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SUMMARY. Within the setting of linear elastodynamics of simple bodies, we prove that the discrete
action functional obtained by following the scheme of asynchronous variational integrators con-
verges in time. The convergence in space is assured by standard arguments when the finite element
mesh is progressively refined.

1 THE MAIN RESULT
A simple elastic body is placed in a regular region B of the ambient space. The differentiable

map (x, t) 7−→ u := u (x, t) ∈ Rn, n = 1, 2, 3, indicate the standard displacement field in the
point x ∈ B and in the instant t ∈ [t0, tf ]. The map (x, t) 7−→ ε := sym∇u(x, t) associates
the infinitesimal deformation tensor ε to each point at a given instant. In linear elastic constitutive
setting and infinitesimal deformation regime, the dynamics of a simple body is governed by the
action functional

A (B, [t0, tf ] ; u) :=
∫ tf

t0

(∫
B

1
2
ρ |u̇|2 dx− V (B, u, t)

)
dt (1.1)

where ρ is the density of mass and

V (B, u, t) :=
∫
B

1
2

(Cε) · ε dx−
∫
B

b · u dx−
∫

∂Bt

t · u dH2 (1.2)

the potential, with C the standard elastic constitutive tensor, b and t bulk and surface conservative
forces respectively, the latter applied over a part ∂Bt of the boundary ∂B. The fields x 7−→ b (x)
and x 7−→ t (x) belong to L2

(
B, R3

)
and L2

(
∂B, R3

)
, respectively. Initial conditions are given by

smooth space fields (x, t0) 7−→ u0 (x, t0) and (x, t0) 7−→ u̇0 (x, t0).
Approximate solutions to some boundary value problem are obtained by finite-element proce-

dures. One selects first a suitable tessellation T of B of finite elements and, for each element K of
it, a discrete time set

ΘK =
{

t0 = t1K < . . . < tNK−1
K < tNK

K = tf

}
.

Θ := ∪K∈T ΘK is the entire time set for [t0, tf ]. We say that Θ has time size h when the difference
between two arbitrary subsequent instants in Θ is lesser or equal to h. When appropriate, we write
then Θh to underline the time size. As a measure of asynchronicity of Θ, we consider the ratio MΘ

between the time size and the minimum of the differences between subsequent instants in Θ.
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Asynchronous variational integrators (AVI) are constructed by means of the direct discretization
of the action both in space and time. The sole space discretization leads first to an actionAT defined
by

AT ([t0, tf ] ; u) :=
∑
K∈T

∫ tf

t0

A (K;uK (t)) dt, (1.3)

where, for each K ∈ T ,

A (K;uK (t)) :=
∑
a∈K

mK,a

2
|u̇a (t)|2 − VK (uK (t)) ,

with mK,a the nodal mass associated with the node a in K endowed with velocity u̇a (t) and

VK (uK (t)) :=
∫

K

1
2

(C∇uK (x, t)) · ∇uK (x, t) dx

−
∫

K

b · uK (x, t) dx−
∫

∂K∩∂Bt

t · uK (x, t) dHn−1,

with uK (x, t) the restriction of u (x, t) to K. When we select also a time discretization, a discrete
action sum

AT ,Θ (u) :=
∑
K∈T

∑
{j|[tj

K ,tj+1
K )∈I}

Aj (K;uK) (1.4)

arises, uK indicates the nodal displacements in the element K.
The scheme has been developed in [8], [9], [12] and [13] (see previous results in [2] and [4]).

Since one may choose time discretization in an element independently of the time steps in the neigh-
boring fellows, in the scheme above one may select time sequences in a way able to assure conser-
vation of local energy and momenta exactly.

The analysis of the convergence of variational integrators has been investigated in [14] with
reference to the elementary (zero-dimensional) oscillator. Assumptions of technical nature have
been removed in [10]. With this note we enlarge the stage and adapt the technique in [14] and [10]
to analyze the convergence of variational integrators in linear elastodynamics of a three-dimensional
body. We analyze the relation between AT and AT ,Θh

as h → 0. Our main result is the theorem
below.

