
Parallel Computing 17 (1991) 1017-1023 1017
North-Holland

A parallel solver for tridiagonal linear
systems for distributed memory
parallel computers *

L. Brugnano
Dipartimento di Matematica, Trao. 200 Re Daoia~ 70125 Bari, Italy

Received 20 July 1990

Abstract

Brugnano, L_, A parallel solver for tridiagonal linear systems for distributed memory parallel computers, Parallel
Computing 17 (1991) 1017-1023.

The solution of linear tridiagonal systems is a very common problem in Numerical Analysis. Many algorithms
are known for solving such linear systems on vector and parallel computers [3,4,6-9]. In this paper a new
parallel method is presented, which is well tailored for message passing distributed memory parallel computers.

Keywords. Linear algebra; tridiagonal linear systems; distributed memory multiprocessors; transputer networks;
timing results_

1. I n t r o d u c t i o n

W e s tar t i n t r o d u c i n g the s equen t i a l a l g o r i t h m [2,5], w h i c h is i n t e n d e d to ba a p p l i e d to the

so lu t i on o f the l inear sys tem:

T y = b ,

where T ~ R " x,,, y ,

no t a t i ons) :

"*'/1 C1

1

T =
Cn - l

1 a n

Let us c o n s i d e r the s e q u e n c e s d e f i n e d as fo l lows:

X = 0

Xi+ l=cio i , i = l . . . n - - 1 ,

o i = - - (a i + x i) - t , i = l . . . n ,

z t ----0

zi+ t = (z i - b i) o i , i = l . . . n ,

b ~ R" . T h e s t ruc tu re o f T is the

(1 .1)

f o l l o w i n g (in o r d e r to s imp l i fy the

(1 .2)

(1 .3 .1)

(1 .3 .2)

(1 .3 .3)

* Work supported by the Ministero della R.icerca Scientifica, 4070 project, and by the European Community, ESPRIT
project (Parallel Computing Action).

0167-8191/91/$03.50 © 1991 - Elsevier Science Publishers B.V. All rights reserved

1018 L. Brugnano

and

{

Yn = Zn+1

Yi-I = XiYi + Zi' i = n ... 2.
(1.3.4)

If the sequences (1.3.1), (1.3.2) and (1.3.3) are well defined, it is a simple matter to show that
the elements defined by (1.3.4) are the components of the solution vector y of problem (1.1).
For the stability of this algorithm, usually known as the sweep method, see [2,5].

Remark 1.1. The computational cost of algorithm (1.3.1) ... (1.3.4), in terms of number of
operations, is the same as of the standard LV algorithm.

2. Parallelization of the algorithm for a biputer

The algorithm previously described can be modified, to get a parallel solver tailored for a
parallel computer with two processors. The method will be then generalized to any number of
processors. Let us number the processors starting from 0, by using the index j. Moreover, let uS
define the following sequences and let be, for sake of simplicity, n = 2k:

i=1. .. k-1,
(2.1.1)

au) = - (a . . + xU»)-1 /' -1 k I I+Jk I ,- ••• , (2.1.2)

(Z~j) = °
Z (j) = (z(j) - b . .)a(J) /' -1 k

I + I I 1+ Jk I' -. • • •

(2.1.3)

The above expressions are computed on processor j, for j = 0, 1. It is evident that these
calculations are independent, on each processor. The aim is to transform problem (1.1) into two
boundary value problem, with one unknown initial condition. This unknown value is the initial
condition for the sequence {z?)}. We observe that such nonzero initial condition produces an
easily valuable variation in the sequence. In fact, one verifies that:

(

;-1) ;-1 ;-1

Zi(j)= Da}j) z~j)- 2:br+jkDa}j), i=l ... k.
r=1 r=1 s=r

(2.2)

The second term in (2.2) is relative to the sequence with omogeneous initial condition, that is
the one defined by (2.1.3), while the first one takes into account of nonzero ones. It follows
that, by defining

s

.I,(j) = D a(j)
'Y s r ' (2.3)

r=1

and with reference to the elements of sequence (2.1.3), one can define the following sequence:

zJj) = o/l~\zV) + zJj).
With this notations, we define the following:

{

Yn == Y2k = zPll

Y2k-i = xk12i + 1Y2k_i+l + zkI2i + 1 ,

Yk-i = xko2 i + I Yk-i+l + Zko2i+j'

i = 1. .. k

i=1. .. k-1.

