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Abstract. The block preconditioned conjugate gradient methods are very effective to solve the linear systems 
arising from the discretization of elliptic PDE. Nevertheless, the solution of the linear system Ms = r, to get the 
preconditioned residual, is a 'bottleneck', on vector processors. In this paper, we show how to modify the 
algorithm, in order to get better performances, on such computers. Numerical tests carried out on a CRAY 
X-MP/48 are presented, in order to give numerical evidence. 
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1. I n t roduc t i on :  B lock  preconditioners 

Let us consider the block tridiagonal, symmetric, nonsingular M-matrix [7] 

A = 

- s l  r ~  

F~ S2 F3 T 

F3 

F~ & 

Si, F~ ~ R k×k (1.1) 

Let us suppose A be weakly diagonally dominant, and consider the case in which the blocks S, 
are tridiagonal, and the blocks F~ are diagonal. Very effective preconditioners are obtained by 
using sparse block factorizations of A: 

7"1 = $1, 
T , = S ~ - F ~ _ I F ~ ,  i = 2 , . . . , n ,  

E~-1 being a sparse approximation of T~-]. 
preconditioners [1-3]. In such a way, we get 

M =  L D - 1 L  T = A  --}- R ,  (1 .3)  

(1.2) 

Different choices of Y-,-1 will give different 
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where D = diag(T,), and L is a lower block bidiagonal matrix, with the main diagonal equal to 
the one of D, and the lower diagonal equal to the one of A. It is simple to show that 
R = diag(R~) [3], 

R 1 = T 1 - -  S 1 = 0 ,  
(1.4) 

R i = F , ( T j - _ ~ - X i _ , ) F ~ ,  i = 2  . . . . .  n. 

We consider the case in which the blocks T i have the same sparsity as the diagonal blocks S i of 
A. In particular, we are going to consider the standard INV and MINV preconditioner [2-4], 
even if the analysis could be extended to other block preconditioners. 

The INV preconditioner is obtained by considering E~_ 1 = trid(T~Z]), where trid(T~-_]) is the 
tridiagonal part of TF_ ]. The MINV preconditioner is the modified version of INV, obtained by 
imposing that F.~_ 1 and Ti-_11 have the same row-sums [3]. We consider again the tridiagonal 
part of the inverse, in (1.2), but the neglected elements of the inverse are summed, on each row, 
to the corresponding diagonal element. 

One can show [3] that the blocks T~ of INV and MINV are symmetric diagonally dominant 
M-matrices. 

2. Vectorizing the solution of M s  = r 

To get the preconditioned residual s, in a preconditioned conjugate gradient method, we 
must solve Ms = r, where r is the current residual: 

T l y  1 = r l ,  

T i Y i = r i - F ~ y i _ l ,  i = 2  . . . . .  n, 

S//  "~" Y n ,  

( s ,  - y i  ) = - F ,  + , s ,  + l ,  i = n - 1  . . . .  ,1. 

(2.1) 

Let us consider, now, the generic block T,: 

T , =  

a~ i) -b~O 

- b ~  i) 

- b ~  i) 

- b ~  i) a~  i) 

It could be factorized as T~ = Lr, D r  LTr, where 

Lr~ = 

d (i) 

--  b(2 i) 

- b~ i) d(i)l' k 

a? ), 

= u j  d ( i )  j - 1  
- - ,  j - - 2  . . . . .  k. 

. 

Dr, = diag( d~ i), tl(i) ~ • ' ' , ~ ' k  1, 

(2.2) 

(2.3) 
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If we scale T i to get Dr, = I, we get T i = ( I  - Ei ) ( I  - El'r), where 

0 1 -g~i~ o 
Ei = - (2.4) 

_~i~ 0 

From the diagonal dominance of T,, one gets o(Ei)  < 1. It follows that 

T , - I = ( I - E ~ X ) - a ( I - E i ) - I = ( I + E T +  . . .  +E, vk ' ) ( / + E ~ +  . . - + E ( - ~ ) .  

(2.5) 

We can use a t runcated expansion of (2.5) as approximat ion  of 7 -1 :  

7 - 1 = ~ - 1 = ( I + E X + . . .  + E V ' ) ( I +  E + . . .  +Em) ,  (2.6) 

where, obviously m << k - 1. It follows that the solution of the tridiagonal subsystems in (2.1) 
can be replaced with vectorizable operations• N o w  we want  to get an estimate of  the error due 
to the use of (2.6), instead of (2.5). For  sake of simplicity, let us assume F, = - I  (this is a 
common  case)• In such a way, instead of M we get 

f~ - 1  
- I  7~2 + 7~a- 1 - I  

~ =  

- I  

- - I  Tn -'[- Tn-ll 

= M +  

0 

where 

II e l  II --- 2#~"+~(1 + B~) 2, 

fll = max IIEill. (2.8) 
i = 1  . . . . .  n 

(2.7) 

that is 

= M + P I + P 2 = M + R .  

