecting in a
“neighborhood” of 0Q, by construction we have B™ cC B™'! and thus
cmtl cc Cmcc Q.

To conclude we prove that N,,5;C" =K. As C™ D {z € Q :dist(z, K) <
1/(m + 1)}, therefore N,,5;C™ D K. On the other hand, with fixed z; € Q\ K and
x; € B!, there exists a continuous curve 7 : [0,1] — Q\ K such that v(0) = z; and
(1) = z; by the connectedness of Q\K. Let n= dist(K,~([0,1])), then >0
and zy € B™ for any m > [1/n]. Hence, x5 & N,,,5;C™, and this yields the claim. O

Theorem 4.2. (L'-Compactness for (u,)) Let (u,) C L*(Q.) be a sequence
satisfying

/ |Vun|2 dx + HN_I(SU ) + ||u"||L°°(Qan) S C (417)
Q

n

n

for some constant ¢ independent of n. Then there exist u € SBV2(Q) and a sequence
(w,) € LY(), withw, = u, Q. , such that (up to a subsequence) (w,) converges to
u in L1(9).

Proof. For any m € Nlet C" be as in Lemma 4.3, that is a closed set with Lipschitz
continuous boundary containing K such that @\ C™ is connected. Set

= Jelz+Cm), Qp=\Cy.

2€7Z
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By applying Remark 4.1 to the perforated domain 2] and by a standard induction
argument we deduce that there exists a subsequence (not relabeled for convenience)
(@)) converging in L'(Q) to some u™ € BV (Q), with @]} =u, on Q] for every
m € N. Actually, by Remark 3.1 we infer that the limit function ©™ does not depend
on m; and thus we drop the superscript m and denote it only by u.

A diagonalization argument allows us to find a sequence (ﬂ;’f(m)) which converges
to win L'(Q). Finally set

ﬂmm) () ifze Kgn
w'm &€ =
(@) Up(my(z) if 2 €Q

En(m) "

To conclude notice that the set {z € Q: w,(z) # Uy, (z)} is contained in
Chim\E-,,, . and LY(CF NK. ) < eLN(C™\ K): being this last term infinitesimal
as m — +oo we get that (w,,) converges to u in measure. Hence, since w,, are
uniformly bounded in L, w,, — u in L'(Q). Finally, in view of Proposition 4.4 we

conclude that u € SBV?2(Q). O

Remark 4.5. It is clear that if we remove the assumption that Q\ K is connected
the compactness result does not hold true anymore. For instance, it suffices to
consider K = Qy/41/, and u,, to be equal to 1 in all the inner squares (rescaled and
translated copies of /4) and 0 otherwise.

Nevertheless the compactness still stands in a weaker form. Indeed, let Q be the
connected component of Q. containing ,Z", then it is possible to prove that for any
(u,) C LY(Q. ) asin (4.17) there exists a subsequence (w,,) with w,, = u,, on an, and
locally constant in QEH\QSW, such that (up to a subsequence) (w,,) converges to u in
L(Q) for some u € SBV?2(Q).

5. The I'~Convergence Result

In the sequel we study the asymptotics as € — 0 of the family of functionals F¢
defined in (3.1) by using the direct methods of I'-convergence. This abstract approach
generalizes straightforwardly to the homogenization of more complex energies (see
Sec. 7). In order to apply the direct methods of I'-convergence we localize the energy
functionals and for simplicity we first neglect the boundary conditions. We will set
the problem in the ambient space L2(£2) and we represent the I'-limit of F, with
respect to the L2-topology only on SBV2(Q) N L?(). This formulation fits with the
study of asymptotic behavior of minimizers of the functionals F v taking into account
a L*> boundary datum v (see Sec. 6 and the related discussion therein).

For every A € A(Q) and € > 0 we set A, = A\ K, and we introduce the func-
tionals F. : L?(Q) x A(Q2) — [0, 40c] defined for every A € A(2) by

/ |Vu|?de +HN1(S, NA,) if ue SBV?(A),

F_(u, A) (5.1)

+00 otherwise in L2(Q).



Fracture Mechanics in Perforated Domains 2085

Theorem 5.1. For every A € A(Q) the family (F.(-,A)) T-converges to some
functional Figp (-, A) with respect to the L? topology. Moreover, the functional
From(+, A) restricted to SBV?(A) is given by

fhom(uaA) = Afl}om(vu) dx +/ ghom(yu) dHN_la (52)

8,04

where fuom and gyom are defined in (1.3) and (1.5), respectively.

The proof of Theorem 5.1 will be a consequence of several preliminary results (see
Propositions 5.1—5.4). The first step is to show the compactness property in the sense
of I'-convergence of F, and the integral representation of its I'-limit . These results
follow by standard arguments in I'-convergence; we will limit ourselves to provide the
related references (see Refs. 25 and 14). We recall that A(£2) denotes the family of all
open subsets of ().

