
Blended Implicit Methods for solving ODE

and DAE problems, and their extension for

second order problems ?

Luigi Brugnano a, Cecilia Magherini a

aDipartimento di Matematica “U.Dini”
Viale Morgagni 67/A, 50134 Firenze, Italy

Abstract

The use of implicit numerical methods is mandatory when solving general stiff
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1 Introduction

When solving general stiff ODE and DAE problems, the use of implicit meth-
ods is mandatory, because of the weak stability properties of explicit methods.
On the other hand, implicit methods require the solution, at each integration
step, of a corresponding discrete problem, whose dimension is a multiple of
that of the continuous one. Often, this is the main drawback when imple-
menting such methods in a computational code, since the cost for solving
the discrete problem may be very high. In particular, we consider here block
implicit methods [25], namely methods that, when applied to the IVP

y′ = f(t, y), t ∈ [t0, T ], y(t0) = y0 ∈ R
m, (1)

generate, at the nth integration step, a discrete problem in the form

A⊗ Im yn − hnB ⊗ Im fn = ηn, (2)

where the matrices A,B ∈ R
r×r (which we assume nonsingular hereafter)

define the method, hn is the current stepsize, the block vectors

yn = (yn1, . . . , ynr)
T , fn = (fn1, . . . , fnr)

T ,

fnj = f(tnj, ynj), tnj = tn + cjhn, j = 1, . . . , r,
(3)

contain the discrete solution and, finally, ηn only depends on already known
quantities. This is a rather general framework, including the majority of im-
plicit Runge-Kutta methods, for which A = I, the identity matrix, a number
of General Linear Methods (see, for example [11,18,19]), and, more recently,
block Boundary Value Methods [7]. Many techniques have been derived, across
the years, for efficiently solving the discrete problem (2) (see, for example,
[1,10,14,20,21]) and/or to define methods for which it has a suitably simple
structure, thus gaining efficiency (see, for example, [9,12,24]). In this context,
Blended Implicit Methods [3,4,8] provide a quite general framework, allowing
a re-formulation of the discrete problem generated by a given block implicit
method, for which an efficient nonlinear splitting is straightforwardly defined.
Blended implicit methods have been implemented in the computational code
BiM [5] for the numerical solution of stiff ODEs. Recently, this approach has
been extended for handling linearly implicit DAE problems [6], and a cor-
responding code, BiMD, is now available at the same web page [27] of BiM.
Moreover, in this paper we extend blended implicit methods for solving spe-
cial second order problems.
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With this premise, the paper is then organized as follows: in Sections 2 and 3
we recall the main facts about blended implicit methods for ODEs and their
extension for DAE problems, respectively; in Section 4 we study the extension
of blended implicit methods for second order problems and, finally, in Section 5
we present some numerical tests along with a few concluding remarks.

2 Blended Implicit Methods for ODE problems

Let now summarize the main facts about blended implicit methods, which have
been introduced and analyzed in [3–5,8]. In order to conveniently introduce
such methods, and to carry out a corresponding linear analysis of convergence
(according to [20,21]), let us consider the application of the block method (2)
to the usual test equation,

y′ = µy, y(t0) = y0, Re(µ) ≤ 0.

Moreover, for sake of simplicity, we consider the very first application of the
method, since the same arguments apply to each step of integration. This
allows us to avoid, hereafter, the subscript n and the discrete problem results
in the following system of linear equations,

(A− qB)y = η, q = hµ. (4)

We observe that the nonsingularity of both matrices A and B implies that the
discrete problem (4) can be cast, by setting γ > 0 a free parameter and

C = A−1B, (5)

into either one of the following two equivalent equations:

(I − qC)y = A−1η ≡ η1, γ
(

C−1 − qI
)

y = γB−1η ≡ η2. (6)

Let us now introduce the weighting function

θ(q) = (I − qγI)−1 . (7)

We observe that θ(q) is analytical for q ∈ C− and, moreover,

θ(0) = I, θ(q)→ O, as q →∞, (8)
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with O denoting the zero matrix. The blended implicit method based on the
block method (4) is then defined through the following discrete problem,

