A 1D MACROSCOPIC PHASE FIELD MODEL FOR DISLOCATIONS AND A
SECOND ORDER TI'-LIMIT

MATTEO FOCARDI* AND ADRIANA GARRONT!

Abstract. We study the asymptotic behaviour in terms of I'-convergence of the following one dimensional

energy
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where I is a given interval, W is a one-periodic potential that vanishes exactly on Z.

Different regimes for the asymptotic behaviour of the parameter p. and 7. are considered. In a very diluted
regime we get a limit defined on BV (I) and proportional to the total variation of w. In this particular case we
also consider the limit of a suitable boundary value problem for which we characterize the second order I'-limit.
The study under consideration is motivated by the analysis of a variational model for a very important class of
defects in crystals, the dislocations, and the derivation of macroscopic models for plasticity.
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1. Introduction. Dislocations are, at the mesoscopic level, line defects in crystals that lie
on a slip plane and are due to plastic slips that are not compatible with the crystal structure.
In a recent paper [17] a phase field model for dislocations has been proposed. Mathematically
speaking, after a renormalization, the free energy consists on a 2D singular perturbation of a
non linear potential with infinitely many, periodically distributed, wells, of the form

(11) E0) = | [ Kl —le@ —ewPardy+ L [ wigyar

Here @ is the unit square in R2, W is one-periodic, non-negative and vanishes exactly on
the integers Z, and the nonlocal part of the energy behaves like the H'/2 semi norm (i.e.
K(t) ~ [t|~3 as t — 0). In this variational model the phase field £ can be interpreted as the slip
field measured in units of the Burgers vector b. The non local term is due to the long range
elastic energy induced by the slip £b; i.e., obtained by minimizing the isotropic elastic energy of
the cylinder @ x R subject to suitable lateral boundary conditions and the constraint that the
slip along the plane {z3 = 0} is given, that is UT —U~ = £b on Q x {0} where [U] :=U*T -U~
is the jump of the displacement U : @ x R — R? across the plane {x3 = 0}. The non linear
potential W penalizes slips that are not compatible with the crystalline structure and the small
parameter o is proportional to the lattice parameter |b|.

In [13] the asymptotic behaviour for a scaled version of (1.1) has been studied in terms of
I'-convergence. More precisely the I'-limit of the functional

1
|Ino| 7
*Dipartimento di Matematica “U.Dini” Universita di Firenze, V.le Morgagni 67/A, 1-50134 Firenze, ITALY
(focardi@math.unifi.it).

fDipartimento di Matematica Universitdh di Roma “La Sapienza”, P.le Aldo Moro 3, 1-00185 Roma
ITALY (garroni@mat.uniromal.it).



2 M. FOCARDI and A. GARRONI

is finite on all functions £ € BV (Q,Z) and it is given by a line tension energy of the form

/ A(we)i€]] aH
Se

where S¢ is the jump set of £ and v¢ its normal vector. In terms of the application to the problem
of dislocations, the quantity |Ino| represents the energy of the core of a single dislocation line.
As a consequence the scaling under consideration in [13] is based on the assumption that the
slip fields are of the order of the Burgers vector, i.e., [[U]| ~ |b| or € ~ 1; and the limit can be
interpreted as a mesoscopic regime at which one can still see the line structure. On the other
hand in the study of the macroscopic plastic behaviour one would expect the jumps of the
displacement of order larger than |b|.

In this paper we give a complete analysis of the one dimensional problem, under the general
condition |[U]| >> |b|.

1.1. Heuristic derivation of the scaling . We start by rewriting in scaled variables the
result in [13] which can be schematically summarized as follows

1
€Ty + > /Q W(g,)de ~ | nol | DEI(Q),

where [f]Hl/z(Q) denotes the H'/2 seminorm in Q and &, — £ in energy (&5 is a recovery sequence
for £). To this end we introduce a parameter § = d,, of the order of the slip; i.e. 6, ~ |[U]]|. We
will be interested in the regime é, >> 0. Recalling that the slip satisfies |[U]| ~ o we introduce
a new variable w = %{ that represents a normalized slip in terms of §, and we rewrite the
energy as

E (%Y 2 L [ w (22w, ) de ~ 22| ol D
o(wo, Q) = ( =) [wolprag) + 7 oG z ~ —|lnol|Dw|(Q).
This asymptotic analysis can be refined taking into account the non local character of the first
term in the energy (1.1). Taking a partition of () made of sufficiently small subsets @Q; we argue
that

5 2
Eo(woa Q) ~ ZEO'(wO'7 Qz) + <> [wa]?ql/z(Q),

g

and from the additivity of the total variation of w we get
0o
S B, @) ~ 2 Ino | Dul(@)
i

In other words it is possible to show that the leading energy contribution in the result of [13] is
due to the non local part of the energy (1.1) and it is concentrated in a neighbourhood of the
diagonal of @ x @ (see also Corollary 3.9). As a consequence the heuristic asymptotic expansion
can be refined as follows

50‘ 60 ? 2
Exw) ~ 2o Dul(@) + (%) [,

b0 05
(1.2) = ;\ Ino| <|DW(Q) + M[“’]?{W(Q)) :
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Both the prefactors d,|Ino|/o and (§,/c)” are diverging, so that depending on the different
choices of 0, with d,/0 — 400, we get three different regimes.
In view of (1.2) the three regimes are identified by the value of the following limit

05

lim =
oc—0t o|Ino]

[

Specifically we have the three asymptotic behaviours:
= = 0. The leading pre-factor is the one in front of the total variation; hence, we scale the
energies by 2z|Ino| and get by (1.2)

60- 2 1 60‘

= € (0,+00). The two pre-factors are of the same order; scaling the energies by %”| Ino| in
(1.2) entails

o
ollno]

1 6
2 197 o = 2
[w]Hl/z(Q) + 50.| 11’10’| /Q ( pu w) dx ~ |DUJ|(Q) + = [w]Hl/Q(Q)'

= = +o00. The leading pre-factor is the one in front of the H'/2? seminorm; hence, scaling the
energies in (1.2) by (6, /0)? yields

o 0o
[’w]in/z(Q) + 672 /Q W (O_w> d.%' ~ [’w]iﬂ/z(Q)

1.2. The TI'-convergence results. Our results make rigorous, in the one dimensional
case, the heuristic computations carried out above. More precisely we study the asymptotic
behaviour in terms of I'-convergence of the following functional

u\xr
/Le[u]iﬂ/?(l) +77€/IW <(€)> dr we HY?(I)

+00 otherwise.

F.(u)

Depending on the different regimes for the parameters u. and 7. we obtain the three limits
described in the previous section. In particular the first regime can be reduced to the case when
pe — 0, me — o0 and g Inn. — K € (0,+00) as € — 07, In this case the functional F. has
the classical structure of a singular perturbation (with regularizing effects) of a multiple well
potential, as studied by Modica and Mortola [21] with the regularization given by the Dirichlet
integral. As in [21] the distance between the wells tends to zero, the competition between the
regularizing term and the penalization force the optimal sequences to make many small jumps
so that they may converge in L! to any function with bounded variation and in energy to
its total variation. Indeed, the limiting functional is given by 2K |Du|(I). The role of the non
local singular perturbation has been first studied by Alberti, Bouchitté and Seppecher in [2] for
the case of a finite number of wells and then considered by Kurzke [18] in the case of infinitely
many wells in the one dimensional case (for similar results in higher dimensions see [13], [19], [8]
and references therein). Our strategy follows closely the one in [2] and [18] with the additional
difficulty that the wells are not well separated.
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We also consider a boundary value problem. Here the presence of the non local regularization
requires some extra care in the definition of the boundary conditions. We show that the bound-
ary data are compatible with the I'-convergence result. In this case the limit functional turns
out to be very degenerate and in order to get more pieces of information about the minimizers
we perform a further analysis computing the next term in the so-called T'-development (see [4]
and [6]). In the same spirit are the results of Cabré and Consul [7] and Kurzke [19] where they
compute the so-called renormalized energy of the minimizers (see also [5] and [9]).