Proposition 5.1. Let (g,) be a positive vanishing sequence. Then there exists a
subsequence (¢; ) of (€,) and a functional F : L*(2) x A(2) — [0, 400] such that for
every A € A(Q)

F(,A)=T- lignfgjn (, A).

Moreover F satisfies the following properties:

(i) the set function F(u,-) is the restriction to A(QQ) of a Radon measure on Q for
every fired u € SBV2(Q2) N L2(2), and the functional F (-, A) is local and L?(A)
lower semicontinuous for every A € A(Q);

(i) for every A € A(Q) with A CC Q and for everyy € RN such thaty+ A C Q and
u € SBV?(A) we have F(u(- —y), A +y) = F(u, A);

(iii) for every z€ R, A€ A(Q) and u € SBV2(A) N L2(A) we have F(u+ 2z, A) =
F(u, A).

By taking into account the integral representation results of Ref. 12 we get the
following result.

Proposition 5.2. Assume that (F_ (-, A)) I'-converges to a functional F (-, A) for
every A€ A(Q). Then there exist Borel functions f:RY — [0,4+o00] and g:
R x SN=1 — [0, +00] such that for every A € A(R) and u € SBV?(A)
F(u, A) :/f(Vu)dm+/ glut —u=,v)dHN L
A 5,nA
Proof. To prove the result we apply the integral representation Theorem 1 Ref. 12.
In order to match the assumptions of that result we need to extend F(-,A),
A € A(Q), to SBV2(A) by relaxation with respect to the L' topology and then to use
a perturbation argument to enforce the growth condition from below.

In this respect let us consider the functional F(-, A) extended to SBV?(A) as
follows

F(u, A) :=inf {liminf]:(un,A), u, — u in Ll(A)}.
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By a truncation argument it is possible to check that this relaxation procedure does
not change the value of F on SBV%(A) N L2(A).

Clearly F satisfies properties (ii) and (iii) of Proposition 5.1. Let us briefly check
that F also satisfies property (i), i.e. for every u € SBV?2(Q), F(u,-) is the restriction
to A(Q) of a Radon measure on 2 (L' lower semicontinuity and locality being
trivial). Setting u;, := u V (—k) A k for any k € N, we have F(u;, A) — F(u, A) for all
A € A(Q), being the F_, and hence F, decreasing by truncations. In turn from this
we infer that F(u,-) is monotone on A(f2), sub-additive, and super-additive on dis-
joint open sets. Moreover, since for every A € A(Q)

Flu, A) < / Vul?dz + HY1(S, N A)
A

we deduce the inner-regularity of F by standard arguments (see Ref. 13, Proposition
11.6). By the De Giorgi-Letta’s criterion (see Ref. 8, Theorem 1.53), we conclude that
F is the restriction to A(Q2) of a Radon measure on (2.

Thanks to Proposition 5.1, conditions (H1)—(H3) in Ref. 12, Theorem 1 are
satisfied, namely F is a variational semicontinuous functional on SBV?2(Q) x A(§)
with respect to the L! topology.

In order to enforce the growth condition from below (H4) let us fix § > 0 and
consider the functional

Fo(u, A) = Flu, A) + 5/ Vu|?dz + 5/ (1+ Jut — u|) dHY1.
A 5,04

According to Theorem 1 of Ref. 12 there exist Borel functions f®: A x R x RY —
[0,+00], g% : AX R x R x SN~ — [0, +00] for which

Fo(u,A) = / fo(x,u, Vu)dz +/ g (x,ut u, v, dHN !
A S,nA
for every A € A(Q) and u € SBV?2(A).

Thanks to properties (b) and (c) in Proposition 5.1 we conclude that both f¢ and
g° are independent of z, that f® does not depend on u, and that g® depends on
(u*,u) only through their difference so that we may write g° = ¢°(u* —u~,v). By
construction the families (f?%)swo, (9%)sso are increasing in &, hence we can set
f=1lims o+ f% g=Ilims +g°. To conclude we use the pointwise convergence of
(FO(-, A))s=0 to F(-, A) and the Monotone Convergence Theorem. O

In the next proposition we identify the bulk density of all I-cluster points of (F )
to be fiom- We will use the standard notation [-] for the integer part.

