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Abstract. We prove quasi-monotonicity formulas for classical obstacle-type problems with ener-
gies being the sum of a quadratic form with Lipschitz coefficients, and a Hölder continuous linear
term. With the help of those formulas we are able to carry out the full analysis of the regularity of
free-boundary points following the approaches in [6, 21, 27].

1. Introduction

In this note we extend the regularity theory for the obstacle problem to the case of quadratic
energies with Lipschitz coefficients. The obstacle problem is a well-known topic in partial differential
equations and, in its classical formulation, consists in finding the equilibrium solution for a scalar
order parameter u constrained to lay above a given obstacle, u ≥ ψ – see, e.g., [13, 24] for several
applications in physics. The analytical interests in this kind of problems are mostly related to
the study of the properties of the free boundary, the boundary of the set where the equilibrium
configuration touches the obstacle. This subject has been developed over the last 40 years by the
works of many authors; it is not realistic to give here a complete account: we rather refer to the
textbooks [8, 13, 17, 23, 24] for a fairly vast bibliography and its historical developments.

Very recently many authors have drawn the attention on the issue of weakening the hypotheses
on the operators governing the obstacle-type problems, in order to enlarge the applicability of the
results and deepen the analytical techniques introduced in the study of such problems (cp. [10,
11, 12, 20, 25, 26]). The prototype result in obstacle-type problems is a stratification of the free
boundary ∂{u = ψ} in terms of the properties of the blowup limits.

In this note we complete this program for the case of an obstacle problem with a quadratic energy
having Lipschitz coefficients and suitable obstacle functions ψ (e.g., such that div(A∇ψ) ∈ C0,α in
the distributional sense), which can be reduced to the 0 obstacle case. We collect in the statement
below the main results of our analysis, in particular the contents of Theorems 4.12 and 4.14.

Theorem 1.1. Let Ω ⊂ Rn be smooth, bounded and open, A ∈ Lip(Ω,Rn×n) be symmetric and
uniformly elliptic, i.e. λ−1|x|2 ≤ 〈A(x)x, x〉 ≤ λ|x|2 for all x ∈ Rn, and f ∈ C0,α(Ω) for some
α ∈ (0, 1] and f ≥ c0 > 0. Let u be the solution of the obstacle problem

min E [v] :=

ˆ
Ω

(
〈A(x)∇v(x),∇v(x)〉+ 2f(x) v(x)

)
dx,

where the minimum is taken in

K :=
{
v ∈ H1(Ω) : v ≥ 0 Ln -a.e. on Ω, Tr(v) = g on ∂Ω

}
,

for g ∈ H1/2(∂Ω) a nonnegative function. Then, u is C1,γ
loc regular in Ω for every γ ∈ (0, 1), and

the free boundary decomposes as ∂{u = 0}∩Ω = Reg(u)∪Sing(u), where Reg(u)∩Sing(u) = ∅ and

(i) Reg(u) is relatively open in ∂{u = 0} and, for every point x0 ∈ Reg(u), there exist
r = r(x0) > 0 and β = β(x0) ∈ (0, 1) such that Reg(u) ∩Br(x0) is a C1,β submanifold of
dimension n− 1;
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(ii) Sing(u) = ∪n−1
k=0Sk, with Sk contained in the union of at most countably many submanifold

of dimension k and class C1.

The theorem above for the Dirichlet energy is the outcome of a long term program and of the
efforts of many authors. It has been proved first by Caffarelli [6] under more restrictive hypothesis on
f , namely f ∈ C1,α. The proof in [6] is based on a monotonicity formula introduced by Alt, Caffarelli
and Friedman [1] and on the regularity of harmonic functions in Lipschitz domains [2, 7, 16]. Since
then, different approaches have been introduced, most remarkably the variational one by Weiss
[27] and Monneau [21], who extended the techniques to deal with Hölder continuous linear terms f
and simplified the arguments for the analysis of the free boundary. These improvements allowed to
extend the results by Caffarelli to some other obstacle-type settings, such as the no-sign obstacle
problem [9] and the two-phases membrane problem [28] – see [23] for more detailed comments, and
[19] for a revisitation of such arguments in a geometric measure theory flavour.

The lack of regularity and homogeneity of the coefficients in our framework does not allow us to
exploit any simple freezing argument in a way to reduce the problem to the ones above for regular
operators. Indeed, in the proof of Theorem 1.1 we take advantages of the full strength of those
contributions, including the remarkable epiperimetric inequality established by Weiss [27]. We
prove quasi-monotonicity formulas analogous to those introduced by Weiss and Monneau for the
Laplace equation. To this aim, we exploit some intrinsic computations based on a generalization
of Rellich and Nečas’ identity due to Payne and Weinberger (which we first learned by Kukavica
[18]).

Our results leads to the stratification of the free boundary for more general obstacle problems
with quasi-linear operator with C1,1 regular solutions:

min

ˆ
Ω

(
F (|∇u|2) +G(x, u)

)
dx,

with F,G satisfying suitable assumptions, as, e.g., the ones considered in [21], which covers the
case of the area functional. In particular, we point out the recent contribution by Matevosyan and
Petrosyan [20], where they perform the analogous improvement of the ACF monotonicity formula
for more general operators. As a byproduct of their analysis, C1,1 regularity of solutions of a broad
class of obstacle problems follows and, combining these results with our analysis, the complete
stratification of the free boundary may be inferred for classical obstacle problems corresponding to
a subclass of the quasi-linear operators considered by these authors, with applications to certain
mean-field models for type II superconductors (cp., e.g., [12, 20]).

To conclude this introduction we describe briefly the contents of the paper: Section 2 is devoted
to settle the notations, fix the main assumptions and derive the first basic results on the problem.
Weiss’ and Monneau’s quasi-monotonicity formulas are then established in Section 3 (cp. with
Theorems 3.7 and 3.8, respectively). The latter are instrumental tools to study in Section 4 the
blow-up limits in free boundary points (cp. with Propositions 4.2, 4.5, 4.10 and 4.11). In turn, such
an analysis leads to the regularity results stated in Theorem 1.1 (cp. with Theorems4.12 and 4.14).

2. Preliminaries

Let Ω ⊂ Rn be a smooth, bounded and open set. Let A : Ω → Rn×n be a matrix-valued field
and f : Ω→ R be a function satisfying

(H1) A ∈ Lip(Ω,Rn×n);
(H2) A(x) = (aij(x))ni,j=1 is symmetric and coercive, i.e. aij = aji and, for some λ ≥ 1,

λ−1|x|2 ≤ 〈A(x)x, x〉 ≤ λ|x|2 for all x ∈ Rn;

(H3) f ∈ C0,α(Ω) for some α ∈ (0, 1] and f ≥ c0 > 0.
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Remark 2.1. For some of the results of the paper, a weaker condition on f would suffice (e.g.,
a continuous function with a modulus of continuity satisfying a certain Dini-type integrability
condition – cp. [22]). However, we do not pursue this issue here.

For all open subsets A of Ω and functions v ∈ H1(Ω), we consider the energy

E [v,A] :=

ˆ
A

(
〈A(x)∇v(x),∇v(x)〉+ 2f(x) v(x)

)
dx, (2.1)

and the related minimum problem infK E [·,Ω], where K is the weakly closed convex subset of H1(Ω)
given by

K :=
{
v ∈ H1(Ω) : v ≥ 0 Ln -a.e. on Ω, Tr v = g on ∂Ω

}
,

with g ∈ H1/2(∂Ω) a nonnegative function.
Existence and uniqueness for the above minimum problem follow straightforwardly from (H1)-

(H3). In fact, the energy E is coercive and strictly convex in K, which implies the lower semiconti-
nuity for the weak topology in H1(Ω) and the uniqueness of the minimizer, denoted in the sequel
by u. Moreover, letting for any v ∈ H1(Ω),

G [v,Ω] :=

ˆ
Ω

(
〈A(x)∇v(x),∇v(x)〉+ 2f(x) v+(x)

)
dx, (2.2)

we easily infer the existence of a unique minimizer for G on H1(Ω) with boundary trace equal to

g ∈ H1/2(∂Ω) and satisfying

min
K

E [·,Ω] = min
g+H1

0 (Ω)
G [·,Ω].

As in the classical case, the minimizer u satisfies a PDE both in a distributional sense and almost
everywhere in Ω, as pointed out in the next proposition.

Proposition 2.2. Let u be the minimizer of E in K. Then,

div (A(x)∇u(x)) = f(x)χ{u>0}(x) a.e. in Ω and in D′(Ω). (2.3)

Proof. Let ϕ ∈ H1
0 ∩ C0(Ω) and ε > 0, and consider u+ εϕ as a competitor for G . Then,

0 ≤ε−1
(
G [u+ εϕ,Ω]− G [u,Ω]

)
=

ˆ
Ω

(
ε〈A∇ϕ,∇ϕ〉+ 2〈A∇u,∇ϕ〉

)
dx+ 2 ε−1

ˆ
Ω
f
(
(u+ εϕ)+ − u

)
dx, (2.4)

where in the last identity we have used the positivity of u. Expanding the computation, we getˆ
Ω
f
(
(u+ εϕ)+ − u

)
dx = ε

ˆ
{u+εϕ≥0}

f ϕ dx−
ˆ
{u+εϕ<0}

f u dx. (2.5)

We note that

0 ≤
ˆ
{u+εϕ<0}

f u dx ≤ −ε
ˆ
{u+εϕ<0}

f ϕ dx = o(ε).