The plan of the paper is the following. In Section 2 we state all the results that we will
prove: the results corresponding to the regimes described above (see Theorems 2.2, Corollary
2.7, and Remark 2.8) and the ones concerning the second order I'-limit for the first regime (see
Theorems 2.3 and 2.4). Section 3 is devoted to the study of the asymptotic behaviour of (F:)
in the most diluted regime (the one corresponding to Z = 0). The main part of the proofs is
contained in that section, in particular a sharp lower bound that permits to deduce later in

Section 4 also the second order expansion in this regime (see Proposition 4.3 and Proposition
4.4).

2. Statements of the results. The main goal of the paper is to study of the asymptotic
behaviour as ¢ — 07 of the functional F. : L' (I) — [0, +00o] defined by

2 u(z) 1/2
(2.1) F(u) = § Heliem ”E/,W <e> do e D)
400 otherwise.

Here [u] 172y denotes the seminorm of u in the Sobolev fractional space H /2 on the interval

I=(a,p) CR;ie.,
_ 2
[WlFise(ry = /1/1 IU(T:Z — Z(Qy) drdy.

The nonlinear potential is given by a non-negative Z-periodic continuous function W with
W=1(0) = Z and for which there exist p > 0, § > 0 and ¢ > 0 such that

(2.2) W(t) > c|t|?
for any [t| < §. The positive parameters p. and 7. always satisfy the conditions

(2.3) lim ep.Inn. = K € [0, +00),
e—0
Ne — +oo and g, — p as € — 07. We will get different behaviours depending on the value of
@ = lim, p., whether it is 0, finite or +o0.
REMARK 2.1. The asymptotic behaviour for the functional F, : L*(I) — [0, +00] defined by

60 2 1 6"’
fa(u) = [U]H1/2(1) + m ‘/I w (Gu(x)> dzr

o|lno]

and discussed in Section 1.1 can be deduced from the study of F. defined in (2.1) by setting
€=0/0g, fte ~ % and 1. = m. With this choice

Y
1m Eles INn7:. = 111N 9
e—0t H n o—0Tt | In O'|
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and the three regimes discussed in Section 1.1 are given by the three cases p =0, p € (0,400)
and p = +o0.
As for the first regime we have the following result (see Propositions 3.4 and 3.8 in Section
3).
THEOREM 2.2. Assume that p. — 0% and that (2.3) is satisfied with K # 0. The family
(F.) in (2.1) T-converges w.r.t. the L topology to the functional F : L*(I) — [0, +oc] given by

2K|Du|(I) ifue BV(I)
F(u) —{

+00 otherwise.

More precisely
(1) Compactness: if sup, Fr(us) < +00, then there exist u € BV (I), a subsequence (ue, )
and (ar) C R for which (ue, — ay) converges to u in LP(I) for every p € [1,400).
(ii) Lower bound inequality: if uc — u in L'(I), we have
(2.4) 11m('1)r+1f F.(u:) > F(u).
(i4i) Upper bound inequality: for every u € L'(I) there exists (u.) C HY?(I) such that
ue — u in LY(I) and

limsup F.(u:) < F(u).

e—0+

The result obtained above generalizes the ones contained in [2], [18] and to some extent
Theorem 9 in [13] to the case of accumulating zeros. Its proof is partly inspired by those,
although some non-trivial points have to be fixed.

In terms of the application to the dislocation problem, we are considering a very diluted
regime, so that the total variation of the phase field represents the self interaction of the
dislocation lines. In view of the heuristic performed in Section 1.1 we however expect that the
regularization due to the long range interaction between dislocations should also play a role.
Our aim is then to look at the next order for the energy and identify a term that accounts for
this effect. To make this asymptotic expansion rigurous in terms of I'-convergence we need to
specify the type of minimum problem we are considering.

In the following we will consider the case of boundary conditions u(a) = 0 and u(8) = L,
with L > 0 fixed. The non local regularization and the fact that the limit energy is defined
in BV require a suitable definition of the boundary condition. For a given § € (0, |I|/2) we
consider the spaces

(2.5) Dﬂn:{ueﬂﬂ%m:w( 0, ul =e[L/e]},

wats) — 0 Hs-sp)

and introduce the energies G. : L'(I) — [0, +00] given by

Fo(u) ifue Ds(I)
(2.6) Ge(u) =

+o0o  otherwise in L!(I).

This stronger condition is necessary in order to take the boundary data to the limit. A more
detailed explanation of this choice will be discussed in Section 4.
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Slightly modifying the argument used to prove the I'-convergence result in Theorem 2.2 we
can infer an analogous statement in case boundary data are taken into account.

THEOREM 2.3. Assume that pu. — 0% and that (2.3) is satisfied with K # 0. The family
of functionals (G.), T-converges w.r.t. the L topology to the functional G : L*(I) — [0, +0o0]
defined by

2K|Du|(I) ifue DN BV(I),
G(u) =

400 otherwise,
where

Dr(I) = {ue H/(I) : u| L}.

The above theorem together with the compactness result (i) of Theorem 2.2 imply the conver-
gence of the minimum problems min G, to the corresponding minimum of G, together with the
convergence of the minimizing sequences to minimum points of G (see Corollary 7.17 [10]).

Clearly the minimization of G does not give many pieces of information on the minimizers of

G.. Indeed, the minimum value of G on L'(I) is 2K L, and it is achieved by any non decreasing
function in BV N Dy, ().

Following [4], more accurate pieces of information on the minimizers of G, can be recovered
by studying the asymptotic I'-development of (G.). In order to do that, by keeping the same
notation introduced in Theorem 2.3, we define for any u € L'(I)

0, u‘

(ats) — 0 Ylp-s8) =

Ge(u) — 2[L/e]e?pe In e

(2.7) G u) = -

the scaling p. being suggested by the construction of the recovery sequence in the I'-limit of F,
(see (3.34)). In Section 4.2 (see Propositions 4.3 and 4.4) we prove

THEOREM 2.4. Assume that p. — 07 and that (2.3) is satisfied with K # 0. Let € = o(p.),
let (GL) be the family defined in (2.7) and let G* : LY(I) — [0, +00] be given by

(W32 w€DLNBV(I), [Dul(I) = L
G (u) =

+00 otherwise in L*(I).

Then
(i) Compactness: if sup. GL(u.) < +oo, then there exist u € Dy N BV (I) such that
|Du|(I) = L, and a subsequence (ue,) which converges to u in LP(I) for every p €
[1,400).
(ii) (GL) T-converges w.r.t. the L* topology to the functional G*.

As remarked before, the first order I'-limit energy arises only from the contribution of the
non local part of G concentrated on a neighbourhood of the diagonal. Thus, separating it from
the contribution far from the diagonal we are able to prove that the effect of rescaling G. by
pe is to get the H'/? seminorm in the limit (see Proposition 4.3).

REMARK 2.5. From the result above we can easily deduce that if (ue) is a minimizing sequence
for G< such that

Ge(ue) = min Ge + o(fe)
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then (uc) is a minimizing sequence also for the functional GL; hence up to a subsequence it
converges to a minimum point for G'. Futhermore we get the following asymptotic expansion
for the minimizers

min G, = 2[L/ele?juz Inn. 4 pe min G* + o(p.) .

REMARK 2.6. By strict convexity G' has a unique minimizer. By means of a qualitative
analysis of the related Euler-Lagrange equation, it is possible to prove that the behaviour of the
minimizer at o+ 6 and 8 — § is of the type

Vr—a—246 and B —0—u,

respectively. If we interpretate this result in terms of the dislocations problem we recover the well
known fact (see for instance [16] and [20]) that for a pile up problem the dislocations accumulate
at the obstacle with a square root rate (see Figure 2.1 below).