Referring to (1.3), we choose m so that [I/~ Ir ~< [I R II (from now on, I1" II denotes fl" II ~), 
that is, the error in t roduced by  the t runcat ion must  be at most  the error  made  in the 
construct ion of the precondit ioner.  It follows that we need an estimate for I[ P1 I[, II P2 II and 
II R II (while I[ R II is available immediately at run time, if the M I N V  precondi t ioner  is used; 

this is not  true for INV). 
Now we show how to get an estimate for II/'1 II- Observe that 

( I  + E + •.• + E m ) - I = ( I - E ) ( I - E m + I ) - I = ( I -  E ) ( I  + Em+I).  

It follows, f rom (2.6), 

~ =  T~ + ( I - g i ) ( E i m + l +  E,'Cm+')( I - E ? ) ,  
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Now we are looking for an estimate of  I[ P2 II- If we define the matrices 

we get 

II s, II < 2[[EY+ IIIIr,-III 

It follows that 

I1 P2 II < 

where 

f12 = 

max Tli ~< 2fl~n+lY, (2.9) 
i=1 . . . . .  n - 1  

max LI Ei [I, y = max ]l 7],-'[I- 
i=1 . . . . .  n--1 i=1 . . . . .  n - 1  

Finally, we get 

[I k II ~ 2(fl~'+~( 1 + •1) 2 "1- ~B2 n+l  ) = ~ ( m ) .  (2.10) 

At last, let us obtain an estimate of II R II for INV. 
Let T~ the generic diagonal block of the INV factorization, whose structure is given in (2.2), 

and let T, -1 = (t~j)). One gets [4] 

to) _ 1/ ,4(o 
k k  - -  * / t ~ k  , 

l ( i )  = t ( i )  1,.:(i) / r l ( i )  ,k , ,+l .k~, ,+l/ , , r  , r = k - 1 , . . . , 1 ,  

for s = k - 1 . . . . .  1, 
~(i) /~(i) ~ / d ( i )  

- s s  l ( i )  = (1 q- , s , s + l U s + l ] / ~ s  , 

t~) = t(i) ,(i) h(i) /A(i) 
- r s  = ~ r + l , s C ' r + l / ~ r  , F = S - -  1 , ' ' ' ,  1" 

With the assumption of T~ being diagonally dominant ,  we get that  the elements on the rows of 
T,-~ become smaller and smaller, as we go away f rom the main diagonal.  Moreover ,  as we are 
considering the case in which F~ = - I ,  we get (see (1.4)) 

I[ R I1 --- max [[ T~ -1 - trid(Ti -1 ) I]" 
i=1 . . . . .  n--1 

It follows that 

k -  1 ( k -  1)/2 

~min E OmJin ~ []RI]  <~ 2~Jmax E OmJax , 
j = 2  j = 2  

where 

that  is 

3mi, = rain (t~j)),  ~ m a x :  rnax ( ' J j ' ) ,  
I , J  t , J  

• ( i )  ( i )  Omin= m l n ( b ) + l / d j  ), Omax= max(h( i )  /A(i)~ . . . .  c ' j +  l / t 4 j  ] ,  
l , J  I , J  

2 1 -- °~in 2 1 - -  ( k -  2)/2 
Omax /2" (2.11) rl=OrninOmin~l-----~n ~< I[R[I ~<23max°2ax 1--Oma x 

In such a way, we get an interval estimate for II R I[. Moreover ,  with reference to (2.9) we get 

1 k/2 --  Oma x 
Y ~< 2~max 1 - -  Om~ x "/1" 
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If the interval £~0= [rl, r2 ] is 'sufficiently small', any value of m for which ~(m)~.~q~ (see 
(2.10)) is acceptable. Otherwise, we should remain as much as possible close to q. 

3. Numerical tests 

We have considered three test problems. For each problem, we have compared the original 
preconditioner, INV or MINV, with the truncated ones, for various choices of m. Moreover, we 
have compared those preconditioners with the one suggested by Meurant [5], in which the 
inverse of the generic tridiagonal block is approximated by a band matrix, with the main seven 
diagonals coinciding with those of the exact inverse. 

Let us briefly examine the computational cost of the considered preconditioned conjugate 
gradient methods, in terms of requested memory and operations (per iterate). The acrostic 
TRUNC(m) is for the method using the truncated preconditioner, while MEUR is for the one 
proposed by Meurant. The acrostics MTRUNC and MMEUR are for the modified versions. N 
is the dimension of the problem. See Table 1. 

The tests were carried out on a single processor of a CRAY X-MP/48. The language used is 
FORTRAN (CFT). To get the execution time (in seconds), we got, for each problem and 
method used, the minimum time of 50 executions. 

Test problem 1. The first test problem derives from the discretization of 

- a u = / ,  onS~=(0,  a) x ( 0 , 1 ) ,  

u l n a = 0 .  

The usual 5-points scheme is used, with step size h = (n + 1) -1, N = n 2, where n is the mesh 
size, n = 100. 