Moreover, setting Aϕ := {u = 0} ∩ {ϕ ≥ 0}, it is easy to show that χ{u+εϕ≥0} → χAϕ∪{u>0} in L1.
Then, passing into the limit in (2.4), by (2.5) and the dominated convergence theorem, we deduce
that ˆ

Ω
〈A∇u,∇ϕ〉 dx+

ˆ
Ω
ϕf χ{u>0}∪Aϕ dx ≥ 0. (2.6)

Set now

T (ϕ) :=

ˆ
Ω
〈A∇u,∇ϕ〉 dx+

ˆ
Ω
ϕf χ{u>0} dx.
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By applying (2.6) with ±ϕ, we deduce

−
ˆ
Aϕ

ϕf dx ≤ T (ϕ) ≤ −
ˆ
{u=0}∩{ϕ≤0}

ϕf dx. (2.7)

In particular, by a density argument, we deduce that

|T (ϕ)| ≤ C ‖ϕ‖L∞(Ω) for every ϕ ∈ C0
0 (Ω).

This, in turn, implies that the distribution T is a (nonpositive) Borel measure which, in view of
(2.7), is dominated by an absolutely continuous measure with respect to the Lebesgue measure, so
that T = ζ dx for some density ζ ∈ L1

loc(Ω). Moreover, again by (2.7), we deduce that ζ = 0 Ln
a.e. on {u > 0}; and, since ∇u = 0 Ln a.e. on the set {u = 0}, by the very definition of T we also
get ζ = 0 Ln a.e. in Ω. Clearly, this shows (2.3). �

The regularity theory for uniformly elliptic equations with Lipschitz coefficients (cp. [14, Chap-

ter III, Theorem 3.5]) and Sobolev embeddings yield that u ∈ W 2,p
loc (Ω) for every p ∈ [1,∞), and

hence u ∈ C1,γ
loc (Ω) for every γ ∈ (0, 1). Note that, contrary to the usual obstacle-type problems, in

general u fails to be C1,1
loc , because of the lack of regularity of the coefficients A (see [15, Exercise 4.9]

for a related counterexample). Despite this, the sign condition on u guarantees C1,1 regularity on
the set {u = 0} (cp. with Proposition 3.2 below).

Finally, we fix the notation for the coincidence set, the non-coincidence set and the free boundary :

Λu := {u = 0}, Nu := {u > 0} and Γu := ∂Λu ∩ Ω.

3. Weiss’ and Monneau’s quasi-monotonicity formulas

In this section we show that the monotonicity formulas established by Weiss [27] and Monneau
[21] in the standard case of the Laplace operator, i.e. A ≡ In, hold in an approximate way in the
present setting.

3.1. Notation and preliminary results. The first step towards the monotonicity formulas is
to fix appropriate systems of coordinates with respect to which the formulas will be written. Let
x0 ∈ Γu be any point of the free boundary, then the affine change of variables

x 7→ x0 + f−1/2(x0)A1/2(x0)x =: x0 + L(x0)x

leads to
E [u,Ω] = f1−n

2 (x0) det(A1/2(x0)) EL(x0)[uL(x0),ΩL(x0)], (3.1)

where, for all open subset A of ΩL(x0) := L(x0) (Ω− x0), we set

EL(x0)[v,A] :=

ˆ
A

(
〈Cx0∇v,∇v〉+ 2

fL(x0)

f(x0)
v

)
dx, (3.2)

with

uL(x0)(x) := u
(
x0 + L(x0)x

)
, (3.3)

fL(x0)(x) := f
(
x0 + L(x0)x

)
, (3.4)

Cx0(x) := A−1/2(x0)A(x0 + L(x0)x)A−1/2(x0). (3.5)

Note that fL(x0)(0) = f(x0) and Cx0(0) = In. Moreover, the free boundary is transformed under
this map into

ΓuL(x0)
= L(x0)(Γu − x0),

and the energy E in (2.1) is minimized by u if and only if EL(x0) in (3.2) is minimized by the
function uL(x0) in (3.3).
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Therefore, for a fixed base point x0 ∈ Γu, we change the coordinates system in such a way that
(with a slight abuse of notation we do not rename the various quantities) we reduce to

x0 = 0 ∈ Γu, A(0) = In and f(0) = 1. (3.6)

This convention shall be adopted throughout this section to simplify the ensuing calculations. Note
that with this convention at hand 0 ∈ Ω. In this new system of coordinates we define

ν(x) :=
x

|x|
for x 6= 0 ,

and

µ(x) := 〈A(x) ν(x), ν(x)〉 for x 6= 0, µ(0) := 1. (3.7)

Note that µ ∈ C0(Ω) thanks to (H1) and (3.6). Actually, µ is Lipschitz continuous.

Lemma 3.1. If A satisfies (H1)-(H2) and (3.6), then µ ∈ C0,1(Ω), and

|µ(x)− µ(y)| ≤ C ‖A‖W 1,∞ |x− y| for all x, y ∈ Ω, (3.8)

where C > 0 is a dimensional constant C > 0, and

λ−1 ≤ µ(x) ≤ λ for all x ∈ Rn. (3.9)

Proof. Note that in case y = 0 we have

µ(x)− µ(0) = 〈(A(x)− In)
x

|x|
,
x

|x|
〉,

so that estimate (3.8) follows directly from (H1).
Then let x, y 6= 0 and set z = |y| x|x| . Then, |z| = |y| and by triangle inequality

|µ(x)− µ(y)| ≤ |µ(x)− µ(z)|+ |µ(z)− µ(y)| ≤ |A(x)− A(z)|+ |µ(z)− µ(y)|
≤ ‖A‖W 1,∞ ||x| − |y||+ |µ(z)− µ(y)|.

We need only to estimate the last term. Set for simplicity |z| = |y| = r, and use again the triangle
inequality

|µ(z)− µ(y)| ≤ |〈(A(z)− A(y))
z

r
,
z

r
〉|+ |〈A(y)

z

r
,
z

r
〉 − 〈A(y)

y

r
,
y

r
〉|.

The first term is easily estimated thanks to (H1),

|〈(A(z)− A(y))
z

r
,
z

r
〉| ≤ ‖A‖W 1,∞ |z − y|. (3.10)

For the second term we use equality A(0) = In (see (3.6)) and |z| = |y| = r to rewrite it as follows:

〈A(y)
z

r
,
z

r
〉 − 〈A(y)

y

r
,
y

r
〉 = 〈A(y)

z + y

r
,
z − y
r
〉 = 〈(A(y)− A(0))

z + y

r
,
z − y
r
〉,

which in turn implies

|〈A(y)
z

r
,
z

r
〉 − 〈A(y)

y

r
,
y

r
〉| ≤ 2‖A‖W 1,∞ |z − y|. (3.11)

Since |z− y| ≤ |z− x|+ |x− y| ≤ 2|x− y|, inequalities (3.10) and (3.11) yield (3.8). Estimate (3.9)
follows easily from (H2). �

Next we introduce the following notation for the rescaled functions and the rescaled energies:

ur(x) :=
u(rx)

r2
, (3.12)

E (r) := E [u,Br] =

ˆ
Br

(〈A(x)∇u(x),∇u(x)〉+ 2f u) dx
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= rn+2

ˆ
B1

(〈A(rx)∇ur(x),∇ur(x)〉+ 2f(rx)ur(x)) dx, (3.13)

H (r) :=

ˆ
∂Br

µu2dHn−1 = rn+3

ˆ
∂B1

µ(rx)u2
r(x)dHn−1, (3.14)

and

Φ(r) := r−n−2E (r)− 2 r−n−3H (r). (3.15)

Although the minimizer u is not in general globally C1,1
loc , the rescaled functions ur satisfy uniform

W 2,p
loc estimates thanks to Harnack inequality.

Proposition 3.2. Let u be the solution to the obstacle problem (2.1), and assume (3.6) holds.
Then, for every p ∈ [1,∞) and R > 0, there exists a constant C = C(p,R) > 0 such that, for every
r ∈ (0, 1

2Rdist(0, ∂Ω)),

‖ur‖W 2,p(BR) ≤ C. (3.16)

In particular, the functions ur are equibounded in C1,γ
loc (Rn) for every γ ∈ (0, 1).

Proof. By Proposition 2.2 and (3.12), we have that div(A(rx)∇ur(x)) = f(rx)χ{ur>0}(x) in the
weak sense. Since u is non-negative, we can apply the Harnack inequality (cp. [15, Theorems 8.17
and 8.18]) to infer that, for a positive constant C = C(n, λ),

‖ur‖L∞(B2R) ≤ C ‖f‖L∞(B2R).

