CORSO di LAUREA in FISICA ANALISI MATEMATICA 2A

Prova Scritta

10 Aprile 2003

1. Sia

$$\omega(x,y) = \frac{2x - 3y}{x^2 + 9y^2} dx + \frac{3x + 18y}{x^2 + 9y^2} dy,$$

provare che ω è esatta su $\mathbf{R}^2\setminus\{(x,y):x=y,\ y>-1\}$ e determinarne tutte le primitive. Calcolare $\int_{\gamma}\omega$, dove γ è l'ovale $x^8+y^8=1$ percorso in senso antiorario.

2. Determinare il volume della porzione del cilindro di asse la retta x=y=z, di direttrice la curva di equazione

$$\begin{cases} (z^2 + y^2)(z^2 + y^2 + y) = 4yz^2 \\ x = 0, \end{cases}$$

e compresa tra i piani x = -1, x = 3.

3. Calcolare l'area della porzione di superficie sferica di equazione $x^2 + y^2 + z^2 = 2$ che sta nella regione di spazio $E = \{(x, y, z) \in \mathbf{R}^3 : |z| \le x^2 + y^2\}.$

4. Per ogni punto P del semipiano $A = \{(x, y) \in \mathbf{R}^2 : y > 0\}$ si denotino con ρ_1, ρ_2 le distanze dai punti $P_1 = (-1, 0), P_2 = (1, 0),$ rispettivamente.

Siano $B = \{(\rho_1, \rho_2) \in (0, +\infty)^2 : \rho_1 + \rho_2 > 2; |\rho_1 - \rho_2| < 2\}$ e $\Phi : A \to B$ definita da $\Phi(x, y) = (\rho_1; \rho_2)$. Φ risulta invertibile, con inversa $\Phi^{-1} : B \to A$ data da

$$\Phi^{-1}(\rho_1; \rho_2) = \left(\frac{\rho_1^2 - \rho_2^2}{4}; \sqrt{\rho_2^2 - \left(\frac{\rho_1^2 - \rho_2^2}{4} - 1\right)^2}\right).$$

 Φ^{-1} è un sistema di coordinate sul semipiano A. Mediante tale cambiamento di coordinate determinare

$$\iint_{D} y dx dy,$$

dove $D = \{(x,y) \in \mathbf{R}^2 : y > 0; \ 1 \le (x+1)^2 + y^2 \le 4; \ \frac{25}{16} \le (x-1)^2 + y^2 \le \frac{49}{16} \}.$

5. Sia $D \subseteq \mathbf{R}^3$ un dominio regolare, provare che

(a) se $f, g \in C^1(D)$, allora

$$\iiint_{D} \left(\frac{\partial f}{\partial \mathbf{v}} g + f \frac{\partial g}{\partial \mathbf{v}} \right) dx dy dz = \int_{\partial D} f g \mathbf{v} \cdot \mathbf{n} d\sigma,$$

dove **n** rappresenta la normale esterna a ∂D e $\frac{\partial f}{\partial \mathbf{v}}$ la derivata direzionale di f nella direzione \mathbf{v} .

(b) se D è semplicemente connesso, $\mathbf{F} \in C^2(D; \mathbf{R}^3)$ con rot $\mathbf{F} = 0$, allora \mathbf{F} è conservativo.