Theorem 1 (Convergence in time [6]) Let Θh be the entire time set for [t0, tf ] with time size h. Let
also uh (t0) and u̇h (t0) be initial conditions satisfying

sup
h

(MΘh
+ |uh (t0)|+ |u̇h (t0)|) < +∞,

with uh (t0) → u0 (t0) and u̇h (t0) → u̇0 (t0) as h → 0 in each node of the spatial discretization.
Then any sequence (uh) of stationary points of the discrete action AT ,Θh

is pre-compact in the
weak−∗W 1,∞ (

(t0, tf ) , RN
)

topology and all its cluster points are stationary points for the action
AT .

In the statement above N is the total number of nodal degrees of freedom in the tessellation T .
Theorem 1 can be extended to the linear elastodynamics of complex bodies, provided that the

manifold of substructural shapes is embedded isometrically in a linear space (the paradigmatic case
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of quasicrystals is treated in [7]; for quasicrystals the standard Cauchy balance is augmented by a
balance of substructural actions of parabolic type arising from a d’Alembert-Lagrange type varia-
tional principle).

The results contained in this note summarize those of the homonymous paper [6] to which we
refer for the full proofs and all details.

2 LINEAR ELASTODYNAMICS OF SIMPLE BODIES: AN ESSENTIAL SUMMARY
Our results hold in Rn. However, for the sake of physical concreteness we restrict the develop-

ments below to the three-dimensional ambient space R3 in which the region occupied by a body is
always denoted by B, and is a bounded domain with boundary ∂B of finite two-dimensional mea-
sure, a boundary where the outward unit normal n is defined to within a finite number of corners
and/or edges. On B the standard displacement field is defined by x 7−→ u := u(x) ∈ R3, x ∈ B,
and is assumed to be differentiable. The field x 7−→ u (x) + x is also one-to-one and orientation
preserving in the sense that det (∇u + I) > 0 at each x, with I the unit tensor. When |∇u| << 1,
the natural measure of infinitesimal deformations is given at each point by the value of the field
x 7−→ ε (x) := sym∇u (x) assigning at each point the strain ε.

In a time interval [t0, tf ], a standard motion is then (x, t) 7−→ u := u(x, t) ∈ Rn, x ∈ B,
t ∈ [t0, tf ], a field twice differentiable in time.

The (contact) action, power conjugated with the velocity u̇ := d
dtu (x, t) on any virtual smooth

surface in the body, oriented by the normal n, is the tension t which depends linearly on n through
Cauchy stress tensor σ, namely t = σn. A tensor field (x, t) 7−→ σ = σ (x, t) ∈ Hom

(
R3, R3

)
is

then defined over B and is assumed to be differentiable.
The invariance with respect to isometric changes in observers of the external power of bulk and

surface actions on any subset b of B with non-vanishing volume measure and the same regularity
of B allows one to get pointwise balances between bulk and contact actions. Moreover, the inertial
parts of the body forces are identified by making use of the balance between the rate of the kinetic
energy and the power of inertial forces. As a result one gets the standard balance equations

b + divσ = ρü, skwσ = 0, (2.1)

where ρ is the mass density. Natural boundary conditions are given by the prescription of the traction
t on a part ∂Bt of the boundary ∂B and of the displacement u on another part ∂Bu provided that
∂Bt ∩ ∂Bu = ∅ and ∂Bt ∪ ∂Bu = ∂B. Precisely, in this note it is assumed that u = 0 along ∂Bu.

When the material is homogeneous and displays a linear hyperelastic behavior, the standard
constitutive relation holds

σ = Cε, (2.2)

with C a constant fourth-rank tensor with minor and major symmetries. In particular it is assumed
that

C (ξ ⊗ η) · (ξ ⊗ η) > 0

for any pair of vectors ξ and η. Such a condition implies that the balance equations above generate
a quasi-contractive semigroup in H1 × L2 (see, e.g., [1], [11]).