Let now w be the harmonic function with w|∂B2R
= ur|∂B2R

, and

gr(x) := f(rx)χ{ur>0}(x)− r∇A(rx)∇w(x)− A(rx) : ∇2w(x),

where : stands for the scalar product between n× n matrices. As ‖gr‖L∞(BR) ≤ C uniformly in r,
and

div(A(rx)∇(ur − w)(x)) = gr(x)

by elliptic regularity theory (cp. [14, Chapter III Theorem 3.5], [17, Chapter IV Theorem A.1]), we
deduce that

‖ur‖W 2,p(BR) ≤ ‖ur − w‖W 2,p(BR) + ‖w‖W 2,p(BR) ≤ C ‖gr‖L∞(B2R) + C ≤ C. �

Remark 3.3. We recall for later reference the following indentities inferred from the definitions in
(3.13), (3.14) and Propositon 3.2:

E (r) =

ˆ
Br

(
|∇u|2 + 2u

)
+O(rn+2+α), H (r) =

ˆ
∂Br

u2dHn−1 +O(rn+4),

ˆ
∂Br

(
〈A∇u,∇u〉+ 2 f u

)
dHn−1 =

ˆ
∂Br

(
|∇u|2 + 2u

)
dHn−1 +O(rn+1+α). (3.17)

Moreover, we have from (3.16) that

E (r) = O(rn+2) and H (r) = O(rn+3), (3.18)

and, since u(0) = 0 and ∇u(0) = 0,

‖u‖L∞(Br) ≤ C r
2 and ‖∇u‖L∞(Br,Rn) ≤ C r. (3.19)

Note that the constant C in (3.19) depends only on the constant in (3.16) and, therefore, is uniformly
bounded for points x0 ∈ Γu ∩K, for any compact K ⊂ Ω.
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3.2. Derivatives of E and H . We provide next some estimates for the derivatives of E and H .
To this aim, we have benefited of some insights developed in [18], concerning Payne-Weinberger’s
generalization of Rellich-Nečas’ identity. The symbol : below denotes the scalar product in the
space of third order tensors.

Lemma 3.4. Let F ∈W 1,∞(Br,Rn). Then, for every w ∈W 2,p(Ω), p ∈ [ 2n
n+1 ,∞), it holds

ˆ
∂Br

(
〈A∇w,∇w〉〈F, ν〉 − 2〈A ν,∇w〉〈F,∇w〉

)
dHn−1

=

ˆ
Br

(
〈A∇w,∇w〉divF− 2〈F,∇w〉div(A∇w)

)
dx

+

ˆ
Br

(
∇A : F⊗∇w ⊗∇w − 2〈A∇w,∇TF∇w〉

)
dx. (3.20)

Proof. The proof is a direct application of the Divergence theorem and the expansion of

div
(
〈A∇w,∇w〉F− 2 〈F,∇w〉A∇w

)
. �

In particular, we can compute the derivative of the energy E on balls as follows.

Proposition 3.5. There exists a non negative constant C1 depending on λ, and on the Lipschitz
constant of A, such that, for L1 a.e. r ∈ (0,dist(0, ∂Ω))),

E ′(r) = 2

ˆ
∂Br

µ−1〈A ν,∇u〉2dHn−1 +
1

r

ˆ
Br

〈A∇u,∇u〉 div
(
µ−1Ax

)
dx− 2

r

ˆ
Br

f 〈µ−1Ax,∇u〉 dx

− 2

r

ˆ
Br

〈A∇u,∇T
(
µ−1Ax

)
∇u〉 dx+ 2

ˆ
∂Br

f u dHn−1 + ε(r), (3.21)

with |ε(r)| ≤ C1 E (r).

Proof. Consider the vector field

F(x) :=
A(x)x

rµ(x)
.

F is admissible for Lemma 3.4 because of (H1) and Lemma 3.1. Simple computations shows that

〈F, ν〉 = 1 on ∂Br and 〈F,∇u〉 = µ−1〈A ν,∇u〉 on ∂Br.

By the coarea formula, for L1 a.e. r ∈ (0,dist(0, ∂Ω)), it holds

E ′(r) =

ˆ
∂Br

(〈A∇u(x),∇u(x)〉+ 2f u) dHn−1.

Lemma 3.4, with the above choice of F and (2.3), yields

E ′(r) = 2

ˆ
∂Br

µ−1〈A ν,∇u〉2dHn−1 +
1

r

ˆ
Br

〈A∇u,∇u〉div
(
µ−1Ax

)
dx− 2

r

ˆ
Br

f 〈µ−1Ax,∇u〉 dx

+
1

r

ˆ
Br

µ−1(∇A : Ax⊗∇u⊗∇u) dx− 2

r

ˆ
Br

〈A∇u,∇T
(
µ−1Ax

)
∇u〉 dx+ 2

ˆ
∂Br

f u dHn−1,

and the thesis follows thanks to the Lipschitz continuity of A and (3.9). �

Let us now deal with the derivative of H .
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Proposition 3.6. There exists a non negative constant C2 depending on λ and on the Lipschitz
constant of A, such that, for L1 a.e. r ∈ (0,dist(0, ∂Ω)),∣∣∣∣H ′(r)− n− 1

r
H (r)− 2

ˆ
∂Br

u〈A ν,∇u〉 dHn−1

∣∣∣∣ ≤ C2H (r). (3.22)

Proof. First note that the divergence theorem and the very definition of µ give that

H (r) =
1

r

ˆ
Br

div
(
u2(x)A(x)x

)
dx,

in turn implying for L1 a.e. r ∈ (0,dist(0, ∂Ω))

H ′(r) = −1

r
H (r) +

1

r

ˆ
∂Br

div
(
u2(x)A(x)x

)
dHn−1

= −1

r
H (r) +

1

r

ˆ
∂Br

 n∑
i,j=1

∂

∂xi
aij(x)xj + TrA

u2dHn−1 + 2

ˆ
∂Br

u〈A ν,∇u〉 dHn−1.

By (H1) and Lemma 3.1 we get

1

r

∣∣∣∣ˆ
∂Br

TrAu2dHn−1 − nH (r)

∣∣∣∣ ≤ C ˆ
∂Br

u2dHn−1 ≤ CH (r),

and

1

r

∣∣∣∣∣∣
ˆ
∂Br

n∑
i,j=1

∂

∂xi
aij(x)xju

2(x)dHn−1

∣∣∣∣∣∣ ≤ C
ˆ
∂Br

u2dHn−1 ≤ CH (r),

from which the conclusion follows. �

3.3. Weiss’ monotonicity. We begin with a Weiss’ type quasi-monotonicity formula, that estab-
lishes the 2-homogeneity of blow-ups of u in free boundary points.

Theorem 3.7. Assume that (H1)-(H3) and (3.6) are satisfied. There exist nonnegative constants
C3, C4 depending on λ and on the Lipschitz constants of A and u, such that the function

r → eC3rΦ(r) + C4

ˆ r

0
eC3t tαdt

is non decreasing on
(
0, 1

2dist(0, ∂Ω) ∧ 1
)
.

More precisely, the following estimate holds true for L1-a.e. r in such an interval

d

dr

(
eC3rΦ(r) + C4

ˆ r

0
eC3t tα−1dt

)
≥ 2eC3r

rn+2

ˆ
∂Br

µ
(
〈µ−1A ν,∇u〉 − 2

u

r

)2
dHn−1. (3.23)

In particular, the limit Φ(0+) := lim
r↓0

Φ(r) exists finite.

Proof. By definition for L1-a.e. r ∈ (0,dist(0, ∂Ω)) we have

Φ′(r) =
E ′(r)

rn+2
− (n+ 2)

E (r)

rn+3
− 2

H ′(r)

rn+3
+ 2(n+ 3)

H (r)

rn+4
. (3.24)

First note that (3.21) in Proposition 3.5 yields

E ′(r)

rn+2
− (n+ 2)

E (r)

rn+3
≥ 2

rn+2

ˆ
∂Br

µ−1〈A ν,∇u〉2dHn−1 +
1

rn+3

ˆ
Br

〈A∇u,∇u〉 div
(
µ−1Ax

)
dx

− 2

rn+3

ˆ
Br

f〈µ−1Ax,∇u〉 dx− C1

rn+2
E (r)− 2

rn+3

ˆ
Br

〈A∇u,∇T
(
µ−1Ax

)
∇u〉 dx
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+
2

rn+2

ˆ
∂Br

f u dHn−1 − (n+ 2)

rn+3

ˆ
Br

〈A∇u,∇u〉 dx− 2(n+ 2)

rn+3

ˆ
Br

f u dx.

Then, integrating by part givesˆ
Br

〈A∇u,∇u〉 dx+

ˆ
Br

f u dx =

ˆ
∂Br

u〈A ν,∇u〉 dHn−1.