Proposition 5.3. Assume that (F. (-, A)) I'-converges to a functional F (-, A) for
every A € A(Q). Then for every € € RN

f(g) = fhom(g)a
where [ is the bulk energy density of F(-, A), and fion s defined in (1.3).
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Proof. For the sake of simplicity we assume that the unitary cube @ is contained in
Q. Fix £ € RY, we begin with proving inequality f(£) < fuom(£). To this aim consider
any w € Wul"Q(Q\K), extend it to 0 on K and define w,(x) = ¢,w(z/e,). We have
(w,) € L*(Q)NW*Q\K.,) and (w,) converges to 0 in L?*(Q). Moreover, setting
v, (z) = w,(x) + £ - x, by periodicity and a change of variables it follows

Foon@) = [

1 N
|Vw(z/e,) + &|*dx §51§<1+ [—]) / |Vw + ¢|2dz.
Q\K., Q\K

n

Since (v,) converges to ¢ -z in L%(Q) we deduce
£ = F(€-2.Q) < lmint 7., (1, Q) < [ [V -+ ¢lda,
" Q\K

taking the infimum with respect to w we conclude.

The proof of the opposite inequality f,,m(£) < f(£) will be split into several steps.
Let us first deal with regular perforations K, namely we assume that K is the closure
of an open set with Lipschitz boundary (with @\ K connected).

Consider a sequence (w,) C L?(Q) converging to £ -z in L?(Q) and such that

f(g) = ‘7:(5 ' l',Q) = 1irrln.7:5n(w",Q).

Since F ., decreases by truncation we may also assume ||wy, ||;=q) < [|§ - ||~ (g for
every n € N. We first use a blow-up type argument in order to get from (w,,) a new
sequence whose energy has not increased and whose jump set is vanishing (see
Ref. 14, Step 1 in Proposition 5.2).

Step 1. Reduction to a recovery sequence with vanishing jumps. More precisely, we
prove that there exist a diverging sequence (j,) C N and (v,) € L?(Q) such that

(i) (v,) converges to & -z in L%(Q);

(i) flonll=@) < 11§+ @llr~(q) for every n € N;
(iii) lim, HY7'(S,, N (Q\Kyy;,)) = 0;
(iv) limsup,, Fyj (v, @) < f(&).

Fix a sequence (j,) C N to be chosen later, and let Q7 = j,&,(i + Q) be a cube
among those of type j,&,(i + Q) C Q, i € ZV, satisfying

11V ‘
[ ]fg,an,c;;)sa,,(wm@. (5.3)

Inén

Define v, € L2(Q) to be

Un(x) = wn(]nsn(l—’_x)) _5' i,

B j'VL En
then a simple change of variables entails

an - 5 : xHLz(Q) < (jngn)7(1+N/2>||wn - f : w”L?(Q)' (54)
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It is easy to check that we may choose (j,) in such a way that j, — +o0, j,&, — 0
and (5.4) vanishes as n — +o00. So that (i) is established.
Moreover, the choice of Q% in (5.3) implies by changing variables

HNH(S\EK ) = (Gaen) VRN (S, N (QR\KL))

< Gre ] e (0,Q)

nEn

and

/ Voal2de = (juen) / IV, |2z
Q\Kyj, QI\K.,

< o)™ || o w0,Q),

Inén

from which we deduce (iii) and (iv), respectively.
Eventually, statement (ii) follows by truncating v, at levels +[|& - || (q)-

Next we refine the recovery sequence to obtain a sequence with Sobolev regularity.
To do this we employ by now standard techniques to truncate gradients.

Step 2. Reduction to a recovery sequence in Sobolev spaces. In this step we prove
that for every fixed cube Q' C C @ there exists (u,) C W12(Q’) such that

(i") (u,) converges to & - x in L2(Q');
(i) llunllp~@n < 1€+ @llr~(q) for every n € N;
(iv’) limsup,, Fl/jn(un,Q’) < f(&).

Reproducing the beginning of the proof of Ref. 38, Lemma 2.1 in a varying Lipschitz
domain, we can modify v,, in order to construct a function v,, € W (Q\ Ky ; ) such
that

lim £V ({2 € Q\Ky, ¢ B (2) # va(2)}) =0 (5.5)

and

n

sup/ |V, |?dr < +o0.
O\Kyyj,

Up to a truncation argument, thanks to Step 1(ii), we may assume also that
0nllx(@) < € - #||p=(q)- Furthermore, by taking advantage of the connectedness of
Q\ K and of the Lipschitz regularity assumption on K we employ classical extension
results to fill the holes (see Theorem 2.1 of Ref. 1, and also Ref. 23). More precisely,
with fixed @' C C Q we extend v,, to the full @' (we keep the notation v, for the
extended function) with o, € W'2(Q') and sup,, [0, ly12(g) < +00. Then Lemma
1.2 of Ref. 33 provides a sequence (u,) C Wh2(Q') such that

lim £5({z € Q'+ 5,(x) # un(2)}) =0, (5.6)

and (|Vu,|?) is equi-integrable on @Q’. Up to the usual truncation argument we may
assume also that |u, ||~y < 1€ 2||p~)-
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By collecting (5.5) and (5.6) we infer
lim £V ({z € Q'\Ky/;, : u,(x) # v,(x)}) = 0. (5.7)
Since (|Vu,|?) is equi-integrable, by Step 1(iii) and (iv) we get

lim sup/ |Vu,|?dr = limsup |Vu,|?ds
Q"\Kyj,

" " /(Q/\Kl/]n)\{uu#vu}

= limsup |Vu,|?dx

n /(Q/\Kl/],ﬂ\{uu#vu}

lim sup / |Vv,|?dx
" Q\Kyyj,

< f(9),

IN

so that (iv’) is established.