. /
X . »
OJ.ILI_I.J.J. iy 4 4 4 4 1 1 1140 o

F1a. 2.1. Pile up of dislocations.

The analysis performed in this diluted regime (2 = 0) permits to deduce straightforward
the asymptotic behaviour of the remaining two cases. More precisely, in the case = € (0, +00)
we will prove that the two terms in the heuristic expansion are of the same order and both
contribute to the limit energy.

COROLLARY 2.7. Assume that pie — p € (0,400) and (2.3) hold, then the family (F.) in
(2.1) T-converges w.r.t. the L' topology to the functional F* : L*(I) — [0, +00] given by

Fh(u) =

+00 otherwise.

Moreover, if sup, F.(u.) < +00, then there exist w € BV N HY2(I), a subsequence (ue,) and
(ar) C R for which (ue, — ay) converges to u in LP(I) for every p € [1,+00).
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Eventually, we deal with the case Z = +00 which corresponds to y. — +oo. In this case we
have to rescale the energy in order to get a finite limit and study the I'-limit of F./u.. This
identifies three other regimes and the corresponding asymptotic behaviours can be deduced
either from Theorem 2.2 or from Corollary 2.7.

REMARK 2.8. The asymptotic behaviour of the functional F, for the dislocations problem
in the regime = = 400 corresponds to the I'-limit of

F(u) _ ) [ulfpeg) + Z—/IW <”(:)) dz ue HY2(I)

£
+00 otherwise

in the case when €1n Z—i = $Ing — 0. In view of Corollary 2.7 this gives
Foo(u) . [u]zlm(l) qu € Hl/Q(I)

+00 otherwise.

3. Proof of the I'-convergence result. In this section we prove the I'-convergence result
for the family (F.) stated in Theorem 2.2 as well as some refinements concerning the localization
of the energy contribution (see Corollaries 3.9 and 3.10).

The proof of Theorem 2.2 is split in the subsequent Proposition 3.4 and Proposition 3.8. In
particular, in the former we prove the compactness result as well as the lower bound inequality,
while the latter is devoted to the proof of the upper bound inequality.

In the following we need some more notation. In particular, we denote by F.(-, A) the
localized version of F. obtained by changing the domain of integration I into an open interval
A contained in [I.

3.1. The compactness and the I'-liminf inequality. The main tool in order to prove
the compactness and the I'-liminf inequality is the optimal lower bound given by the following
lemma (in the same spirit of what done in [2],[18]). Denote by A, ; the t-super-level set of u in
A ie Ay ={z e A:u(z) >t}

LEMMA 3.1. Let 0. € (0,£/4) and a non-constant u € L> N H/2(A), A being an interval,
be given. If r, s € Z are such that [%] <r<s< [WP, then

2 2 |[Aues—0.[|A\ Auervo.l |BL|
(31)  [uliriyzcay = 2(s —7)(e —26:) <ln ( I —In Al )

where B2® = Uj_ (Aucjto. \ Aue(i+1)-0.)-

Roughly speaking the proof goes as follows. After reducing to monotone functions, we have
to estimate the transition cost between two wells ke far away, it is then possible to show that it
is more convenient to make k-transitions of height & rather than one of height ke (see inequality
(3.8)). Then an optimal lower bound follows essentially by a rearrangement of all the terms
involved.

As in [2] a lower bound for the energy of a function u on a transition between two wells
can be obtained by estimating the non local term with a double integral on suitably chosen
sublevels of u. In this direction we will often use the following remark.

INote that r and s satisfying the assumption of Lemma 3.1, always exist if ¢ is small enough.
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REMARK 3.2. Let (o, 5;) C I, i =1,2, be disjoint with 31 < ag, then

(3.2) / L ey < (B2 — az)(B1 — a1)
(a1.B1)x (az,62) 1T — Y| T (m=p)?
more precisely a direct computation yields
(3.3) / ———dxdy =1n (B2 — 1) (a2 — al).
(a1,81) X (az,82) |T — y| (B2 — 1) (a2 — ()

Proof of Lemma 8.1. Let us first assume u to be non-decreasing and consider the sets A% :=
Ay cio. \Aucito. fori e {r+1,...,s—1}. With a slight abuse of notation we also denote AL :=
A\ Ay crro. and A% := A, .5_g.. Then the sets A%, fori € {r,...,s}, and Ay cj1q. \Ay.c(j+1)-0
for j € {r,..., s} provide a disjoint ordered partition of A into intervals.

By using the notations introduced above and by taking into account (3.3) we get

((j—1 20,
[]Hl/z >2 Z / |m_|)d dy

r<i<j<s XAJ
(3.4) _ Z A In (sup Ag — sup AY)(inf Ag —inf A%)
r<ici<s I8 (sup AL — inf A?)(inf AL — sup A1)’
where
(3.5) A5 = 2(ek —20.)?

for every k > 1 and A{ = 0.

Let us denote now al = |Ayci—o, \ Aucivo.| and b, = |Aycito. \ Aucit1)—0.|- Since u is

non decreasing and belongs to H/?(A), it is continuous and then a’ and b} are strictly positive

for every i € {r,...,s}. Moreover, let a?* = 32% ai if k > j and 0 otherwise, and define bi-*

i=j €
analogously. With this notation we have
, D g L g1 o D i1 piged
sup Al —sup AL =a. 7 + 0277, inf Al —inf AL = a7 + 00777,
sup Al —inf A® = a7 +b2971 | inf AJ —sup AL = tT1ITE pphIT
Then we can rewrite (3.4) as

al a
s T et )

r<i<j<s

s—1 s—i i
1> aE
= Z ZA [ln (1 + g LR . L pitEe 1) —In <1 + g atE b?i-ﬁ-k—l)]

1=r k=1

s—1 s—1 i
a
; ; [ ( z+1 z+k 1 + |B£,s > ( a?—l’”k + |B£,S|>
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where the last inequality follows from the fact that the functions

ai ai
3.7 t e 0,400 —>ln(1+..5)—ln(1+..5>
( ) [ ) aéJrl,erkfl +t GJ?LLZJFIC +t

are non-negative and decreasing for every i, k.
By the convexity of t — 2t we deduce 2A%,1 < Ay, + Aj, which in turn, by induction,
implies that the sequence (k’lAi) k>1 1s increasing, and thus

(3.8) kAS < AS.

Inequality (3.8), together with the fact that the function in (3.7) is positive and a rearrangement
of the terms in (3.6), gives

s—1

a;
[u]ip/gm) > AiZln (1 + |ng|>
s—1 s—2s—1—1
(3.9) — AT (s—i)ln <1+L+1s+|Bm>+AEZ > In <1+ HmkﬂBrs').

i=r i=r k=1

Set L = In ((|BZ*| + at7)/|A]), then by its very definition L7 < 0 for every 4,j, LT* = 0,
and L% = In(|B»*|/|A|) for i > j. By using this notation, the right hand side of (3.9) can be
rewritten as

[]Hl/Q >AEZL”— (s —=r)Ailn (|i‘z||>

s—1 s—2s—i—1
— AT Y () (L - L) £ AT Y Y (L - L
i=r i=r k=1
s—1 |BT’S|
(3.10) =AY (Lgi + L —In ( |/€1| )) :

Eventually, since LT* > L7, Lit1s > 155 for every i € {r,...,s — 1}, we get by (3.10)

S Br=
sy 2 A5 1) (224 220 - (BE)).

from which the conclusion follows.