M(q)y ≡ (A(q)− qB(q))y = θ(q)η1 + (I − θ(q))η2 ≡ η̂(q), (9)

where

A(q) = θ(q)I + (I − θ(q))γC−1, B(q) = θ(q)C + (I − θ(q))γI. (10)

The problem (9)-(10) is evidently obtained as the blending of the two equiva-
lent equations (6) with weights θ(q) and I− θ(q), respectively: it is, therefore,
still equivalent to (4). As a consequence, order and stability properties are
fully inherited from the block method (2). However, the problem (9)-(10) has
a relevant advantage with respect to (4). In fact, by considering that, because
of (7) and (8),

M(q) = I +O(q), when q ≈ 0, M(q) = q
(

γI +O(q−1)
)

, as q →∞,

then, the splitting matrix

N(q) = I − qγI ≡ θ(q)−1, (11)

is naturally induced. Indeed, it coincides with M(q) at q = 0 and at ∞. The
corresponding blended iteration associated to the blended method (9)-(10) is

N(q)y(i) = (N(q)−M(q))y(i−1) + η̂(q), i = 1, 2, . . . , (12)

which is convergent iff the spectral radius, say ρ(q), of the iteration matrix,

Z(q) = I −N(q)−1M(q), (13)

is less than 1. From the previous arguments, we observe that, whatever the
choice of the parameter γ > 0, one has that

ρ(0) = 0, and ρ(q)→ 0, as q →∞.

According to [20,21], and by using the maximum modulus principle, the iter-
ation (12) is said to be L-convergent if the maximum amplification factor,

ρ∗γ = max
x>0

ρ(ix), (14)

is smaller than 1, where, as usual, i denotes the imaginary unit. It is worth to
emphasize that an L-convergent iteration is highly desirable, if the underlying
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Table 1
Data for the methods implemented in the codes BiM and BiMD

r Padé order γ ρ∗

3 (2,3) 4 .7387 .3398

4 (2,4) 6 .8482 .5291

6 (4,6) 8 .7285 .6299

8 (6,8) 10 .6745 .6885

10 (8,10) 12 .6433 .7276

block method is L-stable. In (14), the subscript γ does denote the dependence
of this factor from the choice of the positive parameter γ. A little algebra
shows that [4], for the iteration matrix (13),

λ ∈ σ(C) ⇐⇒
q(λ− γ)2

λ(1− qγ)2
∈ σ(Z(q)). (15)

Moreover, for the methods implemented in the codes BiM [5] and BiMD, and,
more in general, for all block methods such that the characteristic polyno-
mial of the matrix (5) coincides (up to a variable scaling) with the reciprocal
polynomial at the denominator of the (s, r) Padé approximation to the ex-
ponential, s = r − 2, r − 1, r, the following result holds true for all practical
values of r [4].

Theorem 1 Let λ1 = φ1e
iξ1 , φ1, ξ1 ≥ 0, be the eigenvalue of C having mini-

mum modulus (and non negative imaginary part). Then

ρ(q) =

∣

∣

∣

∣

∣

q(λ1 − γ)
2

λ1(1− qγ)2

∣

∣

∣

∣

∣

and ρ∗γ ≡ ρ(iγ−1) =
|λ1 − γ|

2

2γφ1
. (16)

The latter quantity is minimized by choosing γ = φ1, for which

ρ∗φ1
≡ ρ∗ = 1− cos ξ1.

With this choice, for all practical values of r one obtains L-convergent itera-
tions, which are associated to corresponding L-stable methods, when s < r,
or A-stable methods, when s = r. In Table 1 we list the data corresponding
to the methods implemented in the current versions of the codes BiM (Rel.
2.0 - April 2005) and BiMD (Rel. 1.0 - October 2005) [27], for which (see (3))
cj = j, j = 1, . . . , r. By the way, we mention that Theorem 1 also applies, for
example, to Radau IIA, Lobatto IIIA, and Gauss methods: in Table 2 we list
the information concerning such methods. We end this section by observing
that, when the blended method is applied to the more general problem (1),
then the iteration (9)–(12) formally becomes
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Table 2
Data for the Radau IIA and Lobatto IIIA/Gauss methods

r Padé order γ ρ∗

2 (1,2) 3 .4082 .1835

3 (2,3) 5 .2462 .3398

4 (3,4) 7 .1738 .4416

5 (4,5) 9 .1334 .5123

6 (5,6) 11 .1079 .5644

7 (6,7) 13 .9032 ·10−1 .6045

2 (2,2) 4 .2887 .1340

3 (3,3) 6 .1967 .2765

4 (4,4) 8 .1475 .3793

5 (5,5) 10 .1173 .4544

6 (6,6) 12 .9710 ·10−1 .5114

7 (7,7) 14 .8265 ·10−1 .5561

δ(i) =N−1
(

θ
(

(I − γC−1)⊗ Imy(i−1) − h(C − γI)⊗ Imf (i−1)
)