Under the mixed boundary conditions mentioned above and the constitutive structure (2.2), the
balance equation (2.1) can be also obtained by imposing that the first variation of the action func-
tional (1.1) vanishes.
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3 DISCRETIZATION OF THE ACTION FUNCTIONAL
As anticipated above, a way to obtain algorithms preserving the symplectic structure of the lin-

ear elastodynamics of simple bodies consists in constructing a direct discretization of the action
functional (1.1) in space and time and attributing different discrete time sequences to each spatial
finite element. Discretization in space is obtained by means of standard finite elements given by
a tessellation T of B, a simple triangulation, for example, chosen to be consistent with the parti-
tion of the boundary ∂B into ∂Bt and ∂Bu (see, e.g., [3]). A triangulation is adopted here for the
sake of simplicity. For this reason we consider B with polyhedral shape. For each K ∈ T a fi-
nite number of points is selected, they are integration nodes. The generic node is indicated by a.
Here we choose as nodes the vertexes of the elements of the triangulation. We consider then the
space PA (T ) of linear polynomials on each K ∈ T and are interested in a vector subspace VT of
PA (T ) ⊗ H1

(
(t0, tf ) , R3

)
containing all displacement mappings satisfying u |x∈∂Bu = 0. Any

u ∈ VT is then of the form
u (x, t) =

∑
a∈T

Na (x) ua (t) . (3.1)

When restricted to a generic finite element K, the map u (x, t) in (3.1) is indicated by uK (x, t). For
each finite element K, Na (x) is the nodal shape function corresponding to the node a and ua (t) is
the value of the displacement at the generic node a. The vector of displacements of all nodes in the
generic element K is indicated by uK (t). Of course ua (t) = 0 if a ∈ T ∩ ∂Bu. As usual, shape
functions are selected in a way that they form an orthonormal family in L2 (B).

With a slight abuse of notation, we denote by u (t) a vector in RN , with N the number of degrees
of freedom of all nodal placements at time t. Precisely, N = 3Nn, with Nn the total number of nodes
in T .

It is possible to check that there exists a constant c such that

sup
B
|∇u (·, t)| ≤ c |u (t)| . (3.2)

Denote by E the class of open intervals I ⊆ (t0, tf ). The spatial semi-discretization AT :
H1 ((t0, tf ) , Rn)× E → [0,+∞] is then defined by

AT (u, I) :=
{
A (u, I) u ∈ VT
+∞ otherwise .

By means of a straightforward computation one gets (1.3) where, for each K ∈ T , we rewrite

A (K;uK (t)) :=
∑
a∈K

mK,a

2
|u̇a (t)|2 − VK (uK (t)) , (3.3)

and

VK (uK (t)) :=
∫

K

1
2

(C∇uK (x, t)) · ∇uK (x, t) dx

−
∫

K

b · uK (x, t) dx−
∫

∂K∩∂Bt

t · uK (x, t) dH2. (3.4)

Of course the expansion (3.1) of maps in VT allows one to consider AT as a functional over
H1

(
(t0, tf ) , RN

)
.
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We call stationary point for AT any map u ∈ H1
(
(t0, tf ) , RN

)
satisfying for any time interval

I ∈ E and any wa = ua + H1
0

(
I, R3

)
the weak balance∫

I

mau̇a (t) · ẇa (t) dt =
∫

I

∑
{K|a∈K}

(∫
K

1
2

(C∇uK (x, t))∇Na (x) dx

)
· wa (t) dt

−
∫

I

∑
{K|a∈K}

(∫
K

Na (x) b (x) dx +
∫

∂K∩∂Bt

Na (x) t (x) dH2

)
· wa (t) dt,

where ma :=
∑

{K|a∈K} mK,a.
Standard results about finite elements imply the theorem below (see [5]).

Theorem 2 Consider a family {Tm}m>0 of regular triangulations of B, with m > 0 the mesh
size of Tm. Let also um ∈ VTm be a stationary point for ATm . The sequence {um} converges in
H1

(
B × (t0, tf ) , R3

)
to a stationary point of A.