Let us pass to the proof of (i’). Given any subsequence of (u,) by Sobolev
embedding we may extract a further subsequence (u; ) converging to a function u in
L*(Q'). Set ¢, = X(Q'\K,;,)\{u;, #v,, }» then by (5.7) (see also Remark 3.1) (i,) con-
verges to 1 — LN (K) weak*L>(Q’). By taking into account Step 1(i), (¢, (u;, —v;,))
converges to (1 — LV(K))(u — & - z) weak L'(Q'), and since ¢, (u; —wv; ) =0LN
a.e. on Q' we deduce that u = ¢- 2 LY a.e. on Q'. Furthermore, Urysohn property
implies (i’), i.e. the whole sequence (u,,) converges to & - z in L2(Q"). This concludes
the proof of Step 2.

Step 3. Conclusion. Let us first prove fionm (&) < f(€) for K Lipschitz regular. In this
case the classical homogenization result for Sobolev spaces in perforated domains (see
Ref. 13, Theorem 19.1) and Step 2 entail

‘cN(Q/)fhom(S) < hn'lnll’lf Fl/jn, (una Q/) < f(g)
The thesis follows as LV (Q") — 1.

Finally we recover the general case (without assuming further regularity on K)
through an approximation argument. More precisely consider a generic closed set K
(with Q\ K connected) and let (C™) be a sequence as in Lemma 4.3. Let f[  :
RY — [0, +00] be defined as fi,,, in (1.3) with K there substituted by C™, i.e.

fiom(§) = inf {/Q\Cm [Vw+ €% we W;’Q(Q\C"”)}.

It is clear that fi" < fi"1 < fiom, We claim that

— Jhom —
sup f}?ém = fhom' (58)
m

Indeed, for every m € N let w,, € th’Q (Q\C™), with fQ\Cl w,,dx = 0, be such that

m 1
/ |vwm+£|2dx§fhom(£)+7
Q\Cm m
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Note that for every fixed M > 0

m>M

sup / |Vwm + §‘2d$ < fhom(g) +1 < +oo.
Q\e

In particular, the sequence (w,,),>y is bounded in W3(Q\C™) by Poin-
caré—Wirtinger inequality for every M. Then a diagonal argument implies the
existence of a subsequence (w; ) weakly pre-compact in W12(Q\C) for every M.
Denote by w a cluster point, then w € W; ’2(Q\C M) for every M and

/Q\C‘I|Vw+§|2dx < lirr}ninf /Q\C‘[|ijm +€2dz < sup £l (€).

By letting M — 400 we infer that actually w € L (Q\K), Vw € L%(Q\K,RY)
and

/ Vw+ &2de < sup £ (©): (5.9)
Q\K m

In particular, it is easy to check that the truncated functions w/ = (w A j) V (=)
belong to Wul’Q(Q\K) and for every M

fhom(f) S ‘/Q\K|V’w]+f|2d.’ﬂ

- / IV + €2dz + [E2L 5 (Q\K) 1 {w] > )
(Q\K)\{|w|>s}

< / [Vw + &2dz + [ (LN (Q\CM) N {Jw| = j}) + LN(CY\K)).
Q\K
Since w € L2(Q\CM) we have LN ((Q\CM) N {|w| > j}) — 0 as j — +o0, so that
fun(©) < [ Vw4 g2+ [€2LYC\K). (510)
Q\K

Eventually from (5.9) and (5.10) we deduce equality (5.8) as M — +oc.

Finally denote by F" the functional defined in (5.1) with C"™ in place of K, then
FI <F.. Up to extracting a further subsequence we assume that (F7'(-, A))
I'-converges to a functional F™ (-, A) for every A € A(2). By Steps 1 and 2 we know
that the bulk energy density of F™ is fi = and by construction fi (&) < f(§) for

hom>

every m € N. Hence, we derive fj,,,(§) < f(&) from (5.8). O

Remark 5.1. The argument above entails the existence of a minimizer for the
minimum problem defining fi,.,, in (1.3) in a suitable Deny—Lions type space (see
Ref. 31).