(2.4)

(2.5)

A parallel soloerfor tridiagonal linear systems 1019

It must be E~ °) = 0, because Y0 = 0. Moreover, recalling that, from (2.5), it is Yk = E~ ~, it follows
that

= ~ (o) ~ 0) + z!O), Y k - 1 -n'k ~1

and

Yk+l =x(l)Yk+",+~.°)="(l)"~2 .rk+2 + ,t,O);'(l) . , _ V l "1 -- ~2"(1)

~ 2 \ ' ~ 3 - r k + 3 ~ 1 ~1

= E xl 1' "r'"O'~''~ + Zr+l'l))
r = l s = 2

-~ r = l ~Vr Wr] ~1 + r = l = r ~ r + 1

= G(,,E~1, + OO), (2 . 6)

where, in general (j = 1 in our case),
r

(J) - (2 . 7) X $.

S = 2

The equations of problem (1.1) are all satisfied, with the only exception for the k th one. It
follows that the unknown initial condition E~ 1) is obtained by imposing that the k th equation

Yk-1 + a k y k + Ckyk+l = bk ,

must be satisfied. One obtains, after simple calculations,

z~" bk - c k Q ~" - ~o~
= --o_--~" (2 . 8)

X(x °) + a k + Ck(i

3. G e n e r a l i z a t i o n of the a lgor i thm to p p r o c e s s o r s

Let us suppose, as in the previous section, n = kp. By numbering the processors from 0 to
(p - 1), we consider the sequences (2.1.1), (2.1.2) a_rid (2.1.3) defined for j = 0 . . . p - 1. As
before, the aim is to break problem (1.1) into p smaller boundary value problems, with p - 1
unknown boundary conditions. The solution vector is obtained by the following:

. (3 . 1)
~ y~j+l>~_i= xk_i+ly(j+Ok_i+l + E~ i+l , i = l . . . k , j = 0 . . . p - 1 .

As before, the initial conditions ~J) , j = 1 . . . p - 1 are unknowns. Such values will be
obtained by imposing that the k th, 2k th (p - 1)kth equations of the problem,

Yjk-1 + ajkYjk + cjkyjk+l = b j k ' j = 1 . . . p -- 1, (3.2)

must be satisfied. One obtains, after some calculations (see (2.1.3), (2.3), (2.4) and (2.7)):

y jk = e [j ' ,

Yjk-1 = XtkJ-l)Z[j) + V~-I"I'~J--1);(Y--1)'I --+ Zk~j-1) , (3.3)

Yjk+l = Gt:)E~ j) + QfJ) + ai(J)~(J+l) ~ k ~1

1020 L Brugnano

where

and

m j

Q(J) ~ O')(J). (J)
= r r ~ r +] ,

r = l

rn j

G(J) E (J) (j) = Cr~ C r ,
r = l

k - 1, for j = 1 . . . p - 2,
m j = k , f o j = p - 1 .

F r o m (3.2) and (3.3), by considering that ~0) = ~p) = 0, one obtains a t r i d i a g o n a l set of p - 1
equations, in the p - 1 unknowns £~J), j = 1 . . . p - 1. Once this "smal l " linear system (usually
it is p << n) is solved, one obtains the solution, by using (3.1): this is done in parallel on all the
processors (the same is true for the computa t ion of (2.1.1), (2.1.2) and (2.1.3)).

Before discussing the expected per formance of the parallel algorithm, let us draw a scheme
of it, for p > 2 processors, by using a programming- l ike language. The processors are numbered
f rom 0 to p - 1. We assume to have a distr ibuted memory parallel compute r (the a lgor i thm for
a shared memory parallel computer follows immediately).

