Esercizi per l'esame di "Strutture Discrete" (a.a. 2016/2017)

- 1. Dato un insieme finito X, una partizione di Lah di X é una partizione di X in cui ogni blocco é munito di un ordine lineare. Fissati $n, k \in \mathbb{N}$, indichiamo con $L_{n,k}$ il numero di partizioni di Lah di un insieme di cardinalitá n con k blocchi. Dimostrare le seguenti identitá polinomiali (ove $(x)^n = x(x+1)(x+2) \cdot \ldots \cdot (x+n-1)$ é il fattoriale crescente):
 - (a) $(x)^n = \sum_{k=0}^n L_{n,k}(x)_k;$
 - (b) $(x)_n = \sum_{k=0}^n L_{n,k}(-1)^{n-k}(x)^k$.
- 2. Dato $q \in \mathbf{N}, q \geq 1$, e dati $n, k \in \mathbf{N}$, si definisce coefficiente gaussiano la quantitá

$$\binom{n}{k}_q = \frac{(1-q^n)(1-q^{n-1})(1-q^{n-2})\cdot\ldots\cdot(1-q^{n-k+1})}{(1-q^k)(1-q^{k-1})(1-q^{k-2})\cdot\ldots\cdot(1-q)}.$$

- (a) Dimostrare che $\binom{n}{k}_q$ conta il numero di sottospazi vettoriali di dimensione k di uno spazio vettoriale su un campo finito di cardinalitá q^n .
- (b) Dimostrare che vale la seguente relazione di ricorrenza:

$$\binom{a+b}{b}_q = \binom{a+b-1}{b}_q + q^a \binom{a+b-1}{b-1}_q,$$

per $a \ge 0$ e $b \ge 1$.

- (c) Sia $c_k(b,a)$ il coefficiente di q^k in $\binom{a+b}{b}_q$. Dimostrare che $c_k(b,a)$ conta il numero di partizioni intere di k in al piú a parti la cui parte massima é al piú b.
- 3. Sia S_n l'insieme delle permutazioni di $[n] = \{1, 2, ..., n\}$. Dimostrare che la funzione

$$d: S_n \times S_n \to \mathbf{N}$$

che si ottiene definendo $d(\pi, \sigma) = |\{k \in [n] \mid \pi(k) \neq \sigma(k)\}|$ é una metrica su S_n , cioé che soddisfa le seguenti proprietá, per ogni $\pi, \sigma, \rho \in S_n$:

- $d(\pi, \sigma) \ge 0$, e $d(\pi, \sigma) = 0$ se e solo se $\pi = \sigma$;
- $d(\pi, \sigma) = d(\sigma, \pi);$
- $d(\pi, \sigma) \le d(\pi, \rho) + d(\rho, \sigma)$.

Fissata una permutazione $\gamma \in S_n$, si consideri la sfera $S(\gamma, n-r)$ di centro γ e raggio n-r, vale a dire l'insieme

$$S(\gamma, n-r) = \{ \pi \in S_n \mid d(\pi, \gamma) = n-r \}.$$

Dimostrare che

$$|S(\gamma, n-r)| = \frac{n!}{r!} \sum_{k=0}^{n-r} \frac{(-1)^k}{k!}.$$

4. Dato un insieme parzialmente ordinato P, si dice che P ha lunghezza n quando la piú lunga catena di P possiede n+1 elementi. In tal caso si scrive $\ell(P)=n$. Si dice che P ha lunghezza finita quando $\ell(P)=n$, per qualche $n\in \mathbb{N}$. Dimostrare che, se P e Q sono due insiemi parzialmente ordinati di lunghezza finita, allora