Thus, we deduce

E ′(r)

rn+2
− (n+ 2)

E (r)

rn+3
≥ −C1

E (r)

rn+2
+

2

rn+2

ˆ
∂Br

µ−1〈A ν,∇u〉2dHn−1

+
1

rn+3

ˆ
Br

(
〈A∇u,∇u〉 div

(
µ−1Ax

)
− 2〈A∇u,∇T

(
µ−1Ax

)
∇u〉 − (n− 2)〈A∇u,∇u〉

)
dx

− 2

rn+3

ˆ
Br

f〈µ−1Ax,∇u〉 dx+
2

rn+2

ˆ
∂Br

f u dHn−1

− 4

rn+3

ˆ
∂Br

u〈A ν,∇u〉 dHn−1 − 2n

rn+3

ˆ
Br

f u dx. (3.25)

Next we employ (3.22) in Proposition 3.6 to infer

− 2
H ′(r)

rn+3
+ 2(n+ 3)

H (r)

rn+4
≥ −2C2

H (r)

rn+3
+ 8

H (r)

rn+4
− 4

rn+3

ˆ
∂Br

u〈A ν,∇u〉 dHn−1. (3.26)

Hence, by taking into account (3.25) and (3.26), equation (3.24) becomes

Φ′(r) + (C1 ∨ C2)Φ(r) ≥ 2

rn+2

ˆ
∂Br

(
µ−1〈A ν,∇u〉2 + 4µ

u2

r2
− 4

u

r
〈A ν,∇u〉

)
dHn−1

+
1

rn+3

ˆ
Br

(
〈A∇u,∇u〉 div

(
µ−1Ax

)
− 2〈A∇u,∇T

(
µ−1Ax

)
∇u〉 − (n− 2)〈A∇u,∇u〉

)
dx

− 2

rn+3

(ˆ
Br

f
(
〈µ−1Ax,∇u〉+ nu

)
dx− r

ˆ
∂Br

f u dHn−1

)
=: R1 +R2 +R3. (3.27)

We estimate separately the Ri’s. To begin with, an easy computation shows that

R1 =
2

rn+2

ˆ
∂Br

µ
(
〈µ−1A ν,∇u〉 − 2

u

r

)2
dHn−1. (3.28)

Moreover, we can rewrite the second term as

R2 =
1

rn+3

ˆ
Br

(
〈A∇u,∇u〉 div

(
µ−1Ax− x

)
− 2〈A∇u,∇T

(
µ−1Ax− x

)
∇u〉

)
dx.

Then, by the Lipschitz continuity of A and that of µ in 0, we get∥∥∇ (µ−1A− In
)∥∥
L∞(Br,Rn×n)

≤ C.

In conclusion, we infer

|R2| ≤ C
E (r)

rn+2
. (3.29)

Finally, we use the identityˆ
Br

(〈x,∇u〉+ udivx) dx = r

ˆ
∂Br

u dHn−1,

that follows from the Divergence theorem, to rewrite the last term in (3.27) as
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R3 = −2f(0)

rn+3

ˆ
Br

〈µ−1Ax− x,∇u〉 dx

− 2

rn+3

(ˆ
Br

(f(x)− f(0))
(
〈µ−1Ax,∇u〉+ nu

)
dx− r

ˆ
∂Br

(f(x)− f(0))u dHn−1

)
.

Hence, by the inequalities in (3.19), the Lipschitz continuity of A and that of µ in 0, and the Hölder
continuity of f yield, for r ∈

(
0, 1

2dist(0, ∂Ω) ∧ 1
)
,

|R3| ≤ Crα−1. (3.30)

By collecting (3.28)-(3.30) we conclude

Φ′(r) + C3Φ(r) + C4r
α−1 ≥ 2

rn+2

ˆ
∂Br

µ
(
〈µ−1A ν,∇u〉 − 2

u

r

)2
dHn−1 (3.31)

for nonnegative constants C3 and C4. From this, the Weiss’ type monotonicity formula (3.23)
follows at once.

Note that the growth estimates in (3.19) and equalities (3.13) and (3.14) imply that Φ(r) is
bounded for r ∈

(
0, 1

2dist(0, ∂Ω) ∧ 1
)
, so that the existence and finiteness of Φ(0+) follows directly

from (3.23). �

3.4. Monneau’s monotonicity. Next we prove a Monneau’s type quasi-monotonicity formula
for singular free boundary points (cp. with [21]). We denote by v any positive 2-homogeneous
polynomial solving

4v = 1 on Rn. (3.32)

Let

Ψv(r) :=
1

rn+2

ˆ
Br

(
|∇v(x)|2 + 2 v

)
dx− 2

rn+3

ˆ
∂Br

v2dHn−1. (3.33)

The expression of Ψv is analogous to that of Φ with coefficients frozen in 0 (cp. with (3.15) and
recall that A(0) = In and f(0) = µ(0) = 1, by (3.6)). Moreover, since v is 2-homogeneous and
(3.32) holds, we also have

Ψv(r) ≡ Ψv(1) =

ˆ
B1

v dx. (3.34)

Theorem 3.8. Assume (H1)-(H3) and (3.6). Let u be the minimizer of E on K with 0 ∈ Sing(u),
and let v be as above. Then, there exists a nonegative constant C5 depending on λ and on the
Lipschitz constant of A, such that

r 7→
ˆ
∂B1

(ur − v)2dHn−1 + C5(r + rα)

is nondecreasing on
(
0, 1

2dist(0, ∂Ω) ∧ 1
)
. More precisely, L1-a.e. on such an interval

d

dr

(ˆ
∂B1

(ur − v)2dHn−1 + C5 r
α

)
≥ 2

r
(Φ(r)−Ψv(1)). (3.35)

Proof. Set wr := ur − v. By taking into account equality A(0) = In (cp. with (3.6)), the 2-
homogeneity of v and the Divergence theorem, we find

d

dr

ˆ
∂B1

w2
rdHn−1 =

2

r

ˆ
∂B1

wr(〈∇wr, x〉 − 2wr)dHn−1 =
2

r

ˆ
∂B1

wr(〈∇ur, x〉 − 2ur)dHn−1

=
2

r

ˆ
∂B1

wr(〈A(rx)∇ur, x〉 − 2ur)dHn−1 +
2

r

ˆ
∂B1

wr〈(A(0)− A(rx))∇ur, x〉 dHn−1
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≥ 2

r

ˆ
∂B1

wr(〈A(rx)∇ur, x〉 − 2ur)dHn−1 − 2‖∇ur‖L2(∂B1)‖wr‖L2(∂B1). (3.36)

In view of (3.19) the latter inequality implies

d

dr

ˆ
∂B1

w2
rdHn−1 ≥ 2

r

ˆ
∂B1

wr(〈A(rx)∇ur, x〉 − 2ur)dHn−1 − C. (3.37)

Next we use an integration by parts, the identity

div(A(rx)∇ur) = f(rx)χ{ur>0}(x) a.e. and in D′(Ω), (3.38)

(3.32) and the positivity of u and v to rewrite the first term on the right hand side above conveniently

ˆ
∂B1

wr(〈A(rx)∇ur, x〉 − 2ur)dHn−1

=

ˆ
B1

(〈A(rx)∇ur,∇wr〉+ wr div(A(rx)∇ur)) dx− 2

ˆ
∂B1

wr ur dHn−1

(3.38)
=

ˆ
B1

(〈A(rx)∇ur,∇ur〉+ f(rx)ur) dx

−
ˆ
B1

(
〈A(rx)∇ur,∇v〉+ v f(rx)χ{ur>0}

)
dx− 2

ˆ
∂B1

wr ur dHn−1

= Φ(r)−
ˆ
B1

f(rx)(ur + vχ{ur>0})dx−
ˆ
B1

〈A(rx)∇ur,∇v〉) dx

+ 2

ˆ
∂B1

(µ(rx)− µ(0))u2
rdHn−1 + 2

ˆ
∂B1

v ur dHn−1

(H1), (3.8)

≥ Φ(r)−
ˆ
B1

f(rx)(ur + v)dx−
ˆ
B1

〈∇ur,∇v〉 dx− r‖A‖W 1,∞‖∇ur‖L2(B1)‖∇v‖L2(B1)

− C‖A‖W 1,∞ r

ˆ
∂B1

u2
rdHn−1 + 2

ˆ
∂B1

v ur dHn−1

(3.18), (3.32), (3.34)
= Φ(r)−Ψv(1) +

ˆ
B1

(f(0)− f(rx))(ur + v)dx+

ˆ
∂B1

ur(2v − 〈∇v, x〉) dHn−1 − Cr

(H3′), v 2-hom

≥ Φ(r)−Ψv(1)− C rα. (3.39)

Thus, by collecting (3.37) and (3.39) we deduce

d

dr

ˆ
∂B1

w2
rdHn−1 ≥ 2

r
(Φ(r)−Ψv(1))− C rα−1. (3.40)

In conclusion, by (3.39) and (3.40), (3.36) rewrites as

d

dr

(ˆ
∂B1

w2
rdHn−1 + C5 r

α

)
≥ 2

r
(Φ(r)−Ψv(1)),

for some nonnegative constant C5. Inequality (3.35) is finally established. �

Remark 3.9. Alternatively, we could establish a slightly different monotonicity formula as follows:
If in (3.36) we estimate the term