Moreover we shall use the following three subroutines, which can be implemented quite

easily on a parallel computer :

(1) input(proc, n, d a t a _ l , d a t a _ 2 da ta_n) ,
this subroutine reads from processor proc the n datas data 1 . . . da ta n.

(2) output(proc, n, data 1, data 2 data n),
this subrout ine sends to processor proc the n datas d a t a 1 . . . da ta n.

(3) concatenate(vl , v2, n l , n2, d _ l d n l , e 1 e n2),
this subroutine concatenates, for increasing processor number, the n l datas d 1 . . . d n l to
the vector vl , and the n2 datas e I . . . e n2 to the vector v2.

In the following T = (t~j) is an auxiliar tridiagonal matrix, while d = (di) and z z = (z z i) are
vectors.

P r o c e s s o r 0

x} °) = 0
z~ °) = 0
for i = l . . . k - 1

o~ O) = - (a i + x~°)) -1
(o) o (o)

X i + I ~ ¢i i

z~ °), = (z~ °) -b,)" oi(°)
end
input (1, 2, G 0), QO))
t l l = x (o) + a k + ckG O)

d I = b k - Z(k o) _ c k Q O)

concatenate (T, d, 1, 1, t11, dl)
z z = T - ~ d

Y k = ZZl

for i = k . . . 2 , s t e p - 1
y , - 1 = x~°)y, + :~o)

end

A parallel solver for tridiagonal linear systems 1021

Processor j , j = 1 . . . p - 2

x[j) = 0
z~ j) = 0

for i = l . . . k

oi(J) = - - (a j k + i + X [J)) - 1

x~J+,, = ~ j ~ + , o / J ,

z~'2, = (z:" - bj,+,)o/:'
end
O~ j) = 1
Q(J)=O

G(J) = 0

for i = 2 . . . k
Q(J) = O (J) + O~J_~z~ j)

end
output (j- I, 2, G (j), Q(J))
input (j+ I, 2, G (j+°, Q(j+l))
% ,,j = ~(/,,
tj+ l.j+ I ~- X (j) + ,'7(j+ l)k "-I- C(:+1)kG (j+1)
tj, s+ , = cjk*~J)
dj+ , = b (j + ,) k - - z(~ j) - c(j+ ,),Q(J+ ')

conca tena te (T, d 3, 1, t j+ l , j , l j + l , j+ l , tj, j+ l , dj+l)
zz = T - ~d
z ~ " = z z j

lo t i = l . . . k

z?2, = ~',('=j + z?A
end
Y(j+ l)k = ZZj+ I
ior i = k . . . 2 , s t e p - 1

Y j k + i - , = x~J)Yjk+i + z[j)
end
Processor p - 1

x[~-'=O

for i = l . . . k

o / " - " = - (a (~ _ ,) , + , + x ~ : - ") - '

~ , - , , _ , 'W_' .+ ,)o / . - ,) Zi+ 1 --
end
O} p-~) = 1

Q c p - ,) = z2(p-,,
q'a(P-'~ = o,(P-')
G(p - I) = ~1,(P-])

for i = 2 . . . k

O(p-1) = O(p-1) + ~ b (p - O , (? - l) ~ i ~i + l

1022 L. Brugnano

G(p -1) = G(p -1) q_ ~)~p- l)~ i (P - l)

end
output (p - 2, 2, G ~p-1), Q~p-l))
concatenate (T, d, 0, 0)
zz =- T - ld
z ~ P - 1) ~ Z Z p _ I

for i = l . . . k
(p - l) (p - l) ~_ ~i(P-1)ZZp_ l ..j_ Zi+ l Z i + l

end
(p - -])

Yn = Zk+ l
for i = k . . . 2 , s t e p - 1

Y, , - k+ , -1 = x}P-i~y,,_j.+~ + z}p-1)

end

4. Numerical tests

We have said (see Remark 1.1) that algorithm (1.3.1)---(1.3.4) has the same efficiency as
the standard LU algorithm. It follows that there will be no distinction between the speed-up of
the algorithm and the speed-up of the problem. The cost of this sequential algorithm, for
problem (1.1), is of about 7n operations, while the cost of the parallel variant (see (2.1.1),
(2.1.2), (2.1.3) and (3.1)) is of about 15n operations.