Test problem 2. The second problem derives from the discretization of 

-?,  A u = f  on ~2= (0,1) × (O, 1), 

u]0~=0,  

where 

1000 on ~2~ 
X = 1 on ~2 

. 

0.75 

0.25 

0. 
0. 

~'~2 

0.25 0.75 1. 

I2. 

Table 1 

Method Memory  Vectorizable N o n  vectorizabte 
operat ions operat ions 

I N V / M I N V  10N 32 N 8N 
T R U N C / M T R U N C ( 3 )  11N 40N - 
T R U N C / M T R U N C ( 7 )  12N 48N - 
T R U N C / M T R U N C ( 1 5 )  13N 56N - 
M E U R / M M E U R  12N 48N - 
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The  usual 5-points scheme is used, with step size h = (n + 1) -1, N = n 2, where  n is the mesh 
size, n = 100. 

In both  Problems 1 and 2 we got for I N V  the following est imates (see (2.11) and (2.10)): 

r 2 = 0.4915, l[ R 11 = 0.4915 (true value) ,  

~(7) = 0.0225, f ( 1 6 )  = 4 E - 7 .  

r~ = 0.089, 

~(3) = 0.1639, 

For  M I N V  we got 

r 1 = 0.178, 

~(3) = 0.4178, 

r 2 = 1.8656, II R I[ = 1.8656 (true value) ,  

~(7) = 0.0115, ~(16) = 8 E - 6 .  

Tes t  problem 3. The  third p rob lem derives f rom the discret izat ion of 

- h  A u + o u = o  o n 0 = ( 0 , 2 . 1 )  X ( 0 , 2 . 1 ) ,  

~U O~ 
o-~ =0,  

where z the unit  vector  normal  to 00,  and 

( ion ,  ,002 on, 
X = on 02,  0 = ~0.03 on 02,  

on 03, ~ 0.05 on 03, 

2.1 

1. 0 .  

O3 
0. 
0. 1. 2. 2.1 

The  usual 5-points scheme is used, with step size h = (n + 1) -1, N = n 2, where n is the mesh 
size, n = 90. 

For  this p rob lem the value of fla (see (2.8)) in the relat ion (2.7) is ob ta ined  in correspon-  
dence of the last e lement  of the last block.  We get 

, J ' , ,  = II ~o - :o I I - - ,  z + Eo ,  211E:+'11 
where 

0 

~1 o 

E~ = 

fil o 
0 

and (see (2.9) and (2.4)) 

d, = max(B2, max 
i=2,... ,k 

It follows that, instead of (2.7), we get 

II e~ I1 ~ 2d~'B~ (1 + fl~) 2. 

{~:}), ~,-~,=,>o. 
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Table 2 
Test problem 1 

Method Speedup Time Iterates 

INV 1.0 0.656 28 
TRUNC(3) 3.2 0.206 31 
TRUNC(7) 3.0 0.220 28 
TRUNC(15) 2.6 0.248 28 
MEUR 2.9 0.228 30 

MINV 1.0 0.464 20 
MTRUNC(3) 3.3 0.142 22 
MTRUNC(7) 2.5 0.184 21 
MTRUNC(15) 2.5 0.183 20 
MMEUR 2.8 0.167 22 

Table 3 
Test Eroblem 2 

Method Speedup Time Iterates 

INV 1.0 0.712 30 
TRUNC(3) 3.1 0.227 34 
TRUNC(7) 3.0 0.236 30 
TRUNC(15) 2.7 0.266 30 
MEUR 2.8 0.252 33 

MINV 1.0 0.440 19 
MTRUNC(3) 2.7 0.163 24 
MTRUNC(7) 2.6 0.171 20 
MTRUNC(15) 2.5 0.176 19 
MMEUR 2.4 0.183 23 

We obtain for INV,  

r t = 0 .2457,  r 2 = 2 .7676,  Ir R II = 0.8446 ( t rue  v a l u e ) ,  

~ (3 )  = 9 .5059,  ~ (7 )  = 2 .5945,  ( ( 1 6 )  = 0 . 1 9 3 3 .  

Observe that, even if ~(3) ~ [r 1, r2], the truncated precondit ioner  T R U N C ( 3 )  is effective,  as we  
are going to see. 

For  each method,  and each problem,  we  give the speedup with respect to the original 
precondit ioner  ( I N V / M I N V ) ,  the execut ion time, and the number  of  i terations to get conver-  
gence,  see Tables  2 -4 .  The s topping criterion used is II ri II z/l l  r0 [I 2 < 10-6 ,  where r, is the 
residual at the i th  step, and r 0 the initial residual. The  initial point  is x 0 = 0. 

Table 4 
Test problem 3 

Method Speedup Time Iterates 

INV 1.0 1.349 69 
TRUNC(3) 3.0 0.448 79 
TRUNC(7) 2.9 0.460 69 
TRUNC(15) 2.5 0.530 69 
MEUR 2.4 0.569 80 
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