+γ
(

C−1 ⊗ Imy(i−1) − hI ⊗ Imf (i−1)
)

− η̂
)

, (17)

y(i) =y(i−1) − δ(i), i = 1, 2, . . . ,

where, by setting J the Jacobian of f(t, y) evaluated at (t0, y0),

N−1 ≡ θ = I ⊗ Ω−1, Ω = Im − hγJ. (18)

Consequently, if ω iterations are required to obtain convergence, the overall
leading cost, to carry out the iteration (17)-(18), amounts to:

• 1 Jacobian evaluation,
• 1 factorization of the m×m matrix Ω,
• rω function evaluations, and
• 2rω system solvings with the factors of Ω.

For more details, we refer to [5]. An additional, remarkable, feature of the
iteration (17)-(18) is the block diagonal structure of the splitting matrix N .
For later reference, we observe that, in the case of the linear system of ODEs,
y′ = Jy + g(t), with constant J ∈ Rm×m, the iteration (17)-(18) induces the
iteration matrix

Z = C−1(C − γI)2 ⊗ hJ(Im − hγJ)−2, (19)

for which the previous linear analysis of convergence, summarized by the result
of Theorem 1, applies.
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3 Blended Implicit Methods for DAE problems

We now summarize the extension of blended implicit methods for solving
linearly implicit DAE problems, according to [6]. Therefore, we now consider
problems in the form

Ky′ = f(t, y), t ∈ [t0, T ], y(t0) = y0 ∈ R
m, (20)

where the (constant) mass matrix K may be singular. Since we are interested
in a linear analysis of convergence for the corresponding blended iteration, we
confine ourselves to the case of linear equations in the form

Ky′ = Jy + g(t), (21)

where K and J are constant matrices and g(t) is a vector valued function. The
following notions (see, for example, [2,17,19]) are briefly recalled, for complete-
ness and later reference. First of all, the matrix pencil

µK − J, (22)

is associated to equation (21). The pencil is said to be regular if its determinant
is not identically 0, as a function of µ. Moreover, equation (21) is solvable iff
the pencil (22) is regular, which we assume hereafter. In such a case, the pencil
(22) can be cast into its Kronecker canonical form,

PKQ =







Id

H





 , PJQ =







G

Ia





 , (23)

where P,Q ∈ Rm×m are nonsingular, Id and Ia are the identity matrices of
dimension d and a, respectively (d+ a = m), G ∈ Rd×d, and H ∈ Ra×a,

H =











H1
. . .

Hk











, Hi =















0 1
. . .

. . .

. . . 1

0















∈ R
νi×νi, i = 1, . . . , k,

with
∑k

i=1 νi = a. Consequently,

Hν = O, ν = max
i=1,...,k

νi, (24)
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where ν is the index (of nilpotency) of the DAE (21). It is known that the
higher the index, the more difficult the problem. By means of the Kronecker
normal form (23), the problem decouples as follows:

x′ = Gx + φ(t), Hz′ = z + ψ(t), (25)

where

Q−1y ≡







x

z





 , P g(t) ≡







φ(t)

ψ(t)





 .

With these premises and notations, let us generalize the blended iteration
(17)-(18) for solving the DAE (21). The only differences with what has been
seen in Section 2 amount to the weighting function and the splitting matrix,

θ = I ⊗KΩ−1, N = I ⊗ Ω, Ω = K − hγJ, (26)

in place of (18). We observe that we get exactly the formulae previously seen
in Section 2, in the case K = Im, i.e., when (21) reduces to an ODE. By taking
into account (21) and (26), it is not difficult to see that the blended iteration
(17) now, formally, becomes

δ(i) =N−1
(

θ
(

(I − γC−1)⊗K − h(C − γI)⊗ J
)

y(i−1)

+γ
(

C−1 ⊗K − hI ⊗ J
)

y(i−1) − η̂
)

, (27)

y(i) =y(i−1) − δ(i), i = 1, 2, . . . .