Moreover, we must take into account, for the parallel algorithm, the cost for data transmis-
sions among the processors, if one uses a message passing parallel computers. This cost
amounts, when using p processors working in parallel, to less than 4p data transmitted, for
every node. In fact, by observing the scheme of the parallel algorithm, every processors makes
at most 1 call to output (2 datas) and 1 call to input (2 datas) to the adjacent processors,
moreover there is 1 call to concatenate (4 datas). This last routine is easily constructed, on a
ring topology, with (p - 1) calls to output and (p - 1) calls to input to the adjacent nodes. It
follows that we have at most p calls to output and p calls to input per processor (each call to
the former routine is associated to a call to the latter): this number is important, because the
overhead for synchronization, at every call, is usually very high. Nevertheless, if n >>p, we
could expect a maximum speed-up of 7p/15.

The parallel computer used for the numerical tests is a Multiputer by MicroWay with 32
processors. Each processor is a transputer T800 by INMOS. Each transputer has four hardware
links connected to an electronic cross bar: in this way it is a simple matter to configure the
processors to form a ring.

The programming language used is Fortran, with the Express software environment [10]. We
have found that the call to the function K X C O N C of Express is not an efficient way to
construct concatenate. The most efficient way we have found is to use (p - 1) calls the
K X W R I T and KXREAD, that are the equivalent of output and input, respectively.

The test problem chosen has (see (1.2)) a i = 4, c i = - 1 . The right hand side is defined in
order to have the following solution vector:

y i = l , for i = l . . . n .

The found solution is very accurate, while the results, in terms of speed-up, are summarized
in Fig. 1. In this figure the measured speed-ups on p = 6, 12 18, 24, 30 processors, versus the
dimension n of the problem are shown.

A parallel solver for tridiagonal linear systems 1023

14

12

10

,.,.....~.~,~"~~ .

i . I

..................................... 18

/ / ~ - " " '

/ ' j l ~ 12

/ /

24

i i

015 i 1.5 2

dimension

Fig_ 1_

30

i

2.5 3

xl05

Table 1

Dimension /'1 T3o

30000 0.90 0.09
90000 2.71 0.21

150000 4_51 0_34
210000 6.31 0_46
270000 8.11 0.59

A t last, in Table 1, t he re a re the e x e c u t i o n t imes (in sec), for the L U a l g o r i t h m o n 1

p roces so r , and the pa ra l l e l a l g o r i t h m , o n 30 p rocessors , for va r i ous d i m e n s i o n s of the p r o b l e m .

References

[1] B.U Buzbee, G.H. Golub and C.W. Nielson, On direct methods for solving Poisson's equations, SIAM J. Num.
Anal_ 7 (4) (1970).

[2] S. Godounov and V. Riahenki, Schdmas au.x Diff&ences Chaps. 2 and 3 (l~ditions MIR, Moscou, 1977).
[3] D_ Heller, Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems, SIAM I. Num.

Anal. 13 (4) (1976) 484-496_
[4] D. Kershaw, Solution of single tndiagonal linear systems and vectorization of the ICCG algorithm on the Cray-1,

Parallel Computations (Accdemic Press, 1982) pp. 85-99.
[5] V. Laksh.mJkantham and D_ Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Series

Math. in Sci_ and Engin. Vol. 181 Chap. 5 (Academic Press, 1988).
[6] H.S. Stone, Parallel tridlagonal equation solver, NASA Report TMX-62, 370 (1974)_
[7] H. Van der Vorst, Large tridiagonal and block tridiagonal linear systems on vector and parallel computers,

Parallel Comput. 5 (1987) 45-54.
[8] H. Van der Vorst, Analysis of a parallel solution method for tridiagonal linear systems, Parallel Comput. 5 (1987)

303-311.
[9] H.H. Wang, A parallel Method for tridiagonal equations, ACM Trans. Math. Softw. 7 (2) (1981) 170-183_

[10] ParaSoft Corporation, Express. Reference for 3L Fortran (1990).