‖∇ur‖L2(∂B1)‖wr‖L2(∂B1)
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by using Cauchy-Schwartz inequality rather than using the boundedness in C1 of (ur)r>0, we infer

d

dr

ˆ
∂B1

w2
rdHn−1 +

ˆ
∂B1

w2
rdHn−1 ≥ 2

r

ˆ
∂B1

wr(〈A(rx)∇ur, x〉 − 2ur)dHn−1 − C. (3.41)

Thus, by collecting (3.39) and (3.41) we deduce

e−r
d

dr

(
er
ˆ
∂B1

w2
rdHn−1

)
≥ 2

r
(Φ(r)−Ψv(1))− C(rα−1 + 1). (3.42)

Finally, from (3.40), (3.41) and (3.42) we infer that

e−r
d

dr

(
er
ˆ
∂B1

w2
rdHn−1 + ζ(r)

)
≥ 2

r
(Φ(r)−Ψv(1)),

where ζ ∈ C0,α([0,∞)) satisfies

ζ ′(r) = C5e
r
(
rα−1 + 1

)
on
(
0,

1

2
dist(0, ∂Ω) ∧ 1

)
,

for some nonnegative constant C5.

4. Regularity of the free boundary

Using the quasi-monotonicity formulas above, in this section we study the regularity of the
free boundary for the obstacle problem for E in (2.1). As discussed in the introduction, in view
also of recent results by Matevosyan and Petrosyan [20], this approach applies to various obstacle
problems with less regular quasi-linear operators of the type of certain mean-field models for type
II superconductors (cp, e.g., [12]).

4.1. Blow-ups. We shall investigate in what follows the existence and uniqueness of the blow-ups.
To this aim, we need to introduce new notation for the rescaled functions in any free boundary
point similarly to (3.12): for every point in the free boundary x0 ∈ Γu, set

ux0,r(x) :=
u(x0 + rx)

r2
. (4.1)

Remark 4.1. A simple corollary of Weiss’ quasi monotonicity is the precompactness of the family
(ux0,r)r in the topology of C1,γ

loc (Rn). Moreover, for base points x0 in a compact set of Ω, the

C1,γ
loc (Rn) norms and, thus, the constants in the various monotonicity formulas (3.23), (3.35) are

uniformly bounded. Indeed, as pointed out in the corresponding statements, they depend on the
distance of the point from the boundary and the Lipschitz constant of u.

We recall the notation introduced in Section 3:

L(x0) := f(x0)−1/2A1/2(x0),

uL(x0)(y) = u(x0 + L(x0)y),

Cx0(y) = A−1/2(x0)A(x0 + L(x0)y)A−1/2(x0),

and in addition we set

uL(x0),r(y) :=
u(x0 + rL(x0) y)

r2
,

µL(x0)(y) := 〈Cx0(y)ν(y), ν(y)〉 y 6= 0, µL(0) := 1,

ΦL(x0)(r) := EL(x0)[uL(x0),r, B1] +

ˆ
∂B1

µL(x0)(ry)u2
L(x0),r(y) dHn−1(y). (4.2)

In passing we note that λ−2 ≤ µL(y) ≤ λ2 for all y ∈ Rn.
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Proposition 4.2. Let x0 ∈ Γu and (ux0,r) be as in (4.1). Then, for every sequence rj ↓ 0 there

exists a subsequence (rjk)k∈N ⊂ (rj)j∈N such that (ux0,rjk
)k∈N converges in C1,γ

loc (Rn), for all γ ∈
(0, 1), to a function v(y) = w

(
L−1(x0)y

)
, where w is 2-homogeneous.

Proof. We drop the dependence on the base point x0 in the subscripts for the sake of convenience.
Apply to ΦL the quasi-monotonicity formula in Theorem 3.7 on (rjr, rjR) for r ∈ (0, R) and get

eC3rjRΦL(rjR)− eC3rjrΦL(rjr) + C4

ˆ rjR

rjr
eC3t tα−1dt

≥
ˆ rjR

rjr

2

tn+2
eC3t

ˆ
∂Bt

µL

(
〈µ−1

L C ν,∇uL〉 − 2
uL
t

)2
dHn−1 dt

=

ˆ R

r

2

sn+2
eC3rjs

ˆ
∂Bs

µL(rjy)

(
〈C(rjy) ν

µL(rjy)
,∇uL,rj 〉 − 2uL,rj

)2

dHn−1 ds. (4.3)

As noticed in Proposition 3.2 above, the functions uL,r enjoy uniform C1,γ
loc (Rn) estimates, γ ∈ (0, 1)

arbitrary. Therefore, any sequence (uL,rj )j∈N has a convergent subsequence in C1,γ
loc to some function

w, for all γ ∈ (0, 1). Thanks to inequality (4.3) and recalling that C(0) = In and µL(0) = 1, we infer
by the Lebesgue dominated convergence theorem that w is necessarily 2-homogeneous. Changing
the coordinates back, we conclude as desired. �

4.2. Quadratic growth. The following simple generalization of the usual quadratic detachment
property of the minimizer u from the free boundary holds true.

Lemma 4.3. There exists a dimensional constant θ > 0 such that, for every x0 ∈ Γu and r ∈
(0, dist(x0, ∂Ω)/2), it holds

sup
x∈∂Br(x0)

u(x) ≥ θ r2. (4.4)

Proof. First consider a point y0 ∈ Nu and r ∈ (0,dist(y0, ∂Ω)), and define the function

h(x) := u(x)− u(y0)− θ|x− y0|2,
where θ > 0 is a constant to be fixed properly. Note that h(y0) = 0 and that, for some positive
constant C depending only on Ω and ‖A‖W 1,∞ , we have

div(A∇h) = f − 2θ div(A(· − y0))
(H1) & (H3)

≥ c0 − C θ > 0,

as soon as θ > 0 is suitably chosen. Therefore, by the maximum principle (cp. [15]), we deduce
that sup∂(Br(y0)∩Nu) h ≥ 0. Since h|Br(y0)∩Γu < 0, it follows that ∂Br(y0) ∩Nu 6= ∅ and

sup
x∈∂Br(y0)

u(x) ≥ θ r2.

Since the radius does not depend on y0 and the supremum on ∂Br(y0) is continuous with respect
to y0, applying this reasoning to a sequence yk ∈ Nu converging to x0, we conclude (4.4). �

4.3. Classification of blow-ups. As a simple corollary of Proposition 4.2 and Lemma 4.3, we
infer that if w is a 2-homogeneous limit of a converging sequence of rescalings (ux0,rj )j∈N, in a free
boundary point x0 ∈ Γu, then 0 ∈ Γw, i.e. w 6≡ 0 in any neighborhood of 0. We show next some
other properties of such limits w. To this aim we recall first the results established in the classical
case.

A global solution to the obstacle problem is a positive function w ∈ C1,1
loc (Rn) solving (2.3) with

A ≡ In and f ≡ 1. The following theorem is due to Caffarelli [3, 6].
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Theorem 4.4. Every global solution w is convex. Moreover, if w is non-zero and homogeneous of
degree 2, then one of the following two cases occur:

(A) w(y) = 1
2

(
〈y, ν〉 ∨ 0

)2
for some ν ∈ Sn−1;

(B) w(y) = 〈B y, y〉 with B a symmetric, positive definite matrix satisfying Tr(B) = 1
2 .

Having this result at hand, a complete classification of the blow-up limits for the obstacle problem
for E follows as in the classical setting.

Proposition 4.5 (Classification of blow-ups). Every blow-up vx0 at a free boundary point x0 is of
the form vx0(y) = w(L−1(x0)y) with w a non-trivial, 2-homogeneous global solution.

Proof. We use the notation at the beginning of Section 4.1, dropping the dependence on x0 in the
subscripts. Denote by w the limit in the C1,γ

loc topology of (uL,rj )j∈N, for some rj ↓ 0; and consider

the energies defined on H1(B1) by

Fj(v) :=

ˆ
B1

(
〈C(rjy)∇v(y),∇v(y)〉+ 2

fL(rjy)

f(x0)
v(y)

)
dy,

if v ≥ 0 Ln a.e. on B1 and v = uL,rj on ∂B1, ∞ otherwise. By definition, the rescaled function
uL,rj itself is the minimizer of Fj . Recalling that C(0) = In and fL(0) = f(x0), it follows easily

that (Fj)j∈N Γ-converges with respect to the strong H1 topology to

F (v) :=

ˆ
B1

(
|∇v|2 + 2 v

)
dx,

if v ≥ 0 Ln-a.e. on B1 and v = w on ∂B1, ∞ otherwise on H1(B1). Therefore, according
to Proposition 4.2, we infer that w is a 2-homogeneous function minimizing F on B1. That
is, extending w by 2-homogeneity to Rn, w is a non-trivial, 2-homogeneous global solution. In
conclusion, as ux0,rj (L−1(x0)y) = uL,rj (y), we infer that ux0,rj → v = w(L−1(x0)y) in C1,γ

loc . �

The above proposition allows us to formulate a simple criterion to distinguish between regular
and singular free boundary points.