The corresponding iteration matrix is then given by

Z = I ⊗ Im −N
−1
(

θ
(

(I − γC−1)⊗K − h(C − γI)⊗ J
)

+γ
(

C−1 ⊗K − hI ⊗ J
))

. (28)

The following result then holds true [6].

Lemma 2 The iteration matrix (28) is similar to the block diagonal matrix
(see (23))







Zd

Za





 , where











Zd = C−1(C − γI)2 ⊗ hG(Id − hγG)−2,

Za = C−1(C − γI)2 ⊗ hH (H − hγIa)
−2 .

(29)

Remark 3 We observe that the two blocks Zd and Za in (29) correspond,
respectively, to the ODE and to the normalized DAE in (25).
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It is evident that the matrix Zd in (29) formally coincides with (19), via
the substitutions G ←→ J and Ia ←→ Im. Consequently, the result of
Theorem 1 applies to it. On the other hand, for Za the following result follows
at once from (24).

Theorem 4 The matrix Za is nilpotent of index ν.

Remark 5 As a consequence, one obtains that the convergence properties of
the blended iteration (27) are essentially unaffected by the algebraic part of
the problem. In fact, they depend only on the matrix Zd, corresponding to the
differential equation in (25), provided that at least ν iterations are carried out,
if ν is the index of the DAE.

4 Extension for second order problems

We now study the extension of blended implicit methods for solving second
order problems of special type,

y′′ = f(t, y), t ∈ [t0, T ], y(t0) = y0, y
′(t0) = y′0 ∈ R

m, (30)

where stiffness is present, i.e., with y(t) combining components with dominant
short frequencies and components with large frequencies and small amplitudes.
In this case, it is customary to resort to the following linear test equation [23],

y′′ = −µ2y, µ ∈ R,

which we use for the linear analysis of convergence. In particular, methods
which are popular for solving this problem (for example, in the class of implicit
Runge-Kutta-Nyström methods [16,18]), lead to a discrete problem in the form

(I − q2C2)y = η1, q = ihµ ≡ ix, x ∈ R, (31)

where the (nonsingular) matrix C ∈ Rr×r corresponds to a suitable block
method (2)–(5). For example, when speaking about Runge-Kutta methods,
Gauss formulae with s = r stages and Lobatto IIIA formulae with s = r + 1
stages. Then, we can define the following equivalent formulation of equation
(31),

γ2(C−2 − q2I)y = γ2C−2η1 ≡ η2,

with γ > 0 a free parameter, and the weighting function

θ(q) = (I − q2γ2I)−1,
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such that the resulting blended method corresponding to (31) is formally still
given by (9), with

A(q) = θ(q)I + (I − θ(q))γ2C−2, B(q) = θ(q)C2 + (I − θ(q))γ2I, (32)

instead of (10). Consequently, it induces the blended iteration (12) with the
splitting matrix

N(q) = I − q2γ2I ≡ θ(q)−1 (33)

in place of (11). The corresponding iteration matrix is formally still given by
(13) and, again, N(q) coincides with M(q) at q = 0 and at ∞. The iteration
is convergent iff the spectral radius of Z(q), which we again denote by ρ(q), is
less than 1, and the corresponding maximum amplification factor is formally
still given by (14) (see (31)). In analogy with the related notion of P -stability
[23], we give the following definition.

Definition 6 We say that the iteration (12) and (32)-(33) is P -convergent if
the corresponding maximum amplification factor (14) is smaller than 1.

Also in this case, we are interested in choosing the parameter γ in order for
ρ∗γ to be minimized. For this purpose, we observe that the two iterations,
respectively given by (9)–(12), and (9), (12), (32)-(33), are formally the same
via the substitutions:

γ ←→ γ2, q ←→ q2, C ←→ C2.

