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Abstract 

Brugnano, L_, A parallel solver for tridiagonal linear systems for distributed memory parallel computers, Parallel 
Computing 17 (1991) 1017-1023. 

The solution of linear tridiagonal systems is a very common problem in Numerical Analysis. Many algorithms 
are known for solving such linear systems on vector and parallel computers [3,4,6-9]. In this paper a new 
parallel method is presented, which is well tailored for message passing distributed memory parallel computers. 

Keywords. Linear algebra; tridiagonal linear systems; distributed memory multiprocessors; transputer networks; 
timing results_ 

1. I n t r o d u c t i o n  

W e  s tar t  i n t r o d u c i n g  the  s equen t i a l  a l g o r i t h m  [2,5], w h i c h  is i n t e n d e d  to ba  a p p l i e d  to the 

so lu t i on  o f  the  l inear  sys tem:  

T y = b ,  

where  T ~ R "  x,,, y ,  

no t a t i ons ) :  

"*'/1 C1 

1 

T =  
Cn - l 

1 a n 

Let  us c o n s i d e r  the  s e q u e n c e s  d e f i n e d  as fo l lows:  

X = 0  

Xi+ l=cio i ,  i = l . . . n - - 1 ,  

o i = - - ( a i + x i )  - t ,  i = l . . . n ,  

z t ----0 

zi+ t = ( z  i - b i ) o i ,  i = l . . . n ,  

b ~ R" .  T h e  s t ruc tu re  o f  T is the  

(1 .1)  

f o l l o w i n g  (in o r d e r  to  s imp l i fy  the 

(1 .2)  

(1 .3 .1 )  

(1 .3 .2 )  

(1 .3 .3 )  
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and 

{

Yn = Zn+1 

Yi-I = XiYi + Zi' i = n ... 2. 
(1.3.4) 

If the sequences (1.3.1), (1.3.2) and (1.3.3) are well defined, it is a simple matter to show that 
the elements defined by (1.3.4) are the components of the solution vector y of problem (1.1). 
For the stability of this algorithm, usually known as the sweep method, see [2,5]. 

Remark 1.1. The computational cost of algorithm (1.3.1) ... (1.3.4), in terms of number of 
operations, is the same as of the standard LV algorithm. 

2. Parallelization of the algorithm for a biputer 

The algorithm previously described can be modified, to get a parallel solver tailored for a 
parallel computer with two processors. The method will be then generalized to any number of 
processors. Let us number the processors starting from 0, by using the index j. Moreover, let uS 
define the following sequences and let be, for sake of simplicity, n = 2k: 

i=1. .. k-1, 
(2.1.1) 

au) = - (a . . + xU»)-1 /' -1 k I I+Jk I ,- ••• , (2.1.2) 

( Z~j) = ° 
Z (j) = (z(j) - b . . )a(J) /' -1 k 

I + I I 1+ Jk I' -. • • • 

(2.1.3) 

The above expressions are computed on processor j, for j = 0, 1. It is evident that these 
calculations are independent, on each processor. The aim is to transform problem (1.1) into two 
boundary value problem, with one unknown initial condition. This unknown value is the initial 
condition for the sequence {z?)}. We observe that such nonzero initial condition produces an 
easily valuable variation in the sequence. In fact, one verifies that: 

(

;-1 ) ;-1 ;-1 

Zi(j)= Da}j) z~j)- 2:br+jkDa}j), i=l ... k. 
r=1 r=1 s=r 

(2.2) 

The second term in (2.2) is relative to the sequence with omogeneous initial condition, that is 
the one defined by (2.1.3), while the first one takes into account of nonzero ones. It follows 
that, by defining 

s 

.I,(j) = D a(j) 
'Y s r ' (2.3) 

r=1 

and with reference to the elements of sequence (2.1.3), one can define the following sequence: 

zJj) = o/l~\zV) + zJj). 
With this notations, we define the following: 

{

Yn == Y2k = zPll 

Y2k-i = xk12i + 1Y2k_i+l + zkI2i + 1 , 

Yk-i = xko2 i + I Yk-i+l + Zko2i+j' 

i = 1. .. k 

i=1. .. k-1. 

(2.4) 

(2.5) 
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It must be E~ °) = 0, because Y0 = 0. Moreover, recalling that, from (2.5), it is Yk = E~ ~, it follows 
that 

= ~ ( o ) ~ 0 )  + z!O), Y k -  1 -n'k ~1 

and 

Yk+l =x(l)Yk+",+~.°)="(l)"~2 .rk+2 + ,t,O);'(l) . , _ V l  "1 -- ~2"(1) 

~ 2  \ ' ~ 3  - r k + 3  ~ 1  ~1 

= E xl 1' "r'"O'~''~ + Zr+l'l) ) 
r = l  s = 2  

-~ r = l  ~Vr Wr ] ~1 + r = l  = r  ~ r +  1 

= G(,,E~1, + OO),  ( 2 . 6 )  

where, in general ( j  = 1 in our case), 
r 

(J) - ( 2 . 7 )  X $  . 