In order to remove the additional assumption on u to be non-decreasing we notice that (3.1)
involves only the measure of sub-/super-level sets of w. Then, to prove (3.1) in the general
case it is enough to apply the previous argument to the non-decreasing rearrangement u* of u,
since the two functions are equi-distributed and moreover [u]g1/2(4y > [W*]g1/2(4) (see [14] or
Theorem 5.8 [1]). O

By combining (3.1) and the potential term we are now able to get a pointwise lower bound
for the energies F..
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COROLLARY 3.3. Fiz 0. = ¢'TV/?. Under the same assumptions and keeping the same
notations of Lemma 3.1 it holds 2

P ) 2 2pc(s = r)(e — 20,21 (PRl 4 Auermed)

A2
wene| Al
2pe(e — 20:)2(s — 1)

(3.11) + 2po(s —7)(e — 20.)*In (

where we = infg(y z)>9. e W.
Proof. By the very definition of B}*® it holds

/ w (u(x)) dx > we|Bl®,
A 3

thus by applying (3.1) one gets

Aues—0.||A\ Auer
Fe(%A)ZQNE(S_T)(5—295)21D<| o=t || A\ Ay, +95|)

A2

T,8
A

— 2 (s —7)(e — 20.)%In ( o ) + newe | BIS.

By optimizing the right hand side above as a function of | Bl’*| it is easy to see that the minimum
2pe (5_205)2 (s—=r)

e , which gives
€ €

value is attained in

A €5— A AuET
F5<u7A>z2ue(s—r><s_296)21n(| wes—oc (|4 \ ,+esl)

A2
wene| A
2ue(e — 20:)%(s — 1)

21 (e —20.)%(s —r)

NeWe

+ 2u.(s —7)(e — 20.)%In ( ) + Newe

and implies (3.11). O

We are now in a position to prove the compactness and the lower bound results stated in
Theorem 2.2.
PROPOSITION 3.4. Assume that . — 07 and that (2.3) is satisfied with K # 0. Let (u.) C
HY2(I), then
(i) Compactness: if sup F.(us) < 400, then there exist u € BV (I), a subsequence (ue,)
and (z) C Z for which (ue, — exzi) converges to u in LP(I) for every p € [1,+00).
(ii) Lower bound inequality: if u. — u in L'(I), we have

(3.12) lim ir+1f F.(us) > F(u).
e—0
The proof of the compactness follows in part the strategy developed in [18] for the case in
which W has countably but well separated zeros. Further, in the same paper an optimal estimate
in the Orlicz space el is proved (see Remark 3.6). This result is based on a fine estimate of
the decay of the super-levels of the sequence u. combined with the well known Trudinger’s

2As in Lemma 3.1 the assumptions of Corollary 3.3 are satisfied if ¢ is small enough.



12 M. FOCARDI and A. GARRONI

embedding for fractional Sobolev spaces (see [15], [23]) that we recall below for the reader’s
convenience.
THEOREM 3.5. There are constants C,C’ > 0 such that for every u € Hé/Q (A), the following

estimate holds
2
/ exp M dr < C'|A|,
A [U]HI/Z(A)

where Hé/Q(A) denotes the closure of C5°(A) w.r.t. the seminorm [] g2 (4y-
Proof of Proposition 3.4. Compactness. Let M > 0 be such that sup, F.(u.) < M, and denote
by med(ue, I) a median of u. in I, i.e., |, _¢| < |I]/2 for ¢t < med(u.,I) and |I,_ | < |I|/2
for t > med(ue, I), and let z. = [med(ue, I)/c] € Z.

If we define v, = u. — ez, it is clear from the definition of z. that |I \ I, .| > |I|/2 and
Lo, | > 11172

We claim that (v.) has a subsequence pre-compact in LP(I) for every p € [1, +00). The proof
of the claimed assertion will be split into several steps.

Step 1. An estimate on the super level sets: We show that there exist g > 0, such that for
every € € (0,e9) and t > 16M /K it holds

__M
(3.13) |I\v5|,t| < 2[(2M55t) \Vi 1]|I|€ Theel

In order to prove (3.13) it is clear that we can assume |I},_| ;| > 0, being otherwise the inequality
trivial. Furthermore, since Ly ¢ = Ly, Ul 1 we can estimate the measures of the latter two
sets separately. Moreover, we choose M large enough such that 16M/K > 2.

Fix g € (0,1/2) such that 2uce In(wn:|I|) > K for e € (0,¢). Since 0. € (0,2/4), the fact
that e < 1/2 and t > 16M/K > 2 implies that £(t — 2¢) < ([£] — 1) (e — 26.)* < et and that

t — 2 > £. Then by applying Corollary 3.3 with 7 = 1 and s = [£] we get

M > Fs(ue) = FE(UE)

t ) o, cit1-0. 11\ Lo, 4. | wene| |
> 21 (L] - 1) (e —26;) [ln < TE +1In Spicel

(3.14) 522”5<[z}'_1>(5'_2992{h1<§5?ﬂ> —(hﬂngﬁ)v(D—%2jiE],

where in the last inequality we used |1, (1)_g_| > [Lotls |1\ Lo evo.| > [\ Lo, e| > [1]/2 and
2uceIn(wen:|I|) > K, thanks to the choice of 9. Moreover, from (3.14) we get

I, K
M>t (2,ugsln (|5t|> —2pee(In(2p.et) vV 0) + 8)

and so

M — &t
Lo, ¢| < 2[I]exp m + In(2ueet) VO | .

To derive the desired inequality for |1, ¢| notice that exp (In(2u.ct) V 0) = (2u.et) V1 and that
M — %t < —M on (16M/K,+00).
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Obviously, the very same proof applies to —v. and ¢ in order to estimate |I_,,_ |, so that
(3.13) follows.

Step 2. (v.) is weakly pre-compact in L*(I).

In this step we improve the pointwise bound for the measure of the super-level sets of |v.]
obtained in Step 1 to a uniform bound in e. From this we deduce the equi-integrabilty of
the sequence v., which in turn gives the desired pre-compactness property by the Dunford-
Pettis’ criterion (see Proposition 1.3 [22]). More precisely, we show that there exist two positive
constants ¢y, co such that for every ¢ > 16 M /K and for all £ small enough we have

(3.15) |I|UE|7,5‘ < cre

As before we estimate |I,_;| and then deduce the same inequality for |I_,_.|. Furthermore,
without loss of generality we may assume v, to be non-decreasing (see [14] or Theorem 5.8 [1]).

In order to improve estimate (3.13) the idea is to make use of the Trudinger’s inequality
stated in Theorem 3.5. This requires to modify v.. Set I= (o, 20 — @) and let o, : I — R be
the function

- _ ve () z € (a, 0)
Ue(z) = {UE(Qﬂ —z) xz€ (6,260 —a).

It is easy to check that o. € H'Y?(I) with [o.]? < 4[v,] 3. Then we define 9. =

HY/2([) =
(5. — N)4, with N = 16M/K. Hence 6. € Hy'*(I5. n)
By applying Theorem 3.5 above to 9. on the interval A = 1:557 ~, Chebychev’s inequality
yields, for every ¢t > N,

2
H1/2(I)

= "7 Ct? " —Cuet?/aM
(3.16) [ Lo..t| < Ol v exp | — P < C'|ls. nle :
SHY2(I5, N)
where we also used that ug[ﬁe]il/z(ﬂ o S 4M . Moreover, since |I;_ | = 2|1, 5| for any s, we
have by (3.16), Step 1 Y
ustz _C;L5t2

Lo.t| < C'|Lo, nle™ 55 < c[(2ueeN) V 1)e Zower — 4ir

If € is small enough to guarantee that 2u.e N < 1 and we apply Young’s inequality to the
previous estimate we get

Ly, 4] < cre™ !

for some positive constants ¢; and cy. Obviously, a similar inequality holds for [I_,, .| if ¢ >
16M /K, so that the claim follows.

Step 3. Ruling-out oscillations: (ve) is pre-compact w.r.t. the convergence in measure.