In order to prove the counterpart of Proposition 5.3 for the surface term we first
show that the limit defining g, exists. To this aim we introduce some extension
procedure.
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Given any v € S¥=! let {vy,...,vy_1} any collection of unitary vectors such that
{vi,...,vy_1,v} form an orthonormal basis of R with unit cell Q”. Given w &
P(Q"\K.) such that w = ug;, (defined in (1.4)) on a neighborhood of 9Q", we
regard w as extended to RY as follows. First we extend it on Q" by setting w = uqg 1,
in K_, then on the strip S = {# € RY : |(z,v)| < 1/2} by 1-periodicity in directions
Vi,...,Vn_1, and finally we set w = ugy;, on {x € RV : [(z,v)| > 1/2}.

Lemma 5.1. For every v € SV=1 there exists the limit as ¢ — 0% of m_(v), where

m.(v)= inf {HYY(S,\K.): w=uy;, on aneighborhood of 0Q"}.
weP(QV\K.) ’
Proof. Let ¢,0,n > 0 be fixed, with o < ¢, and let v, ..., vy_; be unitary vectors as

above. Fix w € P(QV\ K.) such that w = ug; , on a neighborhood of 9Q", and regard
it as extended to R as explained above.

Consider the strip S,). = {x € RV : [(z,v)| < 0/(2¢)} and its decomposition
into cubes of the family A = {2(i+Q"): i€ EBkN:’llukZ}, where @1 'v,Z is the

N — 1-dimensional integer lattice generated by vq,...,vy_;. Moreover let 7 =
{i € EB,ICV;IIVICZ (2(i+QY) C nQ”}, then a simple counting argument gives
N—-1
4T < (ﬂ) . (5.11)
o

Define w, : Q" — {0,1} by gy, on Q”\S,/. and on each cube of the family A
intersecting Q”\nQ", and let w,(z) = w(ex/0) otherwise on S, ..

By construction w, € P(Q"\K,) and w, = ug;, on Q”\nQ", and since S, N
(Q\1Q") C {w € R : (z,1) = 0} N (Q*\nQ@"), we have HN-1(S,, 1 (Q"\1Q")) <
1 — nN=1. Furthermore (5.11), the 1-periodicity of w in directions vy, ...,vy_;, and a
scaling argument imply

HY SN < #T(2)7 T SAK) 1 -
< N IHN NS NK,) +1 - . (5.12)

Passing to the infimum on the class of admissible functions on both sides of (5.12) and
then on the superior limit as ¢ — 07 and the inferior limit as ¢ — 0% we infer

lim sup m, (v) < nN‘llim&nf m.(v) +1—nN-1,
+ e—0+

and the thesis follows as n — 1. O

In the next proposition we identify the surface density of all I'-cluster points of
(‘7:5) to be Ynom-

Proposition 5.4. Assume that (F. (-, A)) I'-converges to a functional F(-, A) for
every A € A(Q). Then for every (a,b,v) € R x R x SN-1

g(b - a, V) = ghom(V)a
where g is the surface energy density of F(-, A) and gnoy s defined in (1.5).



2092 M. Focardi, M. S. Gelli € M. Ponsiglione

Proof. Fix (a,b,v) € R x R x SV~ We start with inequality g(b — a, ) < gyom (V).

To this aim fixed £ > 0 consider any w € P(Q"\K,) such that w =g, on a
neighborhood of 9Q?, regarded as extended to R with the convention adopted
before Lemma 5.1. Define w,(z) = a + (b — a)w(ex/e,), then a simple change of
variables gives

e\ N/2 e\ V-1/2

||wn - uaﬁb,l/”L?(QV) S |b - (1,‘ (?T’L) (1 + |:5_:|) ||w - uOA,l,I/HLZ(Q”)a
so that (w,) converges to u,;, in L?(Q"). Moreover, a straightforward calculation
implies

fsn(wany) = %N_l(swn N (QV\KEW))
= HY(S,, N{z € QK. : [(z,v)| <e,/(20)})

N1 N-1

(=) (1 + H) HN(S, 0 (QV\KL)).

€ n

IA

Taking the limit as n — 400 we infer

Flup, Q") < liminf 7. (1,,Q") < HY (8,1 (Q"\K.)),

by passing first to the infimum on all such w’s and then to the limit as ¢ — 0
inequality g(b — a, V) < gpom(v) follows by Lemma 5.1.

The proof of the opposite inequality gnom(¥) < g(b — a,v) will be split into three
steps. To fix notations we will assume a < b. Consider a sequence (w,) C L2(Q")
converging to u,;,, in L*(Q”) and such that

g(b - a, V) = T(uw,b,w QV) = limfsn (w’m QV)

By a truncation argument we may also assume a < w,, < b for every n € N. First we
use a blow-up type argument as in Proposition 6.2 of Ref. 14, in order to get from
(w,) a new sequence whose energy has not increased in the limit and whose gradient
energy is vanishing.