Definition 4.6. A point x0 ∈ Γu is a regular free boundary point, and we write x0 ∈ Reg(u),
if there exist a blow-up of u at x0 of type (A). Otherwise, we say that x0 is singular, and write
x0 ∈ Sing(u).

Simple calculations show that Ψw(1) = ϑ for every global solution of type (A) and Ψw(1) = 2ϑ
for every global solution of type (B), where Ψw is the energy defined in (3.33) and ϑ is a dimensional
constant. Therefore, by Weiss’ quasi monotonicity it follows that a point x0 ∈ Γu is regular if and
only if ΦL(x0)(0) = ϑ, or, equivalently, if and only if every blow-up at x0 is of type (A).

4.4. Uniqueness of blow-ups. The last remarks show that the blow-up limits at the free bound-
ary points are of a unique type: at a given point they are always either of type (A) or of type
(B). Nevertheless, this does not imply the uniqueness of the limiting profile independently of the
converging sequence rj ↓ 0. We show next that this is the case.

In the classical framework, the uniqueness of the blow-ups can be derived a posteriori from the
regularity properties of the free boundary established thanks to an argument by Caffarelli employing
cones of monotonicity. Those are, in turn, obtained via a PDE argument for the gradient of the
solution u. In our case, due to the lack of regularity of the matrix of the coefficients A, we need to
prove it a priori, following the approaches by Weiss and Monneau.



MONOTONICITY FORMULAS FOR LIPSCHITZ OBSTACLE PROBLEMS 15

For regular points, we need to introduce the following deep result by Weiss [27, Theorem 1]. For
ease of readability we recall the notation introduced in (3.33) for v any positive 2-homogeneous
polynomial:

Ψv(1) =

ˆ
B1

(
|∇v|2 + 2 v

)
dx− 2

ˆ
∂B1

v2dHn−1.

Theorem 4.7 (Weiss’ epiperimetric inequality). There exist dimensional constants δ, κ > 0 with
this property: for every 2-homogeneous function ϕ ∈ H1(B1) with ‖ϕ − w‖H1(B1) ≤ δ for some

global solution w of type (A), there exists ζ ∈ H1(B1) such that ζ|∂B1 = ϕ|∂B1 and

Ψζ(1)− ϑ ≤ (1− κ)
(
Ψϕ(1)− ϑ

)
. (4.5)

We now proceed with the proof of the uniqueness of the blow-ups at regular points. A preliminary
step in this direction is the following lemma.

Lemma 4.8. Let u be a solution of the obstacle problem with 0 ∈ Γu and assume that (3.6) holds.
If there exist radii 0 ≤ s0 < r0 < 1 such that

inf
w
‖ur|∂B1 − w‖H1(∂B1) ≤ δ for all s0 ≤ r ≤ r0, (4.6)

where the infimum is taken among all global solutions w of type (A) and δ > 0 is the constant in
Theorem 4.7, then for every s0 ≤ s ≤ t ≤ r0 we haveˆ

∂B1

|ut − us| dHn−1 ≤ C7 t
C6 , (4.7)

where C6, C7 > 0 are constants depending on the Lipschitz constants of A and u.

Proof. By means of Remark 3.3 we can compute the derivative of Φ(r) in the following way:

Φ′(r) =
E ′(r)

rn+2
− (n+ 2)

E (r)

rn+3
− 2

H ′(r)

rn+3
+ 2 (n+ 3)

H (r)

rn+4

(3.26), (3.18)

≥ 1

rn+2

ˆ
∂Br

(
〈A∇u,∇u〉+ 2 f u

)
− (n+ 2)

E (r)

rn+3
+ 8

H (r)

rn+4

− 4

rn+3

ˆ
∂Br

u 〈A ν,∇u〉 − C

(3.18)

≥ 1

rn+2

ˆ
∂Br

(
|∇u|2 + 2u

)
− n+ 2

r
Φ(r)− 2

rn+4
(n− 2)

ˆ
∂Br

u2dHn−1

− 4

rn+3

ˆ
∂Br

u 〈ν,∇u〉 − C rα−1

= −n+ 2

r
Φ(r) +

1

r

ˆ
∂B1

((
〈ν,∇ur〉 − 2ur

)2
+ |∂τur|2 + 2ur − 2nu2

r

)
dHn−1 − C rα−1,

where we denoted by ∂τur the tangential derivative of ur along ∂B1. Let wr be the 2-homogeneous
extension of ur|∂B1 , then a simple integration in polar coordinates givesˆ

∂B1

(
|∂τur|2 + 2ur − 2nu2

r

)
dHn−1 =

ˆ
∂B1

(
|∂τwr|2 + 2wr + 4w2

r − 2 (n+ 2)w2
r

)
dHn−1

= (n+ 2) Ψwr(1).

Therefore, we conclude that

Φ′(r) ≥ n+ 2

r

(
Ψwr(1)− Φ(r)

)
+

1

r

ˆ
∂B1

(
〈ν,∇ur〉 − 2ur

)2
dHn−1 − C rα−1. (4.8)
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By (4.6) we can apply the epiperimetric inequality (4.5) to wr, and find a function ζ ∈ H1(B1)
with ζ|∂B1 = ur|∂B1 such that

Ψζ(1)− ϑ ≤ (1− κ)
(
Ψwr(1)− ϑ

)
. (4.9)

Moreover, we can assume without loss of generality (otherwise we substitute ζ with ur itself) that
Ψζ(1) ≤ Ψur(1). Note that, by freezing the coefficients as usual, hypothesis (H1)-(H3) and the
minimality of ur for the energy E with respect to its boundary conditions, we have that

Ψζ(1) =

ˆ
B1

(
|∇ζ|2 + 2 ζ

)
dx− 2

ˆ
∂B1

ζ2dHn−1

≥
ˆ
B1

(
〈A(rx)∇ζ,∇ζ〉2 + 2 f(rx) ζ

)
dx− 2

ˆ
∂B1

µ(rx) ζ2dHn−1

− C rα
ˆ
B1

(
|∇ζ|2 + 2 ζ

)
dx− C r

ˆ
∂B1

ζ2

≥ Φ(r)− C rα
ˆ
B1

(
|∇ur|2 + 2ur

)
dx− C r

ˆ
∂B1

u2
r

≥ Φ(r)− C rα. (4.10)

Combining together (4.9) and (4.10), we finally infer that

Ψwr(1)− Φ(r) ≥ 1

1− κ
(
Φ(r)− ϑ− C rα

)
+ ϑ− Φ(r) =

κ

1− κ
(
Φ(r)− ϑ

)
− C rα. (4.11)

Therefore, we can conclude from (4.8) and (4.11) that

Φ′(r) ≥ n+ 2

r

κ

1− κ
(
Φ(r)− ϑ

)
− C rα−1. (4.12)

Let now C6 be any exponent in (0, α ∧ (n+ 2) κ
1−κ), then((

Φ(r)− ϑ
)
r−C6

)′ ≥ −C rα−1−C6 , (4.13)

and by integrating in (t, r0) for t ≥ s0, we finally get from (3.16)

Φ(t)− ϑ ≤ C
(
tC6 + tα

)
≤ C7 t

C6 .

Consider now s0 < s < t < r0 and estimate as followsˆ
∂B1

|ut − us| dHn−1 ≤
ˆ t

s

ˆ
∂B1

r−2

∣∣∣∣〈∇u(rx), ν(x)〉 − 2
u(rx)

r

∣∣∣∣ dHn−1(x)

=

ˆ t

s
r−1

ˆ
∂B1

|〈∇ur, ν〉 − 2ur| dHn−1 dr

≤ (nωn)1/2

ˆ t

s
r−1/2

(
r−1

ˆ
∂B1

(〈∇ur, ν〉 − 2ur)
2 dHn−1

)1/2

dr.

Combining (4.8), (4.11) and Hölder inequality, we then have
ˆ
∂B1

|ut − us| dHn−1 ≤ C
ˆ t

s
r−1/2

(
Φ′(r) + C rα−1

)1/2
dr

≤ C
(

log
t

s

) 1
2 (

Φ(t)− Φ(s) + C (tα − sα)
)1/2 ≤ C (log

t

s

)1/2

t
C6
2 .
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A simple dyadic decomposition argument then leads to the conclusion. Indeed, if s ∈ [2−k, 2−k+1)
and t ∈ [2−h, 2−h+1) with h ≤ k, applying the estimate above iteratively on dyadic intervals, we

infer for q = 2
C6
2 and a dimensional constant C > 0,

ˆ
∂B1

|ut − us| dHn−1 ≤ C
k∑
j=h

q−j ≤ C q−h ≤ C t
C6
2 . �

Remark 4.9. Formula (4.8) yields Weiss’ quasi-mononicity discarding both Payne-Weinberger’s
formula and the PDE solved by u. Indeed, by taking into account the minimality of ur with
respect to its boundary datum, directly from (4.8) we infer that

Φ′(r) ≥ 1

r

ˆ
∂B1

(〈ν,∇ur〉 − 2ur)
2dHn−1 − C rα−1,

in turn implying

Φ(r) + C rα − Φ(s)− C sα ≥
ˆ r

s

1

t

ˆ
∂B1

(〈ν,∇ut〉 − 2ut)
2dHn−1 dt.