S = 2  

The equations of problem (1.1) are all satisfied, with the only exception for the k th  one. It 
follows that the unknown initial condition E~ 1) is obtained by imposing that the k th  equation 

Yk-1 + a k y k  + Ckyk+l  = bk ,  

must be satisfied. One obtains, after simple calculations, 

z~" bk - c k Q  ~" - ~o~ 
= --o_--~" ( 2 . 8 )  

X(x °) + a k + Ck(i 

3. G e n e r a l i z a t i o n  of  the a lgor i thm to p p r o c e s s o r s  

Let us suppose, as in the previous section, n = kp. By numbering the processors from 0 to 
( p -  1), we consider the sequences (2.1.1), (2.1.2) a_rid (2.1.3) defined for j =  0 . . .  p -  1. As 
before, the aim is to break problem (1.1) into p smaller boundary value problems, with p - 1 
unknown boundary conditions. The solution vector is obtained by the following: 

. ( 3 . 1 )  
~ y~j+l>~_i= xk_i+ly(j+Ok_i+l + E~ i+l ,  i =  l . . . k ,  j = 0 . . . p - 1 .  

As before, the initial conditions ~J) ,  j =  1 . . .  p - 1  are unknowns. Such values will be 
obtained by imposing that the k th, 2k th  . . . . .  ( p -  1)kth equations of the problem, 

Yjk-1 + ajkYjk + cjkyjk+l = b j k '  j = 1 . . .  p -- 1, (3.2) 

must be satisfied. One obtains, after some calculations (see (2.1.3), (2.3), (2.4) and (2.7)): 

y jk  = e [  j '  , 

Yjk-1 = XtkJ-l)Z[ j) + V~-I"I'~J--1);(Y--1)'I --+ Zk~j-1) , (3.3) 

Yjk+l = Gt:)E~ j) + QfJ) + ai(J)~(J+l) ~ k  ~1 
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where 

and 

m j  

Q(J)  ~ O')(J). (J) 
= r r  ~ r +  ] ,  

r = l  

rn j  

G(J)  E (J) ( j )  = Cr~ C r  , 
r = l  

k -  1, for j = 1 . . .  p - 2, 
m j =  k ,  f o j = p - 1 .  

F r o m  (3.2) and (3.3), by considering that ~0) = ~p)  = 0, one obtains a t r i d i a g o n a l  set of  p - 1 
equations, in the p - 1 unknowns  £~J), j = 1 . . .  p - 1. Once  this "smal l "  linear system (usually 
it is p << n) is solved, one obtains the solution, by using (3.1): this is done  in parallel on all the 
processors (the same is true for the computa t ion  of  (2.1.1), (2.1.2) and (2.1.3)). 

Before discussing the expected per formance  of  the parallel algorithm, let us draw a scheme 
of it, for p > 2 processors, by  using a programming- l ike  language. The processors are numbered  
f rom 0 to p - 1. We assume to have a distr ibuted memory  parallel compute r  (the a lgor i thm for 
a shared memory  parallel computer  follows immediately).  

Moreover  we shall use the following three subroutines,  which can be implemented quite 

easily on a parallel computer :  

(1) input(proc,  n, d a t a _ l ,  d a t a _ 2  . . . . .  da ta_n) ,  
this subroutine reads from processor  proc  the n datas data  1 . . .  da ta  n. 

(2) output(proc,  n, data 1, data  2 . . . . .  data n), 
this subrout ine sends to processor  proc the n datas d a t a  1 . . .  da ta  n. 

(3) concatenate(vl ,  v2, n l ,  n2, d _ l  . . . . .  d n l ,  e 1 . . . . .  e n2), 
this subroutine concatenates,  for increasing processor  number,  the n l  datas d 1 . . .  d n l  to 
the vector vl ,  and the n2 datas e I . . . e  n2 to the vector v2. 

In the following T = (t~j) is an auxiliar tridiagonal matrix, while d = (di)  and z z  = ( z z i )  are 
vectors. 

P r o c e s s o r  0 

x} °) = 0 
z~ °) = 0 
for i = l . . . k - 1  

o~ O) = - ( a  i + x~°)) -1 
(o) o (o) 

X i +  I ~ ¢i i 

z~ °), = ( z~ °) -b,)"  oi(°) 
end 
input (1, 2, G 0), QO)) 
t l l  = x (o) + a k + ckG O) 

d I = b k - Z(k o) _ c k Q O )  

concatenate (T, d, 1, 1, t11, dl)  
z z  = T - ~ d  

Y k  = ZZl  

for i = k . . . 2 ,  s t e p -  1 
y , - 1  = x~°)y, + :~o) 

end 
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Processor  j ,  j = 1 . . .  p - 2 

x[ j)  = 0 
z~ j )  = 0 

for i = l . . . k  

oi(J) = - - ( a j k + i  + X [ J ) )  - 1  

x~J+,, = ~ j ~ + , o / J ,  

z~'2, = ( z:" - bj,+,)o/:' 
end 
O~ j) = 1 
Q(J)=O 

G(J) = 0 

for i = 2 . . . k  
Q(J) = O ( J ) +  O~J_~z~ j) 