$$\ell(P \times Q) = \ell(P) + \ell(Q).$$

- 5. Sia L un reticolo completo, e sia $F: \wp(L) \to \wp(L)$ definita ponendo $F(A) = \downarrow (\bigvee A)$. Dimostrare che F conserva l'ordine e che Fix(F) (l'insieme dei punti fissi di F) é un reticolo isomorfo a L.
- 6. (a) Dimostrare che il reticolo (\mathbf{N}_0, mcm, MCD) é distributivo.
 - (b) Sia $D = \{3, 5, 7, 11 \dots\}$ l'insieme dei primi dispari (1 é escluso, dunque). Calcolare $\bigvee D$ in (\mathbf{N}_0, mcm, MCD) . Dimostrare quindi che il reticolo (\mathbf{N}_0, mcm, MCD) non é infinitamente \vee -distributivo. (Un reticolo L si dice infinitamente \vee -distributivo quando, per ogni $x \in L$ e per ogni $(y_i)_{i \in I} \subseteq L$, si ha $x \wedge \bigvee_{i \in I} y_i = \bigvee_{i \in I} (x \wedge y_i)$).
- 7. Siano $P \in Q$ due insiemi parzialmente ordinati e sia $\varphi : P \to Q$ una funzione. Una funzione $\varphi^{\sharp} : Q \to P$ si dice aggiunta superiore di φ quando la coppia $(\varphi, \varphi^{\sharp})$ é una connessione di Galois. Una funzione $\varphi^{\flat} : Q \to P$ si dice aggiunta inferiore di φ quando la coppia $(\varphi^{\flat}, \varphi)$ é una connessione di Galois. Per ognuno dei seguenti casi, stabilire se φ possiede un'aggiunta superiore e/o un'aggiunta inferiore, e, in caso di risposta positiva, determinare tale aggiunta.
 - (a) $P = Q = \mathbf{N}$ e $\varphi(n) = mn$, con $m \in \mathbf{N}$ fissato (qui \mathbf{N} é dotato dell'ordine parziale dato dalla divisibilitá);
 - (b) $P = Q = \mathbf{R} \in \varphi(x) = \lfloor x \rfloor = \text{il piú grande intero} \leq x$ (qui \mathbf{R} é dotato dell'ordine naturale);
 - (c) $P = Q = \wp(X)$ e $\varphi(Y) = A \cap Y$, con $A \subseteq X$ fissato.

8. Sia Π_n il reticolo delle partizioni insiemistiche di un insieme di cardinalitá n e si indichi con μ la sua funzione di Möbius. Data $\pi \in \Pi_n$, si indichi con $b(\pi)$ il numero di blocchi di π . Dimostrare che

$$\sum_{\substack{\pi \in \Pi_n \\ b(\pi) = k}} \mu(0, \pi) = (-1)^{n-k} c_{n,k},$$

ove i coefficienti $c_{n,k}$ sono i numeri di Stirling di I specie senza segno, vale a dire il numero di permutazioni di lunghezza n con k cicli.

- 9. Sia S l'insieme di tutte le permutazioni. Per ogni $\pi \in S$, indichiamo con $|\pi|$ la lunghezza della permutazione π . Definiamo il seguente ordine parziale su S: date $\sigma = \sigma_1 \cdots \sigma_k$, $\tau = \tau_1 \cdots \tau_n \in S$, con $|\sigma| \leq |\tau|$, poniamo $\sigma \leq \tau$ quando ci sono $k = |\sigma|$ elementi $\tau_{i_1}, \tau_{i_2}, \tau_{i_2+1}, \dots, \tau_{i_2+k-2}$ in τ (con $i_1 < i_2$) tali che la stringa $\tau_{i_1} \tau_{i_2} \tau_{i_2+1} \cdots \tau_{i_2+k-2}$ é "isomorfa" alla permutazione σ , nel senso che gli elementi di tale stringa sono nello stesso ordine relativo degli elementi di σ . Si osservi che, a parte eventualmente l'elemento τ_{i_1} , tutti gli altri elementi della stringa devono apparire consecutivamente in τ . Ad esempio, 321 < 431825976perché la stringa 431 contenuta in 431825976 é isomorfa a 321 (in questo caso tutti gli elementi della stringa 431 appaiono consecutivamente nella permutazione più lunga, il che naturalmente implica che siano consecutivi gli ultimi 2); inoltre, si ha anche 231 < 432516, in quanto la stringa 351 é isomorfa a 231 e gli elementi 5 e 1 sono consecutivi (anche se 3 e 5 non lo sono); infine, $123 \nless 432516$, dato che non ci sono stringhe di lunghezza 3 nella permutazione piú lunga che siano isomorfe a 123 (cioé crescenti) e tali che il secondo e il terzo elemento appaiano consecutivamente. Quando $\sigma < \tau$, un'occorrenza di σ in τ é una stringa contenuta in τ isomorfa a σ . Ad esempio, 431825976 contiene 3 occorrenze di 321, che sono 431, 876 e 976, e una sola occorrenza di 312, che é 825.
 - (a) Dimostrare che, per ogni $\tau \in S$, τ copre al piú tre permutazioni.
 - (b) Sia $\sigma \leq \tau$. Calcolare $\mu(\sigma, \tau)$ nel caso in cui τ copre una sola permutazione e nel caso in cui τ copre esattamente due permutazioni e i primi due elementi di τ non sono interi consecutivi.

Nota. Per superare la prova non é strettamente necessario risolvere tutti gli esercizi proposti (anche se naturalmente sarebbe preferibile!). La cosa fondamentale é provare seriamente a farli tutti. Nel caso di esecizi non risolti, prima dell'orale verificheró se c'é stato effettivamente un impegno da parte vostra (per esempio, se avete tentato un approccio che si é rivelato infruttuoso), o se invece i vostri tentativi si sono ridotti a poco piú di una semplice lettura del testo. Nel caso in cui effettivamente l'impegno sia evidente, la prova puó ritenersi superata.