Step 1. Reduction to a recovery sequence with vanishing gradients. We prove that
there exist a diverging sequence (j,) € N and (v,) € L2(Q") such that

(i) (v,) converges to u,p, in L?(QY);
(ii) a <w, < b for every n € N;
(111) l%m”fQ'f\Kl/]n |V’Un|2dx =0;
(IV) hmsupn Fl/jn(vm QV) < g(b —a, V)'

Fix a sequence (j,) C N to be chosen later, and let Q% = j,e,(i + Q") be a cube
among those of type j,&,(i + Q%) C Q", i € ®N ', Z, satistying

1 N-1 )
[ } Fo (wn, Q1) < F. (w0, Q). (5.13)

jngn
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Define v, € L?(Q") to be v, (z) = w,(j,&,(i + x)), then a simple change of variables
entails

—N/2

an - ua,b,u||L2(Q”) < (]nsn) ”wn - ua,b,V”Lz(Q")' (514)

It is easy to check that we may choose (j,,) in such a way that j,, — +00, j,&, — 0
and (5.14) vanishes as n — 4o00. So that (i) is established.
Moreover, the choice of Q% in (5.13) implies by changing variables

HN LS \NE ;) = (Gnga) VRN (S, N(QRNKL,))

1

1-N
< Goea ] A

and

/ Vol = (juen)™ / IV, |2de
Q\Kyj, QMK

1 1-N
< (jngn)27N |:—:| ]:5,, (wna Q),
]n €7L
from which we deduce (iii) and (iv), respectively. Eventually, statement (ii) follows
straightforward.

In the next step the BV Coarea Formula (see Ref. 8, Theorem 3.40) allows us to
select suitable sublevels of the sequence in Step 1 whose perimeters is controlled by
the energy functionals (see Ref. 14, Proposition 6.2). Subsequently we use a geometric
truncation argument, similar to that called transfer of jump set performed in Ref. 34,
in order to obtain a sequence in SBV|, matching the boundary conditions.

Step 2. Reduction to a recovery sequence in SBVy(QV) satisfying the boundary
conditions. We prove that there exists (v,) € SBV,(Q") such that

(i") (v,) converges to u,p, in L*(QY);

(ii") v, assumes only the values a,b for every n € N;
(iii") v,, = 14y, on a neighborhood of 9Q";
(iv’) limsup,, Fy/;, (0,,Q") < g(b—a,v).

Indeed, let us consider the sets Ef ={zxe€Q":v,(z)<t}, E, ={zeQ":
Uqp, () < t}. Thanks to property (i) of Step 1 Ef' — F; in measure for %! a.e. t and
the BV Coarea Formula (see Ref. 8, Theorem 3.40) yields

b
/ HY (0 EI\Ky; ) ds < | Do (Q\K, ). (5.15)

Note that the absolute continuous part of | Dv, [(Q”\ K /; ) can be estimated by using
the Holder inequality, while for the singular part is sufficient to take into account
that thanks to property (i) of Step 1 |v;} —wv,| < (b—a). Hence we can refine
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inequality (5.15) and obtain

1/2
|an|2da:> .

(5.16)

b
/?Wl@waxwg@sw—@ﬂmwm@n+</
a Q

\K1,

By using the Mean Value Theorem in (5.15) and by using property (iii) of Step 1 in
(5.16), we may choose s, € (a,b) such that we have convergence in measure of the
sublevels E and

lim sup HN’I(a*EZl\Kl/jn) < limsup Fj; (v,, Q). (5.17)
n n
Set E, = £ . Taking into account that u,, is piecewise constant in Q" we easily

infer that E,, tends in measure to the lower half cube. Let us now fix € (0,1/2) and
set

Q, ={z€Q": —n<(z,v)<0}, QF ={ze€Q”:0<(z,v)<n}

Since E, NQ, tends to @, in measure and E, N Qg tends to zero in measure,
recalling that £LY(Q,) = LV (Q}) = n, for n large enough, we have that

LYE,NQ,)>n-n% LYE,NQ;)<n%

Therefore, thanks to Fubini’s Theorem we may find s—, s in a set of positive
measure in (0,7) such that