~ ~ e — Ve N
3Indeed, we have [UEE{U?(D = [vs]zlm([) + [Ue}ill/Q(f\I) + Qflx(f\l) %Z(y)‘ dzdy. Then, an easy
: : 512 — 2 ve(@)=Be(y) |2 2
change of variables gives [vs]H1/2(f\1) = [vs]Hl/Q(I)’ and fIx(f\I) ?| dxdy < [vE]H1/2(I)'
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By Step 2 we may apply the Fundamental Theorem of Young Measures (see Theorem 6.2 [22])
and extract a sub-sequence (v, ) which generates a Young measure (v,) on I.
For every open subset A C I, let

LA:sup{teR:liminHAva t] >O}7
k—+o00 k?
lA:inf{teRzliminﬂA\Avi 1ﬁ|>0},
k—-o00 L

and note that 4 < L4 and l4,L4 € (—16M/K,16M/K) by (3.13). Moreover, for every t € R
we have (as follows easily from Theorem 6.2 [22])

fiminf |4, o = lmint [ Xo-o) (02, () da

> [ X Wi = [ w0,

and analogously

fiminf |41 4,41 > [ val(=o0.t)de.

From this, one infers sptv, C [l4, L] for a.e. € A and, being u(z) = (Id, v,) the barycenter
of v,, we have u(x) € [la, L 4] for a.e. z € A.
With fixed x € I, for every r € (0,d(x,dI)) we claim that

(317) lim inf ng (uak,fr(x)) Z 2K (LI,,.(z) - l[1($)) 5

k—+o00
where I,.(z) = (x—r,x+r). Taking the latter inequality for granted it is easy to prove the conclu-
sion of Step 3. Indeed, since sup, Fr(us) < M the set {x € I : lim, (liminfy F;, (ue,, I (2))) >
L} must be finite for every n € N, and thus estimate (3.17) implies the existence of a countable
set J such that for every x € T'\ J

lim (Ly,(2) = l1,(2)) = 0.

r—0+

Hence, v, = dy(y) for x € I'\ J, and so the sequence (v., ) converges in measure to u (see Lemma
6.3 [22]).

In the following we justify (3.17). We may assume that Ly () > Ij, (), being otherwise the
statement trivial. Fix l; ) <t < T < Lj (), and apply Corollary 3.3 to u. with reference
interval A = I,.(z), re = [é], Se = [%] and € small enough to ensure r. < s., to get

A \ Aus,erEJrOE ‘
A2
wene| Al )
2pe(se —re)(e — 20.)?
Notice that the choice of ¢, T implies that the first term on the right hand side of (3.18) above

is infinitesimal as ¢ — 0. Moreover, €lnw, is infinitesimal as ¢ — 0 by the continuity
assumption on W, (2.2) and the choice of 6. Thus, from (3.18) we may conclude that

lkim+ian€k (te,, Ir(z)) > 2K (T —t),

Fo(ue, A) > 2uc(se —re)(e — 205)2 In (|Au5’68505

(3.18) + 2 (5. —72)(e — 260.)% In (
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and then (3.17) follows as t — lz(m) and T'— Ly .

Step 4. Conclusion: (ve) is pre-compact in LP(I) for any p € [1,+00).
Step 2 and Step 3 imply that (v.) is pre-compact in L!(T), the conclusion is then straightforward
thanks to (3.15).

We are now in a position to prove the lower bound inequality essentially by localizing (3.11)
and arguing as in Step 3 above.

Lower bound inequality. Without loss of generality we may assume u. — u a.e. in I, and

(3.19) liminf F;(u:) < M < +o0.

e—0t

Ftw) > 7 (wne [E v (< |2)))

and that, by Step 3, u € L°°(I), with |ju||z~ < 16M/K; hence we may assume (u.) equi-
bounded in L*°(I).

For a given partition (/;)7_; of I into pairwise disjoint intervals, fix 1 < j < r for which u
is not constant on I, so that we may also assume u. not constant on I;.

We can argue as in (3.18) of Step 3 with A = I, noticing that in this case L;, = ess supy, u

Moreover, remark that 4

and l7; = essinf;, u as follows from the convergence of (uc) to u in L*(I). Thus, (3.17) rewrites
as
(3.20) lim iIJ}f F.(ue,I;) > 2Koscy,u,
e—0
where oscqu = esssup 4 u — essinf 4 u denotes the essential oscillation of u on A. Actually, the

latter estimate holds for every 1 < j < r, being trivial in case u is constant on I;. Then, the
sub-additivity of the inferior limit operator implies

L S .
hgrﬂéﬁf F.(us) > 2Kzlosc1]u,
i=

from which, by passing on the supremum over the partitions, we deduce u € BV (I) and

limirif F.(uc) > 2K|Du|(I).
0

£—
O

REMARK 3.6. As a consequence of the estimate (3.15) in the proof of the compactness result
we get an apriori estimate in the Orlicz space e” for any sequence with equi-bounded energy.
As in [18] one can give an example of a sequence with equi-bounded energy that is not bounded
in L. This in essence shows that the estimate in e is optimal.

REMARK 3.7. Note that the argument performed in Step 3 in the above proof that gives
(8.20) is still valid if p. — p € [0, +00).

4This follows by taking into account that by truncation the oscillation of uc is reduced and so is the H1/2
semi-norm, and that W > 0, while + [%] € W—0).
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3.2. The I'-limsup inequality. In this subsection we establish the upper bound inequal-
ity which completes the proof of Theorem 2.2.

As common we first prove the I-limsup inequality fo a subclass of functions dense in the L'
convergence and in a topology for which the limit energy is continuous.

We choose continuous functions that are piecewise affine and piecewise strictly monotone
and provide for those functions a recovery sequence. This class satisfies the requirements above
and also provide the upper bound for the second order development of Section 4.2 (see Theorem
2.4 and Proposition 4.4). To this aim we keep track of all the vanishing quantities appearing in
the computations below, with their exact infinitesimal order.

To simplify the calculations we need some more notation: For any u € HY?(I ) and any
L2-measurable set Q C I x I consider the locality defect of F.

D(u,Q) = /Q

The terminology, introduced in [1], is justified since given two disjoint intervals A, B C I, it
holds

u(z) — u(y)
T —y

2
dxdy .

(3.21) F.(u,AUB) = F.(u, A) + F.(u, B) + 2u.D(u, A x B).

According to Lemma 3.1 and Corollary 3.3 we build up a sequence which lies as much as
possible in the e-wells of the potential and has all the transitions of height e.

PROPOSITION 3.8. Assume that p. — 07 and that (2.3) is satisfied with K # 0. For every
u € L*(I) there exists (u;) C HY?(I) such that uec — u in L'(I) and

limsup F (ue) < F(u).

e—0t

Proof. Without loss of generality we assume u € BV(I). Moreover, the further reduction
to continuous piecewise affine functions can be done since such a class is dense in BV (I) with
respect to BV strict convergence, namely both the convergence of the functions in L' and of
their total variations on I. Actually, it is not restrictive to also assume such functions being
piecewise strictly monotone. The conclusion then follows by a standard diagonal argument.

Let (2%) be an increasing ordering of u~!(¢Z), and set ¥ = inf I, x¥e*! = sup I, where
N. = #u~1(¢Z). Let . be a positive infinitesimal (which we will choose appropriately later
on) satisfying v, = o(¢). Define the piecewise affine functions u. : I — R by u. = P-(u) where

) + (ulet) —uat) (T A e ottt

b ie{l,...,N.—1}
(3.22)  P.(u)(z):=

u(a?) v € a2, x]
u(@e) v €[22, 2l

Notice that u. € C° N H'/2(I) and

lue — ul|poo(ry < €.
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Fi1G. 3.1. u is represented by the thick line, ue by the thinner one.