We can now prove the uniqueness of the blow-ups at regular points of the free boundary.

Proposition 4.10. Let u be a solution to the obstacle problem (2.3) and x0 ∈ Reg(u). Then, there
exist constants r0 = r0(x0), η0 = η0(x0) > 0 such that every x ∈ Γu ∩ Bη0(x0) is a regular point
and, denoting by vx(y) = w(L−1(x)y) any blow-up of u at x, we haveˆ

∂B1

∣∣uL(x),r − w
∣∣ dHn−1(y) ≤ C r

C6
2 for all r ∈ (0, r0), (4.14)

where C and γ > 0 are dimensional constants. In particular, the blow-up limit vx is unique.

Proof. Denote by Φ(x, r) the boundary adjusted energy (3.15) with base point x, i.e. with domain
of integration Br(x) rather than Br. The upper semicontinuity of Γu 3 x 7→ Φ(x, 0+) follows from
Weiss’ quasi-monotonicity, that in turn yields that Reg(u) ⊂ Γu is relatively open, thus proving
the first claim if η0 is sufficiently small.

By Proposition 3.2, given η̄ > 0 such that Bη̄(x0) ⊂⊂ Ω and Γu ∩Bη̄(x0) = Reg(u), then

C8 := sup
x∈Γu∩Bη̄(x0),r<η̄

‖uL(x),r‖C1,γ(∂B1) <∞.

Let δ > 0 be the constant in Theorem 4.7. By compactness, if ‖g‖C1,γ(∂B1) ≤ C8, we can find ε > 0
such that

‖g‖L1(∂B1) ≤ ε =⇒ ‖g‖H1(∂B1) ≤
δ

4
. (4.15)

Next, we fix r̄0 > 0 such that C7 r̄
C6
0 ≤ ε and

inf
w
‖uL(x0),r̄0 |∂B1 − w‖H1(∂B1) ≤

δ

4
, (4.16)

where the infimum is taken among all global solutions w of type (A). To show the existence of such
a treshold r̄0, we argue by contradiction: if it does not exist, we must find a sequence rj converging
to 0 such that ‖uL(x0),rj − w‖H1(∂B1) ≥ δ for every w global solution of type (A). On the other
hand, since x0 is a regular free boundary point, up to subsequences, not relabeled for conveniene,
(uL(x0),rj )j∈N converges in C1,γ

loc to a blow-up v of u at x0 of type (A), thus giving a contradiction.

By the continuity of A and f , there exists 0 < η0 ≤ η̄ such that for all x ∈ Reg(u) ∩Bη0(x0),

inf
w
‖uL(x),r̄0 |∂B1 − w‖H1(∂B1) ≤

δ

2
, (4.17)
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where the infimum is considered in the same class of functions as above. We claim that in turn
this implies that for all x ∈ Reg(u) ∩Bη0(x0) and 0 < r ≤ r̄0

inf
w
‖uL(x),r|∂B1 − w‖H1(∂B1) ≤ δ. (4.18)

To this aim, fix x ∈ Reg(u)∩Bη0(x0) and let s0 < r̄0 be the maximal radius such that (4.18) holds
for every s0 ≤ r ≤ r̄0. Assume that s0 > 0 and note that, in particular,

inf
w
‖uL(x),s0 |∂B1 − w‖H1(∂B1) = δ. (4.19)

Then, by Lemma 4.8 (recall that, being Bη0(x0) ⊂⊂ Ω, the constants are uniform at points in

Γu ∩ Bη0(x0) – cp. Remark 4.1), we infer that ‖uL(x),s − uL(x),t‖L1(∂B1) ≤ C7 r̄
C6
0 for every s, t ∈

[s0, r̄0]. Since the functions uL(x),s are equibounded in C1,γ(∂B1) by C8, (4.15) gives that

‖uL(x),s − uL(x),t‖H1(∂B1) ≤
δ

4
for every s, t ∈ [s0, r̄0].

In particular, by (4.17) and the triangular inequality, we get a contradiction to (4.19).
We are now ready for the conclusion. Thanks to (4.18), we deduce that (4.7) in Lemma 4.8 holds

for every s, t ∈ (0, r̄0). Therefore, by passing to the limit as s ↓ 0 in (4.7) we findˆ
∂B1

∣∣uL(x),t − w
∣∣ dHn−1 ≤ C t

C6
2 ,

and thus the uniqueness of the blow-up limit is established. �

To prove uniqueness of blow-ups for singular point we need to establish the counterpart of
Lemma 4.8 in this setting, though we do not get a rate for the convergence of the rescalings to
their blow-up limits.

Proposition 4.11. For every point x of the singular set Sing(u) there exists a unique blow-up limit
vx(y) = w

(
L−1(x)y). Moreover, if K is a compact subset of Sing(u), then, for every point x ∈ K,

‖uL(x),r − w‖C1(B1) ≤ σK(r) for all r ∈ (0, rK), (4.20)

for some modulus of continuity σK : R+ → R+ and a radius rK > 0.

Proof. With no loss of generality we show the uniqueness property in case the base point x ∈
Sing(u) is actually the origin 0 and (3.6) holds. We use Monneau’s quasi monotonicity formula in

Theorem 3.8. To this aim, we suppose that (urj )j∈N converges in C1,γ
loc , γ ∈ (0, 1) arbitrary, to a

2-homogeneous quadratic polynomial v with Tr(D2v) = 1. Then, from (3.35) we infer that

lim
j

ˆ
∂B1

(urj − v)2dHn−1 = 0.

In turn, this implies that the monotone function

r →
ˆ
∂B1

(ur − v)2dHn−1 + C5(r + rα)

is infinitesimal as r ↓ 0. In particular, for all infinitesimal sequences hj we have that (uhj )j∈N

converges to v in C1,γ
loc , the uniqueness of the limit then follows at once.

Having fixed a compact subset K of Sing(u), to prove the uniform convergence we argue by
contradiction. Assume there exist points xj ∈ K and radii rj ↓ 0 for which the rescalings uL(xj),rj
and the blow-ups vxj of u at xj satisfy

‖uL(xj),rj − vxj‖C1(B1) ≥ ε > 0, for some ε.
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Thanks to Proposition 3.2 we may assume that, up to subsequences not relabeled, (uL(xj),rj )j∈N

converges in C1,γ
loc to a function w. Moreover, by taking into account that the constants in Weiss’

quasi-monotonicity are bounded since the points are varying on a compact set, we may argue as
in Propositions 4.2 and 4.5 to deduce that the limit w is actually a 2-homogeneous global solution
(cp. (4.3)).

Let ΦL(xj) be as in (4.2). It is elementary to show that ΦL(xj)(r)→ Ψw(r) for all r > 0.
Then, using Lemma 4.3 and the classification of free boundary points according to the energy,

we get 0 ∈ Sing(w). Indeed, if not, as ϑ = Ψw(0+) = Ψw(r) for all r, we would infer that
ΦL(xj)(ρ) ≤ 3

2ϑ for j big enough for some fixed ρ > 0. In turn, the latter condition is a contradiction

to ΦL(xj)(0
+) = 2ϑ that follows from the quasi-monotonicity of ΦL(xj) as xj ∈ Sing(u).

We claim next that w(y) = 〈B y, y〉, for some positive, symmetric B with Tr(B) = 1
2 , i.e. w

coincides with its blow-up in 0. To prove this, note that, Λw is a convex set by Theorem 4.4, and
thus it is a cone since 0 ∈ Λw. Therefore, Ln(Λw) = Ln(Λv0), where v0 is the blow-up of w at 0. As
0 ∈ Sing(w), the latter equality implies that Ln(Λw) = 0. Hence, by equation (3.32) and Lioville’s
theorem, w is a 2-homogeneous polynomial.

In conclusion, by taking this into account and the fact that all norms are equivalent for poly-
nomials, Monneau’s quasi monotonicity formula provides a contradiction (note that the constants
therein are bounded since the points are varying in a compact set – cp. Remark 4.1):

0 < ε ≤ lim sup
j→+∞

‖uL(xj),rj − vxj‖C1(B1) ≤ lim sup
j→+∞

‖w − vxj‖C1(B1)

≤ C lim sup
j→+∞

‖w − vxj‖L2(∂B1)

(3.35)

≤ C lim sup
j→+∞

‖w − uL(xj),rj‖L2(∂B1) = 0. �

4.5. Regular free boundary points. We are now ready to establish the C1,β regularity of the
free boundary in a neighborhood of any point x of Reg(u). Recall that blow-up limits in regular
points are unique (cp. Proposition 4.10), so that denoting by n(x) ∈ Sn−1 the blow-up direction at
x ∈ Reg(u), we have

vx(y) =
1

2
(〈L−1(x)n(x), y〉 ∨ 0)2.