Consequently, we obtain at once from (15) that the eigenvalues of the iteration
matrix Z(q) now satisfy

λ ∈ σ(C) ⇐⇒
q2(λ2 − γ2)2

λ2(1− q2γ2)2
∈ σ(Z(q)).

The following result is then readily established.

Lemma 7 For a fixed γ > 0, one has that (see (31))

ρ∗γ ≡ ρ(iγ−1) =
1

4γ2
max

λ∈σ(C)

|λ2 − γ2|2

|λ|2
. (34)

Since C is a real matrix and γ2 > 0, we can consider, in the study of the last
member of equation (34), only the eigenvalues with non negative imaginary
part. Let us assume that they are given by

λj = φje
iξj , j = 1, . . . , ` ≡ dr/2e, (35)
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and moreover they satisfy

0 < φ1 ≤ . . . ≤ φ`,
π

2
> ξ1 > . . . > ξ` ≥ 0. (36)

The following result then holds true.

Theorem 8 If conditions (35)-(36) are fulfilled and, moreover,

φ2
1 ≥

φ2
j

1 + 4(cos2 ξj − cos2 ξ1)
, j = 2, . . . , `, (37)

then (see (34)),

ρ(q) =

∣

∣

∣

∣

∣

q (λ2
1 − γ

2)

λ1 (1− q2γ2)

∣

∣

∣

∣

∣

2

and ρ∗γ =
|λ2

1 − γ
2|2

4γ2φ2
1

. (38)

The latter quantity is minimized by choosing γ = φ1. With this choice, one
obtains ρ∗φ1

≡ ρ̂∗ = (1− cos2 ξ1). Therefore, the corresponding iteration (9),
(12), and (32)-(33) turns out to be P -convergent.

Proof. In order for the second equation in (38) to be satisfied, one must
have

|λ2
1 − γ

2|2φ2
j ≥ |λ

2
j − γ

2|2φ2
1, j = 2, . . . , `.

By considering (35), one then obtains

γ4(φ2
j − φ

2
1) + 4γ2φ2

1φ
2
j(cos2 ξj − cos2 ξ1) ≥ φ2

1φ
2
j(φ

2
j − φ

2
1).

By taking into account (36), a sufficient condition for this inequality to be
satisfied is given by

γ2 ≥
φ2

j − φ
2
1

4(cos2 ξj − cos2 ξ1)
, j = 2, . . . , `. (39)

Let us assume, for a moment, that (39) holds true. Then, from (38) one obtains,
after a few calculations,

ρ∗γ =
1

4

(

φ2
1

γ2
+
γ2

φ2
1

− 2 cos 2ξ1

)

≡ g(γ2).

This is a strictly convex function, since g′′(γ2) > 0. Its global minimum is
obtained by solving g′(γ2) = 0, thus leading to γ = φ1. As a consequence, (39)
turns out to be equivalent to (37), which holds true by hypothesis. Moreover,
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Table 3
Parameters for Gauss and Lobatto IIIA methods

r order γ ρ̂∗ ρ∗ ρ̂0 ρ̃0 ρ̂∞ ρ̃∞

2 4 .2887 .2500 .1340 .0833 .0774 1.2 ·101 9.3 ·10−1

3 6 .1967 .4765 .2765 .0738 .1088 4.9 ·101 2.8 ·100

4 8 .1475 .6147 .3793 .0535 .1119 1.1 ·102 5.1 ·100

5 10 .1173 .7024 .4544 .0387 .1066 2.0 ·102 7.7 ·100

6 12 .9710 · 10−1 .7613 .5114 .0287 .0993 3.2 ·102 1.1 ·101

7 14 .8265 · 10−1 .8029 .5561 .0219 .0919 4.7 ·102 1.3 ·101

8 16 .7185 · 10−1 .8336 .5921 .0172 .0851 6.5 ·102 1.6 ·101

9 18 .6348 · 10−1 .8569 .6218 .0138 .0789 8.5 ·102 2.0 ·101

10 20 .5681 · 10−1 .8752 .6467 .0113 .0735 1.1 ·103 2.3 ·101

we get: ρ∗φ1
= g(φ2

1) = (1− cos 2ξ1)/2 = 1− cos2 ξ1 ≡ ρ̂∗. Finally, having fixed
γ, and by considering that we have just proved that the maximum in (34)
occurs at λ = λ1, the first equality in (38) immediately follows. 2

Remark 9 We observe that, from a geometric point of view, the conditions
(36)-(37) require the eigenvalues of the matrix C to be contained in a suitable
annulus of the complex plane, whose internal radius equals φ1.