For ¢ sufﬁc_iently small, xl + Ve € (2, 2+1) for any i € {1,..., N. — 1}. Thus, we may define
the sets AL = [zi 2l +75] Ci = [x +75, ”1] C? = [ xl], and CNe = [gNe zN-*+1] By
construction u, ‘Ci = u(ztt) for each i € {1,. —1}, and u. ‘CN = u(x °). Moreover note

that for any z € C! and y € C?, |u.(z) — ue(y)\ |u( Gy —y(xdth)| < |5 — ile and we can
estimate the oscillation of u as follows |u(z) — u(y)| < (|7 — i| + 2)e. Thus we have
Jue(z) = ue(y)® — |u(z) — u(y)l®
= (lue (@) — ue(y)| + lu(@) — u(y) ) (Jue(z) = ue(y)| — lulz) — u(y)])
<25 =il + Delue () — ue(y)] = [u(z) — uly)|
< 2(]j = il + De(lue(z) — u(@)] + Jus(y) — uy)]) <4(lj — | + 1)e?
and thus

(3.23) Jue(2) — ue(y)|* < |u(z) — u(y)]* +4(15 — il + 1)¢?

for any z € C% and y € CY.
In the sequel ¢ denotes a positive constant, which may vary from line to line, independent
from e.

Step 1. Estimate of the HY/? seminorms. We prove that
(3.24) [welFr/2(r) < =26 3e [ Dul(1) + [WlF/2p) + 0(1),

the infinitesimal o(1) being uniform for all functions u such that 0 < a < |u'| < b.
To get estimate (3.24) consider the decomposition

Na
[welisoy = Y, D (ue, CLx C2)
4,7=0
N.—1
(3.25) + > D(us, ALx A+ > D (u,Clx Al).

1,5=1 i=0,...,N.
j=1,...,Ne—
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In the following we will treat separately each sum above and show that the main contribution
is given by the first, while the latter are infinitesimal.

To deal with the first term in (3.25) we further separate the interactions of height &, for
which we take into account the sharp computation of (3.3), from the others, for which we use
the following estimate

clj —ile?

(3.26) D (ue,CL x CY) < D (u,CL x Cf) + ———;,
(17 —ile + =)

where 4,7 € {0,..., N.}, with ¢ # j. The latter can be deduced straightforward by (3.2), (3.23)
and taking into account that |C?| = O(¢) for every i, thanks to the piecewise strict monotonicity
of w.

In view of (3.3) and (3.26) we get

NE Ns
> D (u, CixCH=>" > D(u,ClxCY)
i,j=0 h=1|j—i|=h
i+1

ps (@ i) (@t — e | D
<2 Zln —1—2 Z D (ue,CL x C7)
=1

i+1 i—1
(xe™ — 28 —9e)e h=2 |j—i|=h

N. )
< 282(_1nfys + In(ce))N: + Z Z (D (u702 % Cg) + chs)

h=2 |j—i|=h (h+ %)2

Ne—1
1
< _252N5 In~y, + [U]%p/z(l) + ce? Z Z E

h=2 |j—i|=h
< —2¢2N.In~, + M?{W(I) + ce®N.In N.
(3.27) < =2elnye|Dul(1) + [l 2 gy + 0(1).

In the last inequality we have used that eN. < |Dul|([I).
For what the second term in (3.25) is concerned, fix i,j € {1,..., N. — 1} and recall that u.
is either constant or affine with slope /7. on each AL and A7, so that
- for ¢ = j, if u. is constant the corresponding term gives a null contribution, while if u.
is affine the double integral is nothing but |AS x Af|e? /42, which reduces to £2;
- fori # j, |x —y| > c|j —ile and |uc(x) — uc(y)| < (|5 — i + 1)e for any z € AL and
y € Al
Taking this into account, we get

Ne—1 . 2
, , — 1
E D (u., AL x AT) < ¢r? E ('J|Z|+> + 262N,
i,j=1 ij=1,...,Ne—1 g

i#]
< ¢(eN.)? (%)2 + 222N, < ¢|Duf*(]) (%)2 + 2¢[Dul(I) = o(1).
(3.28)
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Now consider the following further splitting of the third term in (3.25)
> D(u.,CixAl)= Y D(u,Clx Al)

i=0,...,Ne li—i|>1
j=1,...,N.—1 GAi—1
N£71 . . NE . .
(3.29) + ) D(us,CIx AL) + Y D (u, CL x ALY
=1 1=2

The first sum on the right hand side above can be dealt with as the one in (3.28), so that

(3.30) > D (ue,Clx Al) =o(1).
lj—il>1
jAi—1

Moreover, a direct integration yields
D (u,Ci x AL) < &2,
and of course a similar computation holds for D (u.,Ci™t x A%), so that

N.—1

(3.31) > (D (ue,Cix AL) + D (u., CI71 x AL)) < 22°N..
i=1
By collecting (3.30), and (3.31) we have by (3.29)
(3.32) > D(us,Clx Al) = o(1).
i=0,...,N.
j=1,,Nom1

Eventually, (3.27), (3.28) and (3.32) give (3.24).

Step 2. Estimate of the potential term.
The one-periodicity of W and the very definition of u. yield

/IW (uiw)) do — J\gl /z:“% W (uim)) du

N:.—1 u(m?rl)/s 1 5 1
(333) =Y / W(t)dt < ~.N. / W ()it < [ Dul (1) / W (t)dt.
i—1 u(zl)/e 0 0

Step 3. Conclusion.
From Step 1 and Step 2 it follows

1
Futue) < (~2ueetnne 025 [ W) DU+ el + o)
0
Eventually, the choice 7. = p.e?/n. is such that 7. = o(¢) and
(3:3) Futue) < et (2 ) 1Dl + lully s + ol
€

Taking the limit as e — 07 we conclude the proof.
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3.3. Some related results. In the following two corollaries we refine (ii) of Proposition
3.4, and prove that the energy of any sequence is concentrated on a neighbourhood of the
diagonal set A in I x I. To show that, we exploit the independence of the I'-limit from the
particular choice of the potential .

COROLLARY 3.9. Assume that u. — 0% and that (2.3) is satisfied with K # 0. For any
u € BV (I) and any sequence (u:) converging to u in L'(I) with sup, F.(u.) < +00, we have
(3.35) liminf . D(ue, A,,) > 2K|Du|(I),

e—0t
where 7. is any positive infinitesimal such that p. = o(v2), and for every v > 0

Ay ={(z,y) eI xI:|z—y[ <~}

Proof. We first notice that the results of Proposition 3.4 do not depend on the particular
choice of W, but only on the qualitative assumptions on it. More precisely, fixed o > 0, (ii) in
Proposition 3.4 yields

o ue ()
hﬂérif ,ug[ug]?ql/z(l) —|—7750/IW ( 65 ) das} > 2K |Du|(I),
which, by letting ¢ — 0T and taking into account the upper bound for the energy of u., implies

(3.36) lim inf e [ue] 12y > 2K | Dul(1).

e—0t

Moreover, given v > 0, if (I;); is a partition of I such that |I;| < v/2y and |Du|(9I;) = 0 for
every j, from the lower bound inequality (Proposition 3.4, (ii)) we infer

lim inf {MED(%,AW) T /I W (uix)) dx}

tman
W (“é@) dx] > 2K |Dul(I).

(337) Z lim inf |f,L5 [ua]ill/z(fj) + 775/
J

T
e—0 I;

By combining the arguments leading to (3.36) and (3.37), it follows
(3.38) lim inf pe D(ue, Ay) = 2K[Dul(I).

e—0

In addition, the compactness result in (i) of Proposition 3.4 entails that (uc) (up to e-integer
translations) actually converges to u in L?(I) and thus

(3.39) lirgl+ peD(ue, I x I\ A, )=0
E—
provided that p. = o(v2). Hence, (3.35) follows by (3.38) and (3.39). O

COROLLARY 3.10. For any u € BV (I) and any sequence (u.) converging to u in L'(I) with
sup, F.(us) < 400, any cluster point v of the family of measures

ue () — uc(y)

2
dL?| (I < I
T, | e,

(3.40) Ve = e
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is concentrated on the diagonal A, and satisfies myv > 2K|Du| where m denotes the projection
on the first coordinate.