end 
output  (j- I, 2, G (j), Q(J)) 
input (j+ I, 2, G (j+°, Q(j+l)) 
% ,,j = ~(/,, 
tj+ l.j+ I ~- X (j) + ,'7(j+ l)k "-I- C(:+1)kG (j+1) 
tj, s+ , = cjk*~J) 
dj+ , = b ( j +  , ) k  - -  z(~ j) - c(j+ ,),Q(J+ ' )  

conca tena te  (T, d 3, 1, t j+ l , j ,  l j + l , j+ l ,  tj, j+ l ,  dj+l) 
zz = T -  ~d 
z ~ "  = z z j  

lo t  i = l . . . k  

z?2, = ~',('=j + z?A 
end 
Y(j+ l)k = ZZj+ I 
ior  i = k . . . 2 ,  s t e p -  1 

Y j k + i - ,  = x~J)Yjk+i + z[ j) 
end 
Processor  p - 1 

x[~-'=O 

for i = l . . . k  

o / " - "  = - ( a ( ~ _ , ) , + ,  + x ~ : - " ) - '  

~ , - , , _  , 'W_' .+ , )o / . - , )  Zi+ 1 --  
end 
O} p-~)  = 1 

Q c p - , )  = z2(p-,, 
q'a(P-'~ = o,(P-') 
G(p - I) = ~1,(P- ]) 

for i = 2 . . . k  

O(p-1)  = O(p-1)  + ~ b ( p - O , ( ? - l )  ~ i  ~i  + l 
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G(p -1 )  = G(p -1) q_ ~)~p- l )~ i (P - l )  

end 
output ( p -  2, 2, G ~p-1), Q~p-l))  
concatenate (T, d, 0, 0) 
zz  =- T -  ld 
z ~ P - 1 ) ~ Z Z p _ I  

for i = l . . . k  
( p - l )  ( p - l )  ~_ ~i(P-1)ZZp_ l ..j_ Zi+ l Z i + l  

end 
( p - - ] )  

Yn = Zk+ l 
for i = k . . . 2 ,  s t e p -  1 

Y, , - k+ , -1  = x}P-i~y,,_j.+~ + z}p-1)  

end 

4. Numerical tests 

We have said (see Remark 1.1) that algorithm (1.3.1)---(1.3.4)  has the same efficiency as 
the standard LU algorithm. It  follows that there will be no distinction between the speed-up of 
the algorithm and the speed-up of the problem. The cost of this sequential algorithm, for 
problem (1.1), is of about 7n operations, while the cost of the parallel variant (see (2.1.1), 
(2.1.2), (2.1.3) and (3.1)) is of about 15n operations. 

Moreover, we must take into account, for the parallel algorithm, the cost for data transmis- 
sions among the processors, if one uses a message passing parallel computers.  This cost 
amounts,  when using p processors working in parallel, to less than 4p data transmitted, for 
every node. In fact, by observing the scheme of the parallel algorithm, every processors makes 
at most 1 call to output (2 datas) and 1 call to input (2 datas) to the adjacent processors, 
moreover there is 1 call to concatenate (4 datas). This last routine is easily constructed, on a 
ring topology, with ( p  - 1) calls to output and ( p  - 1) calls to input to the adjacent nodes. It  
follows that we have at most p calls to output and p calls to input per processor (each call to 
the former routine is associated to a call to the latter): this number  is important,  because the 
overhead for synchronization, at every call, is usually very high. Nevertheless, if n >>p, we 
could expect a maximum speed-up of 7p/15.  

The parallel computer  used for the numerical tests is a Multiputer by MicroWay with 32 
processors. Each processor is a transputer T800 by INMOS.  Each transputer has four hardware 
links connected to an electronic cross bar: in this way it is a simple matter  to configure the 
processors to form a ring. 

The programming language used is Fortran, with the Express software environment [10]. We 
have found that the call to the function K X C O N C  of Express is not an efficient way to 
construct concatenate. The most efficient way we have found is to use ( p -  1) calls the 
K X W R I T  and KXREAD,  that are the equivalent of output and input, respectively. 

The test problem chosen has (see (1.2)) a i = 4, c i = - 1 .  The right hand side is defined in 
order to have the following solution vector: 

y i = l ,  for i = l . . . n .  

The found solution is very accurate, while the results, in terms of speed-up, are summarized 
in Fig. 1. In this figure the measured speed-ups on p = 6, 12 18, 24, 30 processors, versus the 
dimension n of the problem are shown. 
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Table 1 

Dimension /'1 T3o 

30000 0.90 0.09 
90000 2.71 0.21 

150000 4_51 0_34 
210000 6.31 0_46 
270000 8.11 0.59 

A t  last,  in Table 1, t he re  a re  the e x e c u t i o n  t imes  ( in sec), for  the  L U  a l g o r i t h m  o n  1 

p roces so r ,  and  the  pa ra l l e l  a l g o r i t h m ,  o n  30 p rocessors ,  for  va r i ous  d i m e n s i o n s  of  the  p r o b l e m .  
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