As usual, we shall state and prove the result below with base point the origin. We follow here the
arguments in [27].

Theorem 4.12. Let 0 ∈ Reg(u). Then, there exists r > 0 such that Γu∩Br is a C1,β hypersurface
for some universal exponent β ∈ (0, 1).

Proof. Let η0 = η0(0) and r0 = r0(0) be the radii provided by Proposition 4.10. We start off
showing that for a universal constant C > 0 and a universal (computable) exponent β ∈ (0, 1)

|L−1(x)n(x)− L−1(z)n(z)| ≤ C |x− z|β, (4.21)

for every x and z ∈ Reg(u) ∩Bη0/2. To this aim, let s ∈ (0, r0), then

‖vx − vz‖L1(∂B1) ≤ ‖vx − uL(x),s‖L1(∂B1) + ‖uL(x),s − uL(z),s‖L1(∂B1) + ‖uL(z),s − vz‖L1(∂B1)

(4.14)

≤ C s
C6
2 + ‖uL(x),s − uL(z),s‖L1(∂B1). (4.22)

By taking into account that the map y → L(y) is Hölder continuous with exponent θ := α ∧ 1/2
thanks to (H1) and (H3), in view of estimate (3.19) we can bound the second term above as follows

‖uL(x),s − uL(z),s‖L1(∂B1)
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≤
ˆ
∂B1

ˆ 1

0
s−2
(
|∇u(t(z + sL(z)y) + (1− t)(x+ sL(x)y)||z − x+ s(L(z)− L(x))|dt

)
dHn−1(y)

≤ C s−2(|z − x|+ s+ s|z − x|θ) · (|z − x|+ s|z − x|θ) ≤ C |z − x|θ, (4.23)

if s = |z − x|1−θ, and C = C(n, ‖L‖L∞(Bη0/2,R
n×n)). Therefore, if β := θ ∧ C6

2 (1− θ), (4.21) follows

from (4.22), (4.23) and the simple observation that for some dimensional constant C > 0 it holds

|L−1(x)n(x)− L−1(z)n(z)| ≤ C‖vx − vz‖L1(∂B1),

as the right hand side above is a norm on Rn.
Next, consider the cones C±(x, ε), x ∈ Reg(u), given by

C±(x, ε) :=

{
y ∈ Rn : ±〈y − x, A−1/2(x)n(x)

|A−1/2(x)n(x)|
〉 ≥ ε|y − x|

}
.

We claim that, for every ε > 0, there exists δ > 0 such that, for every x ∈ Reg(u) ∩Bη0/2,

C+(x, ε) ∩Bδ(x) ⊂ Nu and C−(x, ε) ∩Bδ(x) ⊂ Λu. (4.24)

For, assume by contradiction that there exist xj ∈ Reg(u) ∩ Bη0/2 with xj → x ∈ Reg(u) ∩ B̄η0/2,

and yj ∈ C+(xj , ε) with yj − xj → 0 such that u(yj) = 0. By Proposition 3.2, (4.14) and (4.22),
the rescalings uL(xj),rj , for rj = |L−1(xj)(yj − xj)|, converge uniformly to vx. Up to subsequences

assume that r−1
j L−1(xj)(yj − xj)→ z ∈ C+(x, ε)∩ Sn−1, then vx(z) = 0. This contradicts the fact

that x ∈ Reg(u) and vx > 0 on C+(x, ε) thanks to f(x) ≥ c0 > 0 (cp. (H3)). Clearly, we can argue
analogously for the second inclusion.

We show next that Λu ∩Bρ1 is the subgraph of a function g, for a suitably chosen small ρ1 > 0.

Without loss of generality assume that A−1/2(0)n(0)

|A−1/2(0)n(0)| = en and set

g(x′) := max{t ∈ R : (x′, t) ∈ Λu}

for all points x′ ∈ Rn−1 with |x′| ≤ δ
√

1− ε2. Note that by (4.24) this maximum exists and belongs
to [−εδ, εδ]; and moreover the inclusions in (4.24) imply that (x′, t) ∈ Λu for every −ε δ < t < g(x′),
and (x′, t) ∈ Nu for every g(x′) < t < ε δ.

Eventually, by taking into account (4.21), we conclude that g is C1,β regular. �

4.6. Singular free boundary points. In this section we prove that the singular set of the free
boundary is contained in the countable union of C1 submanifolds.

We recall that, if x ∈ Sing(u), then the unique blow-up vx is given by

vx(y) = 〈L−1(x)Bx L−1(x)y, y〉,

with Bx a symmetric, positive definite matrix satisfying Tr(Bx) = 1
2 (see Proposition 4.11). We

define the singular strata according to the dimension of the kernel of Bx.

Definition 4.13. The singular stratum Sk of dimension k, for k = 0, . . . , n − 1, is the subset of
points x ∈ Sing(u) with rank(Bx) = k.

In particular, Theorem 4.14 below shows that Sk is Hk rectifiable, and moreover that ∪n−1
k=l Sk is

a closed set for every l = 0, . . . , n− 1.

Theorem 4.14. Let 0 ∈ Sk. Then, there exists r > 0 such that Sk ∩ Br is contained in a C1

regular k-dimensional submanifold of Rn.
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Proof. The proof is divided into two steps. We start off proving the continuity of the map

Sing(u) 3 x 7→ L−1(x)Bx L−1(x).

In turn, by taking this and Proposition 4.11 into account, we conclude by means of Whitney’s
extension theorem and the implicit function theorem following [6]. We give the full proof for the
sake of completeness.

To establish the continuity of Sing(u) 3 x 7→ L−1(x)Bx L−1(x) we argue as in Theorem 4.12 by
comparing two blow-ups at different points. To this aim, note that for some dimensional constant
C > 0

|L−1(x)Bx L−1(x)− L−1(z)Bz L−1(z)| ≤ C ‖vx − vz‖L1(∂B1/2), (4.25)

as the right hand side above is a norm on symmetric matrices.
Fix a compact set K ⊂ Sing(u) and let σK be the modulus of continuity in Proposition 4.11.

Then, for all x and z ∈ K, setting s = |x−z|1−θ ∈ (0, rK) for θ = α∧ 1
2 , we get for some dimensional

constant C > 0

‖vx − vz‖L1(∂B1/2) ≤‖vx − ux,s‖L1(∂B1/2) + ‖ux,s − uz,s‖L1(∂B1/2) + ‖uz,s − vz‖L1(∂B1/2)

(4.20)

≤ C σK(|x− z|1−θ) + C |x− z|θ, (4.26)

where the difference of the two rescaled maps is estimated as in the second line of inequality (4.22)
in Theorem 4.12. Inequalities (4.25) and (4.26) establish the required continuity.

Furthermore, we claim that there exists a function g ∈ C2(Rn) such that for all x ∈ K
g(y)− vx(y − x) = o(|y − x|2) as y → x. (4.27)

To this aim we show that the family vx(· − x), x ∈ K, of translations of the blow-ups satisfies
the assumptions of Whitney’s extension theorem (see [29]). More precisely, we show that the
polynomials px(y) := vx(y − x), x ∈ K, satisfies

(i) px(x) = 0 for all x ∈ Sk,
(ii) Dl(px − pz)(x) = o(|x− z|2−l) for all x and z ∈ K ∩ Sk, and l ∈ {0, 1, 2}.

Condition (i) is trivially satisfied; instead for what (ii) is concerned, we note that estimate (4.20)
in Proposition 4.11 rewrites, for r ∈ (0, r̃K) with r̃K depending only on rK and λ, as

‖u− pz‖C0(Br(z)) ≤ r
2 σK(r), and ‖∇u−∇pz‖C0(Br(z)) ≤ r σK(r).

Therefore, since u(x) = 0 and ∇u(x) = 0 imply

|px(x)− pz(x)| = |u(x)− pz(x)| and |∇px(x)−∇pz(x)| = |∇u(x)−∇pz(x)|,
then (ii) is verified for l ∈ {0, 1}. In addition, if l = 2, condition (ii) reduces to the continuity of

the map Sing(u) 3 x 7→ f(x)A−1/2(x)BxA−1/2(x) established above.
Equality (4.27) gives that K ⊆ {∇g = 0}. Suppose now that 0 ∈ K ∩ Sk, and arrange the

coordinates of Rn in a way that ei, i ∈ {1, . . . , n − k}, are the eigenvalues of ∇2g(0). Then, the
(n−k)×(n−k) minor of∇2g(0) composed by the first n−k rows and columns, is not null. Therefore,

the implicit function theorem yields that ∩n−ki=1 {∂ig = 0} is a C1 submanifold in a neighborhood of

0, and the conclusion follows at once noting that K ∩ Sk ⊆ {∇g = 0} ⊆ ∩n−ki=1 {∂ig = 0}. �
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