In particular, in case (uc) is a recovery sequence for u, the family (v.) weakly x converges
to U satisfying

TRV = 2K|Du|

Proof. The proof is a straightforward consequence of the compactness result (Proposition
3.4 (i)), (3.39) and Corollary 3.9 localized on open subsets of I. O

Eventually, we briefly give the proof of Corollary 2.7. It can be worked out using the same
arguments of Theorem 2.2, the only warning being that now we have also to take into account the
non-vanishing contribution given by the H'/? seminorm in the asymptotic of (F.). In particular
in the proof of the I'-liminf and the I'-limsup inequalities we follow the notation introduced in
Proposition 3.4 and Proposition 3.8, respectively.

Proof of Corollary 2.7. Compactness. The statement trivially follows by using the compact
embedding of H'/? functions with zero mean in LP(I) for every p € [1, 4+00).

Lower bound inequality. Fix v > 0. From inequality (3.20), applied to a partition (I;); of I
satisfying sup; |I;| < V27, we easily deduce (see Remark 3.7)

lim inf F; > liminf p. D IxIT\A 2K A
iminf F(ue) > minf ueD(ue, I x I\ Ay) + ;osm]u
> uD(u, I x I\ A,)+ QKZOSC]J.’LL.
j=1
The lower bound inequality then follows by passing on the supremum on the partition and then
letting v — 0.

Upper bound inequality. We repeat the construction of Proposition 3.8. The proof follows from
estimate (3.34) and a standard density argument. O

4. Boundary Data. In this section we consider the case in which a boundary condition
is imposed. As already discussed in Section 2 the non local regularization and the fact that the
limit energy is defined in BV requires to give the boundary conditions in a strong version; i.e.
restricting our functionals to the space

€ — 1/2 . — e
Di(I)={ue H/*(I): u‘(aﬂ%) =0, u‘(ﬁ—éﬁ) =¢e[L/e]}.

Namely we introduce the energies G : L'(I) — [0, +00] given by

Fo(u) ifueDs(I)
Ge(u) =
+o0o0  otherwise in L'(I).

In general for functionals defined on BV, as the case of our I'-limit, in order to impose the
boundary condition it is enough to assign the outer trace; i.e. to require u(z) =0 if < a and
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u(z) = L if « > b. This condition is relaxed in a term that penalizes the non attainment of
the boundary data. On the other hand, in terms of the functionals F. this condition disappears
in the limit. For instance, one can approximate any constant function with a sequence (uc)
satisfying the outer boundary condition and such that F;(u.) — 0. This problem is overcome
by imposing the inner trace as in the space D5 (I) (see Remark 4.1 and Remark 4.5). Finally,
the condition u = € [L/e] on the set (b— d,b) is necessary for the I'-limit of the whole family F.
to exist.

4.1. First Order Limit. The proof of Theorem 2.3 is a consequence of Theorem 2.2 once
we show that it is possible to construct the recovery sequence matching the boundary data.

Proof of Theorem 2.3. Compactness and lower bound are an immediate consequence of Theorem
2.2.
As for the recovery sequence for a given function u in

Dp(I) = {uec HY*(I) : u‘(%a_m) =0, Ul p_s ) = L}

we only need to modify the construction done in Proposition 3.8 for piecewise affine and piece-
wise strictly monotone functions on I.

In fact it is not restrictive to assume u € Dy (I) to be piecewise affine on I and piecewise
strictly monotone on J = (a4 4,8 — 4).

Set Jy = (a,a+6), Jo = (B —6,8) and A\. = [£]£. Then, using (3.22), we define

P.(A\cu) on J,
U ;=< 0 on Jp,
[%]5 on J2.

Then, [Jus — ul| (1) < €+ £ |lul| L= () and in particular u. — w in L*(I). Since I = J; UJ U Jo
by (3.21) it follows

Ge(ue) = Fo(ue, J) 4+ 2pe (D(ue, J1 X J) + D(ue, J1 X J3) + D(ue, J X J3)),

taking into account that F;(u.,J1) = F.(ue,J2) = 0. Moreover, by Step 1 of Proposition 3.8,
(3.33), and using that 1 — /L < A. <1, we get

Ge(ue) < —2pcelny.|Dul(I) + pe [U]%(lﬂ(J) + o(pe)
(4.1) + 24 (D(ue, J1 X J) + D(ug, J1 X J3) + D(ue, J x Jo2)).

We claim that the latter estimate entails
(4.2) G:(ue) < =2pelnvye|Dul(I) + pie [uﬁ{l/%]) — 4% Inye + o(pe).
Indeed, by Lebesgue Dominated Convergence Theorem we have

limsup D(ue, J1 x J2) < D(u, Jy x Ja),

e—0*t

thus to prove the claim it suffices to show that for ¢ € {1,2} it holds

(4.3) D(uc, J; x J) < D(u, J; x J) — e*Inv. + o(1).
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The proof of the above estimate, as in Step 1 of Proposition 3.8, is based on the splitting

[L/e]-1 ' [L/e]—1 4
(4.4) D(ue, Jix J)= Y D(ue, Ji xCI)+ Y D(uc,J; x Al),
j=0 j=0

and follows by similar arguments.
Eventually, recalling that 7. = p.? /7. (see Proposition 3.8) we deduce from (4.2)

limsup G, (u.) < 2K|Dul(I).

e—0t
O

REMARK 4.1. Refining the argument used above one can realize that it is possible to char-
acterize the T-limit also in the case § — 07 with In§ ~ Ine, obtaining

G(u) = 2K (|Du|(I) + [u(a+)[ + |L = u(B-)])

for any w € BV(I) (u(a+) and u(B—) denote the inner traces of u at o and B, respectively).
In other words in the limit the boundary condition is substituted by the penalization given by
the last two terms of the energy.

4.2. Second Order Limit. In this subsection we select among the minimizers of G those
which better describe the asymptotic behaviour of the minimum points of G, by proving the
second order expansion in terms of I'-convergence (see [4]) stated in Theorem 2.4 (see also
Remark 2.5). In order to do that, we consider the functionals G : L1(I) — [0, +o0] defined by

Ge(u) — 2[L/e]e?pe In e

Gl(u) =
(u) He

if u € D5 (I) and equal to +oo otherwise in L!(T).

REMARK 4.2. If we assume that “Esh;ﬂ

the scaling argument given in Section 1.1, we can define G alternatively as

— 0 as € — 0%, which is admissible in terms of

Gl (u) = G:(u) —uZEKa[L/e].

The proof of Theorem 2.4 is carried out in Proposition 4.3 and Proposition 4.4 below.
PROPOSITION 4.3. Assume that u. — 0V, that (2.3) is satisfied with K # 0, and that
e =o(ue). Let (u:) C LY(I), then
(i) Compactness: if sup. GL(us) < +oo, then there exist u € Dy N BV (I) such that
|Du|(I) = L, and a subsequence (ue,) which converges to u in LP(I) for every p €
[1,400).
(ii) Lower bound inequality: if u. — u in L'(I), we have
(4.5) lim(i)r+1f Gl(u) > G (u).
Notice that any function in Dy, N BV (I) has total variation greater than or equal to L. In
case the total variation is exactly L then the function is necessarily non-decreasing, and thus a
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minimizer for G on Dy, (I). So that, in particular, Proposition 4.3 implies that G is finite only
on the minimizers of G.

Proof of Proposition 4.3. Compactness. By taking into account (i) of Proposition 3.4 and
the boundary conditions, we obtain a subsequence (u,) converging in LP(I) for every p >
1. Moreover, if u denotes the limit point, the energy bound sup, Gi(u.) < +oo and (ii) of
Proposition 3.4 implies that

2K|Du|(I) = G(u) < lkimJirnfGEk (ue,) < 2KL,

so that v € BV(I). Furthermore, the convergence of (u, ) to u in LP(I) implies u € D, NBV (1)
and thus |Du|(I) = L.