HY Y E,N{zeQ": (z,v)=—s"}) >1—n,
HY Y E,N{zeQ": (z,v)=sT}) <.
Finally set
H, :={zeQV:dist(z,0Q") <n, —s~ < (z,v) <0},
H, :={x e QV:dist(z,0Q") <n, 0 < (z,v) < st}
and consider functions v; defined by
a in{zeQ”: (z,v)<—-s"1U(Q, NE,) U(( ;OE,Z)\H;’)UH;,
{ b everywhere else in Q”.
By construction v} € SBVy(Q") and property (i’), (i), (iii’) are satisfied. In
addition, by taking into account (5.17) we get
limsup Fy/;, (07, Q7) = limsup HV1(S;\K ;)
' < limnsup HNHO*EZ\Ky;,) +O(n)
< timsup Fy, (6, Q") + O
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where O(n) — 0 as n — 0T. Finally we get a sequence (9,,) satisfying property (iv’),
as well as (i), (ii’), (iii’), by taking a positive vanishing sequence (1,,) and a standard
diagonalization argument.

Step 3. Conclusion. Let u, = (v, —a)/(b — a). Then u, coincides with u;, on a
neighborhood of Q" and converges to ug;, in L*(Q"). Eventually

ghom(y) < lim SupHNil(Su,,\Kl/jn) = lim sSup Fl/jn(ﬁ’m Qy) < g(b - a Z/)' o

Summarizing, we have proved that, if (¥, ) I'-converges to F, then the bulk and
the surface energy densities of F are given by the functions f, and g, defined in
(1.3) and (1.5), respectively. This clearly implies that the T'-limit of the whole family
(F.) is the functional Fy,,, defined in (5.2). Indeed, the cluster points of (F,.) do not
depend on the particular I'-convergent subsequence, and so Urysohn’s property
enforces the conclusion. The proof of Theorem 5.1 is then complete.

6. Matching Boundary Conditions

In this section we extend our asymptotic analysis adding a Dirichlet boundary con-
dition on the fixed boundary 0f). We present a I'-convergence result for (suitable
restrictions of) the functionals F?¢ defined in (3.1) and prove the convergence of the
associated minimum problems. This last result will be a consequence of standard
T'-convergence theory once the equicoercivity of the associated minimum configur-
ations is proved (see Ref. 25, Theorem 7.4).

Since we are interested mainly in the asymptotic behavior of minimizers we
restrict ourselves to the domain SBV2(Q) N L?(£2). Indeed, as already mentioned at
the beginning of Sec. 4, the functionals F?¢ are decreasing by truncation, and thus we
can limit our analysis to functions equibounded in L>(£2). According to this, we
investigate the I-convergence of (F7) on the Ll-subspace SBV2(€2) N L2(R2). In this
respect, it is also clear that the convergence property is not affected by the choice of
any LP? topology in which the study of the I'-limit is set.

We begin with the I'-convergence analysis. It exploits the result in the uncon-
strained case proved in Theorem 5.1.

Theorem 6.1. The family (F zl) I'-converges to some functional FY
the L%(Q2) topology. Moreover, the functional FV

hom With respect to
restricted to SBV%(Q) is given by

hom

‘Fﬁom /fhom VU) dIII+/ ghom( u) dHN_l,
St

where Sy =S, U {z € 00 : Y(x) #u(x)}, and fiom, Ghom are defined in (1.3) and
(1.5), respectively.

Proof. Consider an open set Q with Q cc Q, and let F. : SBV2(Q) N L2(Q2) —
[0, +00] be defined as in (5.1) with A replaced by Q. By Theorem 5.1 we have that the
functionals .7-" I'-converge to the functional F hom defined as in (5.2) with A replaced
by Q.
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In order to prove the I'-lim inf inequality for the functionals F¢, let u. — u in
L?(Q), and set @, (respectively %) equal to u,. (respectively u) in 2, and equal to ) in
Q\ Q. Taking into account that ) € W12(2), we have that

Foli) < FU(i) + / V|2 da,
0\Q

and thus by the I'-lim inf inequality for the functionals ]—1 we get

FU(u) < From(@) < liminf}"?(ﬂg) —|—/~ |V|? d.
0\Q

hom
We deduce the T-lim inf inequality for the family (FY) by absolute continuity of
Lebesgue integral by letting Q decrease to .

Let us pass to the I'-lim sup inequality. To this aim let v € SBV2(Q2) N L2(9) and
@ be its extension to Q defined to be equal to v in Q\Q Taking into account the
fundamental estimate (see Ref. 14, Proposition 3. 1) it is easy to infer the existence of
a recovery sequence (1. ) for the functionals F. satisfying

lim fs(ﬂs) = fhom(ﬂ)7
with 4, = 1) on Q\Q Therefore, setting u, to be the restriction of %, to 2 we have

limsup FY(u.) < lmF (i) = Fron(@) = Flon @) + [ fuom(Vi)de
mao
Again, since the term fQ \Q Jhom(V1)dz can be chosen arbitrarily small, we deduce the
I'-lim sup inequality for the functionals F. m|