It turns out that the conditions (36)-(37) are satisfied by both Runge-Kutta
Gauss and Lobatto IIIA methods, for which we list in Table 3 the correspond-
ing parameters γ and ρ̂∗, as defined in Theorem 8. Such values provide results,
for Gauss methods, which appear to be comparable, for example, with those
recently obtained in [15] (though, after a more complicated analysis). We can
then conclude that the iteration (9), (12), and (32)-(33), based on Gauss or
Lobatto IIIA methods, provide P -convergent implementations of high order,
P -stable methods for problem (30) [16]. Moreover, the fact that the iteration
matrix is zero at ∞, makes such iteration very well suited for stiff problems.
Finally, in the case of problem (30), the corresponding blended iteration is
formally still given by (17)-(18), via the substitutions

γ ←→ γ2, h←→ h2, C ←→ C2.

4.1 Some remarks

It is noticeable that the optimal choice for the parameter γ, provided by the
result of Theorem 8 for second order problems, nicely coincides with that for
first order problems stated in Theorem 1. However, we observe that the max-
imum amplification factor ρ̂∗, as defined in Theorem 8 (see the fourth column
in Table 3) is larger than the corresponding value of the amplification factor
ρ∗, as defined in Theorem 1. The latter would result from the application of
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the blended method based on Gauss or Lobatto IIIA formulae to the corre-
sponding first order system (see the fifth column in Table 3). Nevertheless,
though ρ̂∗ > ρ∗, we observe that the overall behavior of the spectral radius of
the iteration matrix, for the second order formulation, is generally more favor-
able, as a function of q = ix, x > 0, than that of the corresponding first order
formulation (see, for example, Figure 1, for r = 2, 3, 4, 5). In order to better
measure this aspect, we observe that (see (31) and (38)), for a given q = ihµ,
the spectral radius of the iteration matrix for the second order formulation is
given by

∣

∣

∣

∣

∣

q2(λ2
1 − γ

2)2

λ2
1(1− q

2γ2)2

∣

∣

∣

∣

∣

≈











ρ̂0|q|
2, |q| ≈ 0,

ρ̂∞|q|
−2, |q| � 0,

(40)

where

ρ̂0 =

∣

∣

∣

∣

∣

(λ2
1 − γ

2)

λ1

∣

∣

∣

∣

∣

2

≡ (2γ)2ρ̂∗, ρ̂∞ ≡
ρ̂0

γ4
.

On the other hand, for the first order formulation one obtains that (see (16))
the spectral radius of the corresponding iteration matrix is given by

∣

∣

∣

∣

∣

q(λ1 − γ)
2

λ1(1− qγ)2

∣

∣

∣

∣

∣

≈











ρ̃0|q|, |q| ≈ 0,

ρ̃∞|q|
−1, |q| � 0,

(41)

where

ρ̃0 =

∣

∣

∣

∣

∣

(λ1 − γ)
2

λ1

∣

∣

∣

∣

∣

≡ 2γρ∗, ρ̃∞ ≡
ρ̃0

γ2
.

In the last four columns in Table 3, the two couples of parameters are listed,
showing that, for each value of r, the parameters ρ̂0 and ρ̃0 are almost of the
same size for both formulations, whereas the ratio ρ̂∞/ρ̃∞ ∼ 2/γ (which is,
therefore, bounded). As a consequence, by considering that the power (positive
or negative) of |q| is doubled for the second order formulation (compare (40)
and (41)), one obtains that this formulation is much more appealing, when |q|
is either very small or very large (i.e., in the case of stiff problems). Last, but
not least, we observe that one blended iteration for the second order problem
turns out to be cheaper than that for the corresponding first order one. In light
of the above facts, we can then conclude that the former iteration is generally
preferable than the latter one.

