Esercizi per l'esame di "Strutture Discrete" (a.a. 2014/2015)

1. Sia $p_n(x) = \sum_{i=0}^n a_i x^i$ un arbitrario polinomio di grado n a coefficienti complessi. Dimostrare che

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} p_n(k) = (-1)^n n! a_n.$$

Da tale risultato dedurre poi la seguente formula:

$$\sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{n} (-1)^k = (-1)^n.$$

2. (a) Sia $\pi = a_1 a_2 \cdots a_n$ una permutazione di S_n . Si chiama inversione di π ogni coppia (a_i, a_j) , con i < j, tale che $a_i > a_j$. Sia $I_{n,k}$ il numero di permutazioni di S_n con k inversioni. Dimostrare che, per k < n, vale la seguente ricorrenza:

$$I_{n,k} = I_{n-1,k} + I_{n,k-1}.$$

(b) Sia $\pi = a_1 a_2 \cdots a_n$ una permutazione di S_n . Si chiama ascesa di π ogni i < n tale che $a_i < a_{i+1}$. Sia $A_{n,k}$ il numero di permutazioni di S_n con k ascese. Dimostrare che, per $0 < k \le n$, vale la seguente ricorrenza:

$$A_{n,k} = (n-k)A_{n-1,k-1} + (k+1)A_{n-1,k}.$$

- 3. Dimostrare che il numero di partizioni intere di n in cui non compare alcuna parte multipla di 3 é uguale al numero di partizioni intere di n in cui ogni parte compare al piú 2 volte. Enunciare e dimostrare una opportuna generalizzazione di tale risultato.
- 4. Sia P un insieme parzialmente ordinato non vuoto. Un sottoinsieme finito $F = \{x_1, x_2, \dots, x_n\}$ di P si dice f ence quando $x_1 > x_2 < x_3 > x_4 < x_5 > \cdots x_n$ oppure $x_1 < x_2 > x_3 < x_4 > x_5 < \cdots x_n$.
 - (i) Sia Q un sottoinsieme di P che sia simultaneamente un insieme ascendente e un insieme discendente; siano $x, y \in P$, con $x \neq y$, e si supponga che $x \in Q$. Si supponga inoltre che esista una fence che collega x e y (vale a dire, con riferimento alla definizione data sopra, una fence tale che $x_1 = x$ e $x_n = y$). Dimostrare che $y \in Q$.
 - (ii) Indichiamo con $\mathcal{O}(P)$ l'insieme degli insiemi discendenti di P. Dimostrare che le seguenti condizioni sono equivalenti:

- (a) i soli insiemi ascendenti in $\mathcal{O}(P)$ sono \emptyset e P;
- (b) P non é l'unione disgiunta di due insiemi parzialmente ordinati non vuoti P_1 e P_2 .
- (c) P é connesso, vale a dire per ogni $x, y \in P$, esiste una fence che collega x e y.
- 5. Un sottoinsieme A di \mathbf{N} (insieme dei numeri naturali) si dice cofinito quando il suo complementare $\mathbf{N} \setminus A$ é finito. Sia \mathcal{L}_1 la famiglia dei sottoinsiemi cofiniti di \mathbf{N} e sia \mathcal{L}_2 la famiglia dei sottoinsiemi finiti e cofiniti di \mathbf{N} . Dimostrare che \mathcal{L}_1 e \mathcal{L}_2 sono entrambi reticoli, ma non reticoli completi.
- 6. Si consideri il contesto (G, M, I) descritto nella seguente tabella:

	a	b	c	d	е	f	g	h
A	×			×	×			×
В	×	×					×	×
C	×		×			×		×
D	×	×	×	×				
E	×	×			×	×		
F	×		×		×		×	

Determinare tutti i concetti di tale contesto e disegnare il diagramma di Hasse del reticolo di concetti associato L, indicando anche le etichette corrispondenti alle mappe γ e μ .

7. Sia P un insieme parzialmente ordinato e Q un reticolo completo. Si indichi con $(P \to Q)$ l'insieme parzialmente ordinato delle funzioni da P a Q con l'ordine puntuale (cioé $f \leq g$ quando $f(x) \leq g(x)$, per ogni $x \in P$). Si indichi inoltre con $\langle P \to Q \rangle$ il sottoinsieme parzialmente ordinato di $(P \to Q)$ costituito dalle funzioni crescenti. Data una funzione $f \in (P \to Q)$, si definisca la funzione $\overline{f} \in (P \to Q)$ ponendo:

$$\overline{f}(x) = \bigvee \{f(y) \mid y \le x\}.$$

Dimostrare che \overline{f} é crescente e che $f=\overline{f}$ se e solo se f é crescente. Dimostrare inoltre che la funzione $F:(P\to Q)\to \langle P\to Q\rangle$ definita ponendo $F(f)=\overline{f}$ é una funzione crescente.

8. Sia P un insieme parzialmente ordinato finito, e si ponga $P = \{x_1, x_2, \dots, x_n\}$, in modo tale che, se $x_i < x_j$, allora i < j. Sia $f: P \to P$ una qualunque funzione. Si definisca $g: P \times P \to P$ come segue:

$$g(x_i, x_j) = \sum_{z \ge x_i, x_j} f(z).$$

Si consideri la matrice $G = (g(x_i, x_j))_{1 \le i,j \le n}$. Si dimostri che

$$\det G = \prod_{x \in P} f(x)$$
 $\left(= \prod_{1 \le i \le n} f(x_i) \right).$

9. Un cammino di Dyck é un cammino nel piano discreto $\mathbf{Z} \times \mathbf{Z}$ che parte dall'origine di un fissato sistema di rifermiento cartesiano, termina sull'asse delle x, non scende mai al di sotto dell'asse delle x e utilizza i seguenti due tipi di passi: U = (1,1) e D = (1,-1). La lunghezza di un cammino di Dyck é il numero dei suoi passi. Qui sotto viene riportato un esempio di cammino di Dyck.

Un cammino di Dyck si puó rappresentare in modo equivalente come parola w sull'alfabeto binario $\{U, D\}$ che soddisfa le seguenti proprietá: ogni prefisso di w contiene almeno tante lettere U quante lettere D; il numero totale di lettere U in w é uguale al numero totale di lettere D.

Definiamo sull'insieme \mathcal{D} di tutti i cammini di Dyck il seguente ordine parziale: dati due cammini di Dyck w e w', poniamo $w \leq w'$ quando esiste una sottoparola (fatta di lettere non necessariamente consecutive) di w' uguale a w.

Per ogni $k \in \mathbb{N}$, si ponga $w_k = U^k D^k$ (cioé w_k é il cammino di Dyck composto da k passi U seguiti da k passi D). Dato un cammino di Dyck w, si dimostri che

$$\sum_{k} \mu(w_k, w) = 0$$

(ove la somma é estesa a tutti gli indici k tali che $w_k \leq w$).

Nota. Per superare la prova non é strettamente necessario risolvere tutti gli esercizi proposti (anche se naturalmente sarebbe preferibile!). La cosa fondamentale é provare seriamente a farli tutti. Nel caso di esecizi non risolti, prima dell'orale verificheró se c'é stato effettivamente un impegno da parte vostra (per esempio, se avete tentato un approccio che si é rivelato infruttuoso), o se invece i vostri tentativi si sono ridotti a poco piú di una semplice lettura del testo. Nel caso in cui effettivamente l'impegno sia evidente, la prova puó ritenersi superata.