Before investigating the convergence of the minimum problems associated to F Y,
we recall that for any u € L1(€2) the value F ! (u) (as well as F.(u)) is not affected by
that of uin the sets Q\ 2.. Due to this fact, a real compactness result for sequences of
minimizers cannot hold unless K is negligible. Hence, in the general case, the next
theorem can be thought as a selection principle of compact minimizing sequences in
L1(Q). We recall also that, since the energy functionals decrease by truncations, we
can always assume that the minimizers u, satisfy [u.||;~) < |¥[|L<(q)-

Theorem 6.2. For any >0 let u. € L'(.) be a minimizer for F! with
<) < [¥llp~@). Then there exists a family (w.) C L'(Q) which is compact in
LY(Q) and such that w, = u, in ), for anye > 0 (in particularw are minimizers for

P
F ). Moreover, any cluster point u of w. is a minimizer for F| .

Proof. We can apply Theorem 4.2, obtaining the desired sequence (w,) C L().
The fact that any cluster point u of w, is a minimizer for F ﬁ’om is a direct consequence

of the I'-convergence result given in Theorem 6.1 (see Ref. 25, Theorem 7.4). O

7. Further Results

In the present section we extend the asymptotic analysis performed in Secs. 5 and 6
for the Mumford—Shah energy in periodically perforated domains to more general
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free-discontinuity energies. We limit ourselves to state the generalizations of Theo-
rems 5.1, 6.1, 6.2, being the proofs analogous and only technically more demanding
(e.g. in the coercive case see Ref. 14, Sec. 8).

In the following we keep the notation fixed in Secs. 5 and 6. Furthermore, let
p € (1,400) and consider f:RY x RY — [0,+00), g: RY x SN — [0, +0) two
Borel functions. We suppose that fsatisfies

(f1) f(-,€) is 1-periodic for every £ € RY,
(f2) there exist two constants ¢, ¢y > 0 such that for every (z,¢) € RV x RY

Cl‘ﬂp < f(xag) < CQ(1 + ‘ﬂp)’
and that g satisfies

g(+,v) is 1-periodic for every v € SN-1,
g(x, —v) = g(z,v) for every (z,v) € RN x SN-1,
(g3) there exist two constants cs, ¢, > 0 such that for every (z,v) € RY x SN-1

ez < g(z,v) < ¢
Then we introduce the family of functionals G¥ : LP(2) — [0, +00] defined by
i z N-1 »
/ng(s’vu)dij/s,;afg(E’V“) dHN-1 e SBVP(Q),

+o0 otherwise in L?(£2).

GY(u) =

We are now in a position to extend the results of Theorems 5.1, 6.1, 6.2 to the family
(GY).

Theorem 7.1. The family (gZ’) T'-converges to some functional gfjom with respect to
the LP(Q) topology. Moreover, the functional Gy restricted to SBVP(Q) is given by

hom
ﬁ)om(u) = / fhom(vu) dx +/S ghom(’/u) drHN_lv
Q .

where the bulk energy density fiom : RN — [0,+00) is the convex function given by

Jhom(€) = lim inf {/Q\K f(E’VU)‘Ff)d:IJ tw € W;‘p(Q\KE)}, (7.1)

e—0+ 15

and the surface energy density gnom : SV ~! — [0,+00) is the BV-elliptic function

given by
ghom(y) = Eli%%r inf {/S

y

xT

“\Keg(gv%> dHN1: w e P(QV\K,)

w = 11, on a neighborhood of BQ”}.

Moreover, if u. are minimizers for GY satisfying llucllp=) < 1¥llL~(q), then there
exists a family (w.) C LP(Q) which is compact in LP(Q)) and such that w. = u, in S,



2098 M. Focardi, M. S. Gelli € M. Ponsiglione

for any e > 0 (in particular w. are minimizers for g?) Any cluster point u of w, is a
minimizer for G| .

Remark 7.1. In case f(x,-) is convex for all z € R formula (7.1) can be specialized
(see Ref. 13, Remark 19.2), and reduces to the cell minimization formula

Shom (§) = inf{ fle,Vw+§dz : we W;p(Q\K)}

Q\K

Remark 7.2. Let us point out that the analogue of Proposition 5.2 to prove
Theorem 7.1 needs a different argument. Indeed in this case the I'-cluster points G¥ of
(g;’) are not decreasing by truncations in general.

Nevertheless, the growth conditions (f2) and (g3) and a well known argument
enable us to perform truncations of families of functions in such a way that the g;_?'
energies of the truncations are controlled in terms of the original energies plus an
error term which can be made arbitrarily small (see Ref. 14, Lemma 3.5). This
property provides the continuity of the relaxation in L' of G¥ along truncations.
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