The discretization of the time interval follows the guidelines indicated in the first section. A
partition Θ := {ti}i=0,...,NΘ

of [t0, tf ] with tNΘ = tf is selected. Its size is h := maxi (ti+1 − ti).
Each K ∈ T is endowed with an elemental time set which is an ordered subset ΘK of Θ. By
relabeling the elements we write

ΘK =
{

t0 = t1K < ... < tNK−1
K < tNK

K = tf

}
.

We assume Θ = ∪K∈T ΘK and, for the sake of simplicity, we presume also that ΘK ∩ ΘK′ 6= ∅
for any K, K ′ ∈ T with K 6= K ′. The fact that each finite element can be endowed with a different
time set is the basic characteristic of asynchronous variational integrators as mentioned in Section
1: appropriate choices of elemental time sets allow one to prove conservation of energy in discrete
time (see [8]). For a node a in T , elemental time sets define also the relevant nodal time set Θa by

Θa := ∪{K: a∈K}ΘK =
{
t0 = t1a < ... < tNa−1

a < tNa
a = tf

}
,

where t denotes disjoint union. A measure of the asynchronicity of Θ is the ratio

MΘ =
maxK∈T

(
maxΘK

(
tj+1
K − tjK

))
minK∈T

(
minΘK

(
tj+1
K − tjK

)) . (3.5)

Amid possible choices, we assume that each node a ∈ T follows a linear trajectory within each time
interval with end points that are consecutive instants in Θa. Such a choice characterizes the class of
AVI we analyze here. Then we denote by YΘ the subspace of functions in L2

(
(t0, tf ) , RN

)
which

are continuous and with piecewise constant time rates in the intervals in Θa. Thus, for each u ∈ YΘ,
a ∈ T , tia ∈ Θa and t ∈

[
tia, ti+1

a

)
we have

u̇a (t) =
ua

(
ti+1
a

)
− ua

(
tia

)
ti+1
a − tia

.

Then, by following [8], the discrete action sums in time is defined for u ∈ YΘ by (1.4) where

Aj (K;uK) :=∑
a∈K

∑
{i|ti

a∈[tj
K ,tj+1

K )}

(
1
2
mK,a

(
ti+1
a − tia

) ∣∣u̇a

(
tia

)∣∣2 − (
tj+1
K − tjK

)
VK

(
uK

(
tj+1
K

)))
,
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with VK defined by (3.4). Such a choice gives rise to explicit integrators of central-difference type
and is only one of the possible schemes that can be used.

It is convenient to define all action sums on the same function space to avoid to link the function
space itself to the choice of Θ. For this reason we extend AT ,Θ to +∞ on Y \YΘ, where Y =
L2

(
(t0, tf ) , RN

)
is endowed with the usual metric.

The discrete variational principle
δAT ,Θ = 0,

with δ indicating the first variation, implies that for all a ∈ T \∂Bu and tia ∈ (t0, tf ] discrete Euler-
Lagrange equations have to be satisfied. They read

ma

(
u̇a

(
ti+1
a

)
− u̇a

(
tia

))
=

(
tj+1
K − tjK

) ∫
K

1
2

(C∇uK (x, t))∇Na (x) dx

−
(
tj+1
K − tjK

) (∫
K

Na (x) b (x) dx +
∫

∂K∩∂Bt

Na (x) t (x) dH2

)
, (3.6)

where K is the sole element in T for which tia ∈ ΘK and tia = tj+1
K .

Given initial conditions u (t0) and u̇ (t0), the discrete Euler-Lagrange equations (3.6) define
inductively a trajectory u piecewise affine in time, a trajectory which is a (discrete) stationary point
for AT ,Θ.

4 STRATEGY OF THE PROOF OF THEOREM 1
To prove the convergence of asynchronous variational integrators in linear elastodynamics, we

adapt here the strategy used in [14] and [10] for analyzing the convergence of variational integrators
for the zero-dimensional oscillator (a mass point connected to an elastic massless spring).

The essential structure of the proof is listed below.