Lower bound inequality. Let us consider u € L'(I) and a family (u.) converging to u in L(I)
such that liminf. Gl(u.) < +oo. In particular, we may assume that sup, G1(u.) < +oo. The
compactness result proved above implies that w is a minimizer for G on D (I), and then it
is non-decreasing. Hence, it is not restrictive to assume that u. is also non-decreasing up to
passing to its non-decreasing rearrangement.

As already pointed out after the statement of Theorem 2.4 the strategy of the proof is to
isolate the energy contribution outside the set A, for an arbitrary v > 0, as follows

(4.6) Gl(ue) > D(ue, I x I\ A,) + <D(uE,A7) n Z*/,W (“?) dz — 2[L/e)e? hn]E) ,

and to prove that the second term of the right hand side above is positive in the limit as
¢ — 0%. This given, Fatou’s Lemma and the arbitrariness of v > 0 give the required lower
bound inequality.

The proof is based on the following claim.

Claim. Fix N € N. There exists a constant oy > 0 such that for every € > 0 there exists a

partition of I into intervals I' = (i, 2%, i =1,...,N — 1, satisfying:
(i) ﬂ < |[l| < M
2N — "¢ = 2N’

(i) {z € I : uc(z) <erl +e3}| > one, where rl =0 and for i € {2,...,N — 1}

ré = argmin{|ez — inf u.|, 2z € Z};
1
(iii) |erl —infyiu| <e®ifie{1,...,N};
(iv) {z € I : u.(z) > est — 3} > one, where s = [L/e] and fori € {1,...,N — 1}

st = argmin{|ez — supu.|, z € Z};
It

€

(v) lest —suppsue| < e¥ifie {1,...,N}.
Note that in the above definitions st = ri*! for every i € {1,...,N — 1}.
The rough idea is that the potential term in the energy forces the sequence u. to have almost
all e-levels of the order €. Thus, starting from an arbitrary partition, we can always slightly
move the extremes of each interval in order to satisfy conditions (ii)—(v).
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Take a partition of I given by the intervals (y;,yi+1), ¢ € {1,. — 1}, of length at least
%I. For any i € {1,...,N — 1}, consider In(y;) = (yl Jé\lf,yl + |I|> N I and for any s € Z

define the intervals
Jhs ={x € In(y) : |ue(x) —es| < %},
Since sup, GL(u.) < +00, there exists a positive constant M for which sup, G¢(u.) < M, and
thus we get
Ue

)W(?)dng,

WeTle Z |IN(yi) \ JZ*.’S| < 775/

SEZ In(yi

where we = infy(, zy>c2 W. This in turn implies

Z|st| |I| M

w
seZ eTle

and then there exists an integer s%, with [inf; () uc/e] < st < [SUpP; (y:) Ue /€], such that

|Ji7si|><|l|_ M) 1
€ 4N We e [oscu5]+2

By the fact that u. is monotone and belongs to D5 (I), we have 0 < Joscu./e] < [L/¢], from

which we infer that
- M M €
AN  wen. ) L+2¢

Note that since W satisfies (2.2), w. ~ ? and then w.n. — +00 as ¢ — 0F. Thus there exists
g9 > 0 and on > 0 such that for all € € (0,¢9)

2

(4.7) T2 > 20ye.

Finally, we can define the partition required by the claim taking the points z! to be the middle
points of the intervals J;’Sz ifi =2,...,N—1, 2! =y and 2 = yy. With this choice
Il = (2,211 satisfy (i)—(v). Indeed, (i) holds true since % € In(y;) and |y;+1 — yi| > %‘, (ii)
and (iv) are satisfied by (4.7), while (iii) and (v) by construction; so that the claim is proved.

The partition provided by the claim satisfies U; I x I C Agf, and then using (4.6) we can
estimate G (u.) for every N > 0 by

AN

Ue
GL(us) > D(ue, I x I\Ai + Z (ue e T / w (?) dx) —2[L/e]e* Inn..

i—1

Taking into account that rl = st=1 r! =0, s = [L/e] we get

Glue) > D(ue, I x I\ A, .2)

4N

(4.8) + Z (us H2(r) T e / w (%) dx —2(st —ri)e? lnn€> .
e JIe

7
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The conclusion follows from (4.8) by the arbitrariness of N provided we show

Ue

3

N
(4.9) lim inf ([ua];m(lg) 4 e /I w (

e—0t : He

) dx —2(s —rl)e? lnr]E) > 0.

This is accomplished by the lower bound of Corollary 3.3 applied on the set I! with s = st and
r = r’ (which can be done thanks to (iii) and (v)). Indeed, with these choices we get

Ne
[’U,e]?ql/z([é') + ; - w <

, . Al||BY we I
> 9(gt — 72321 ‘E.E 1 i E(s
2t =2 (i (M) + o (i
4 2(st — rt)(4¢8 — 4e*) Iny.,

%) dx —2(st —ri)e*Inn.

where we denote AL = {z € I' : u.(z) > est — &3}, Bl = {z € I! : u.(z) < erl + &%}, and

we = infy, z)>.2 W. Since by construction |AL| > one, |BL| > one and % <|Ii < %, it is
easy to see that the right hand side tends to zero as ¢ — 0" and thus (4.9) is established.
O

To complete the proof of Theorem 2.4 we etablish the upper bound inequality, which is a
direct consequence of the construction performed in Theorem 2.3.

PROPOSITION 4.4. Assume that u. — OV, that (2.3) is satisfied with K # 0, and that
e = o(pe). For every u € L(I) there exists a sequence (u;) C D5 (I) such that u. — u in L(I)
and

limsup G (u.) < G*(u).

e—0*t

Proof. Without loss of generality we may assume G'(u) < +oo. Moreover, by a density
argument the further reduction to continuous functions which are piecewise affine and piecewise
strictly monotone on (a+4, 5—3) can be done. Thus, if we consider the sequence (u.) constructed
in the proof of Theorem 2.3, by (4.2) we have

Gl(us) < —2elnp.|Du|(I) + [“]21/2(1) —4e%Iny. + o(1).

The thesis then follows by passing to the limit on ¢ — 07 since ¢ = o(ue), 7= = pee?/ne,
Ae = [£] £, and |Du|(I) = L. O

g

REMARK 4.5. The proof given above is also compatible with the case In§ ~ Ine and produces
as second order T-limit the HY/? seminorm in I without any constraint on the boundary values.
So that the minimum point selected by this asymptotic expansion would be given by any constant
function, neglecting completely the boundary conditions.

5. Conclusions. In this paper we studied in certain regimes the asymptotic behaviour in
terms of I'-convergence of a scaled variational model for dislocations of Nabarro-Peierls type,
as proposed by Koslowski-Cuitino and Ortiz in [17].

In this model the slip is assumed to occur only on one slip plane and the dislocations are
interpreted as integer level sets of a phase field (proportional to the jump of the displacement
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across the slip plane). In the regimes under consideration the slip is assumed to be much larger
than the lattice spacing or, in other words, the amount of dislocations on a large box tends to
infinity as the size of the box increases. In this respect we regard our asymptotics as a step
in the direction of describing the macroscopic plastic behaviour due to the presence of a large
number of dislocations.

We performed a rigorous analysis in the one dimensional case (the two dimensional case being
probably very similar, but mathematically much more involved). We identify three regimes (very
diluted, critical and more dense). In the critical regime we show the coexistence of two effects:
a self interaction that gives rise to a line tension energy term and a long range interaction
between dislocations given by a non local energy. Those effects are also present in the other two
regimes at different order (as shown in the diluted case by means of an asymptotic expansion
in terms of I'-convergence). In particular in the dense regime the leading term of the energy is
the non local, specifically it is given by the H'/? seminorm of the phase field.

In our opinion this result validates, in the case of a large number of dislocations (larger
than log L in a box of side length L), the working assumption in the simulations in [17]; i.e.
the idea that the overall distribution of dislocations is given by (the level sets of) a profile that
minimizes the H'/? seminorm.
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