For completeness, in Table 4 we also list corresponding parameters for the
iteration recently defined in [15] for second order problems solved by means of
Gauss methods. In addition to the parameters ρ̂∗, ρ̂0, and ρ̂∞ above described,
i.e., by setting as usual ρ(q) the spectral radius of the corresponding iteration
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Table 4
Parameters for the iteration in [15] for Gauss methods

r order ρ̂∗ ρ̂0 ρ̂∞ nilpotency index

2 4 .2500 .0833 1.2 ·101 2

3 6 .4753 .0733 4.9 ·101 2

4 8 .6437 .0619 1.2 ·102 2

matrix,

ρ̂∗ = max
x≥0

ρ(ix) and ρ(q) ≈











ρ̂0|q|
2, |q| ≈ 0,

ρ̂∞|q|
−2, |q| � 0,

we also list the index of nilpotency of the iteration matrix at∞. By comparing
these entries with the corresponding ones listed in Table 3 for the extension of
blended implicit methods for second order problems, we can conclude that the
two iterations appear to have very similar convergence properties: actually, the
plot of the spectral radii of the corresponding iteration matrices, as functions
of q, are almost identical. Nevertheless, we want to emphasize the conceptual
simplicity of the analysis concerning the use of blended implicit methods, for
which the convergence properties of the corresponding blended iteration do
only depend on the choice of one parameter (i.e., γ). Moreover, the optimal
choice of such parameter is easily obtained for most of the methods of practical
interest.

5 Numerical tests and conclusions

As previously mentioned, blended implicit methods were first implemented in
the Fortran 77 code BiM [5], for the numerical solution of stiff ODEs. Subse-
quently, the extension of such code, called BiMD, for the numerical solution
of stiff ODEs and linearly implicit DAEs in the form (20) up to index three,
has been released, and it is available at the same web page [27] of BiM. We
shall here use the code BiMD to perform some numerical tests, which compare
this code with the codes available in the current release of the Test Set for
IVP Solvers [26] (Rel. 2.2, August 2003). In particular, the codes compared
with BiMD are DASSL [2], GAMD [22], MEBDFDAE and MEBDFI [13], RADAU5 and
RADAU [19]. All the codes are able to solve ODEs and DAEs up to index three,
with the only exception of DASSL, which is designed to work with ODEs and
index 1 DAEs. Also the test problems considered here are taken from the Test
Set : additional numerical results, with respect to those reported here, can be
found at the web page [27], where the code BiMD is available. For each problem,
the obtained results are displayed by means of corresponding work-precision
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diagrams, i.e. by using the same standard used in the Test Set (see also [19]).

In Figure 2 we plot the results obtained for the following first order ODE
problems: Emep, Elastic Beam, Ring Modulator. In Figure 3 we plot the re-
sults for the following linearly implicit DAE problems: Chemical Akzo Nobel
Problem (index 1), Fekete (index 2), Car Axis (index 3). For all tests, the ac-
curacy of the numerical solution (measured in terms of mixed error significant
computed digits (mescd) [26]) is plotted against the execution time. The used
input parameters are essentially those used in [26]. The tests have been done
on a IBM SP Power 5 computer, by using the xl Fortran compiler with the
optimization options -O5 -qstrict. We mention that the codes RADAU5 and
RADAU fail to solve the Ring Modulator problem, when using the coarsest ac-
curacy tolerances. Moreover, DASSL, MEBDFDAE, and MEBDFI are less efficient,
when solving the Elastic Beam problem, because of the lack of A-stability of
their respective higher order formulae (see also [19]).

In this paper we reviewed the main facts concerning the definition of blended
implicit methods for the numerical solution of ODE-IVPs and linearly implicit
DAEs. The corresponding linear convergence analysis has been recalled, show-
ing the conceptual simplicity of this approach. Moreover, its usefulness is also
confirmed by some numerical tests based on the codes and problems included
in the Test Set for IVP Solvers [26]. In the tests, the code BiMD, implementing
a variable order-variable stepsize blended implicit method, compares well with
the best codes currently available, both in terms of efficiency and reliability.
Finally, blended implicit methods have been here extended for the numerical
solution of the special second order problem (30), resulting in straightforward
extensions of the basic theory and results. In the future, we plan to study
further extensions of this approach such as, for example, for the numerical
solution of evolutionary PDE problems.
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Fig. 2. Numerical results for ODEs.
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Fig. 3. Numerical results for DAEs.
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