1. L∞ estimates for the velocity of stationary points of discrete actions

As suggested in [10], L∞ estimates on the velocity of stationary points can be derived by
exploiting directly the discrete Euler-Lagrange equations and the growth conditions of the
potential energy density. Of course here stationarity does not mean independence of time.

Proposition 1 Given initial conditions u (t0) and u̇ (t0), there exists a constant k > 0 de-
pending on the initial conditions themselves and on the data of the problem such that, for
every entire time set Θ and u ∈ YΘ solution to the discrete Euler-Lagrange equations, it
satisfies the inequality

‖u̇‖L∞((t0,tf ),RN ) ≤ k exp (kMΘ) . (4.1)

2. Stationary points of discrete actions are minimizers in short time intervals

The next step consists in showing that stationary points of the discrete action sums are min-
imizers in short-time intervals. This minimality property is crucial to prove that the cluster
points of sequences of stationary points of discrete actions are stationary for the continuous
action via a Γ-convergence type argument.

Proposition 2 Given initial conditions u (t0), u̇ (t0), there exists a constant κ > 0, depending
only on the initial condition themselves and the data, such that for every entire time set Θ and
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u ∈ YΘ solution to the discrete Euler-Lagrange equations, u is a local minimizer of the
functional AT ,Θ (·, I), namely AT ,Θ (u, I) ≤ AT ,Θ (v, I) for any v ∈ u + H1

0

(
I, RN

)
,

provided that |I| ≤ κ.

3. Conclusion

Finally we analyze the convergence of such stationary points in the limit h → 0+, that is as
the time size of the discretization goes to zero.

To this aim we state two technical results. The first lemma is analogous to Lemma 4.3 in [14].

Lemma 1 Let Θh be entire time sets for [t0, tf ] with time size h. For any I ∈ E and u ∈
H1

(
I, R3

)
there exists uh ∈ H1

(
I, R3

)
∩ YΘh

such that uh → u strongly in H1
(
I, R3

)
.

Lemma 2 Given entire time sets Θh for [t0, tf ] indexed by the time size h and character-
ized by suph MΘh

< +∞, for every sequence uh ∈ YΘh
with |u̇h|2 weakly convergent in

L1
(
I, RN

)
, one gets

lim
h→0+

(AT (uh, I)−AT ,Θh
(uh, I)) = 0.

The sketch of the proof of Theorem 1 can be then presented.

Proof. Pre-compactness of (uh) in W 1,∞ (
(t0, tf ), RN

)
follows easily from Proposition 1

since the ratios MΘh
are bounded uniformly with respect to h by assumption. Denote by

u ∈ W 1,∞ (
(t0, tf ), RN

)
a cluster point of (uh). By Ascoli-Arzelà theorem we may suppose

uh → u uniformly on Ī , up to a subsequence not relabeled for convenience.

The proof that u is a stationary point forAT follows by showing that, for every I := (t1, t2) ∈
E with |I| ≤ κ, with κ the constant in Proposition 2, one gets

AT (u, I) ≤ AT (w, I) ,

for any w ∈ u + H1
0

(
I, RN

)
.

To this aim Lemma 1 provides a sequence (wh), with wh ∈ YΘh
, converging to w strongly in

H1
(
I, RN

)
. Then assuming wh − uh ∈ H1

0

(
I, RN

)
the use of Proposition 2 and Lemma 2

implies

AT (u, I) ≤ lim inf
h→0+

AT ,Θh
(uh, I) ≤ lim

h→0+
AT ,Θh

(wh, I) = AT (w, I).

Of course we have used the lower semicontinuity of AT (·, I) under weak−∗ convergence in
W 1,∞, and its continuity under strong H1 convergence.

To cover cases in which the boundary values are not matched on ∂I , we notice that it is
possible to perturb uh with ph ∈ W 1,∞ (

I, RN
)

such that ph is linear componentwise, ph →
0 strongly in W 1,∞ (

I, RN
)

as h → 0+, and uh = wh + ph on ∂I . The previous argument
then applies.
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