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Abstract. In a previous paper [3], some numerical methods for stochastic
ordinary differential equations (SODEs), based on Linear Multistep Formulae
(LMF), were proposed. Nevertheless, a formal proof for the convergence of
such methods is still lacking. We here provide such a proof, based on a matrix
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structure of LMF-type methods for SODEs.

Mathematics Subject Classification (2000). 65L05, 65L06, 65L99.

Keywords. Stochastic ODEs, strong convergence, global order, Linear Multi-
step Formulae, General Linear Methods.

1. Introduction

The evolution of many phenomena in applied sciences such as, for example, fi-
nance, biology and physics, is modeled by using stochastic ordinary differential
equations. The latter are differential equations in which noise terms, modeling
some unpredictable behavior, are present. In more detail, a stochastic ordinary
differential equation (SODE) is an equation in the form

dy(t) = f(y(t))dt +
d∑

j=1

gj(y(t))dWj(t), t ∈ [0, T ], (1.1)

y(0) = y0 ∈ IRm,

which has been taken to be autonomous, without loss of generality, in order not
to complicate the arguments. In (1.1) the Wj(t), j = 1, . . . , d, are independent
Wiener processes, modeling independent Brownian motions: i.e., they are Gaussian
processes with independent increments, such that (see, for example, [9]) Wj(0) = 0
with probability 1, and

E(Wj(t)) = 0, V ar(Wj(t) − Wj(s)) = t − s, 0 ≤ s ≤ t.
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That is, the increments Wj(t)−Wj(s) are random variables N(0, t−s) distributed.
The deterministic term f(y) is sometimes called the drift. Equation (1.1) can be
cast into integral form as

y(t) = y(0) +
∫ t

0

f(y(s)) ds +
d∑

j=1

∫ t

0

gj(y(s)) dWj(s). (1.2)

In (1.2) the first integral is a Riemann-Stieltjes integral, whereas the remaining
ones are stochastic integrals (see, for example, [9]). The latter are defined as the
limit (in the mean square sense), as n → ∞, of the approximating sums

n∑

i=1

gj(ξi)(Wj(ti) − Wj(ti−1)), j = 1 . . . , d,

where ξi = θti + (1 − θ)ti−1, for a fixed θ ∈ [0, 1], and, for sake of simplicity, ti =
i · t/n, i = 0, . . . , n. Unlike Riemann integrals, different choices of the parameter
θ generally result in different values of the stochastic integral. The most common
choices of such a parameter are:

• θ = 0, resulting in a Itô integral,
• θ = 1

2 , resulting in a Stratonovich integral.

For the numerical approximation of the solution of equation (1.1), some nu-
merical methods have been considered (see, for example, [5] and the references
therein). In this paper we shall consider, in more detail, numerical methods in the
form (as recently proposed in [3] when equation (1.1) is in Stratonovich form):

k∑

i=0

αiyn−k+i = h

k∑

i=0

βifn−k+i +
d∑

j=1

k−1∑

s=0

Jn−s
j

k∑

i=0

γisgj,n−k+i, (1.3)

n = k, . . . , N,

where the coefficients are normalized so that αk = 1, h = T/N is the stepsize, yn is
the numerical approximation to y(tn), tn = nh, y0, . . . , yk−1 are given, fn = f(yn),
and gjn = gj(yn). Finally,

Jn
j = Wj(tn) − Wj(tn−1) =

∫ tn

tn−1

dWj(t), j = 1, . . . , d, n = 1, . . . , N,

are the Wiener increments, which are random variables N(0, h) distributed. Ob-
viously, all the variables {Jn

j } are mutually independent. In general, for methods
in the form (1.3), the previous integral will be a Itô or a Stratonovich integral,
depending on the case.

Our aim will be to analyse the order of convergence of the methods as the
stepsize h tends to 0. In 1955 Maruyama proved the mean-square convergence of
the simplest one-step method [10] and, in 1968, Gikhman and Skorokhod analysed
its mean-square order of convergence [8]. Some results of mean-square convergence
for one-step methods can also be found in [9, 12, 18]. For the study of higher-order
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methods we refer, for example, to the papers of Milstein [11] and Wagner and
Platen [20].

We shall consider here the case of linear multistep methods, i.e., methods in
the form (1.3). The framework will be the matrix formulation of the corresponding
discrete problem, as already proposed in [2] in the case of deterministic equations.
The main results, along with the needed preliminary ones, are presented in Sec-
tion 2. An example of application is shown in Section 3. A further generalization
is then considered in Section 4, based on a predictor-corrector implementation of
methods in the form (1.3), as presented in [3]. Finally, some concluding remarks
are reported in Section 5.

2. Convergence results

The truncation error of formula (1.3) is given by

τn =
k∑

i=0

αiy(tn−k+i) − h

k∑

i=0

βif(y(tn−k+i)) (2.1)

−
d∑

j=1

k−1∑

s=0

Jn−s
j

k∑

i=0

γisgj(y(tn−k+i)),

which must be interpreted as the error generated in a single step, when a set of k
exact initial conditions is given.

We now want to investigate the connection between local and global error,
i.e. the problem of determining the order of convergence of the method as the
stepsize h tends to 0.

When speaking about the accuracy of numerical methods for SODEs, it is
customary to distinguish between two different definitions of convergence, as spec-
ified in the following (hereafter, ‖ · ‖ denotes the 2-norm).

Weak convergence: this case concerns the situations where one is interested in
the moments. One then requires that there exist suitable constants C, δ, p > 0,
independent of h, such that

max
n

‖E (q(yn) − q(y(tn)))‖ ≤ Chp,

for all stepsizes h ∈ (0, δ) and appropriate polynomials q. In such a case, the
method is said to have weak order p.

Strong convergence: in this case, one is interested in the mean square conver-
gence of the trajectories, which means that

max
n

E (‖yn − y(tn)‖) ≤ Chp,

for all stepsizes h ∈ (0, δ), and the method is said to have strong order p.
By defining the global error at tn as

en = y(tn) − yn, (2.2)
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in the following, we shall study the behavior of the following quantities:

– maxn ‖E(en)‖,
– maxn

√
E(‖en‖2).

Considering that the variance of en is given by

E(‖en‖2) − ‖E(en)‖2,

the above arguments are equivalent to studying the mean and the standard de-
viation of the error. We also observe that, by using the Lyapunov inequality, we
obtain

E(‖en‖) ≤
√

E(‖en‖2),

and, therefore, the study of the standard deviation essentially consists in the study
of the (global) strong order of the method.

We will now introduce the matrix formulation for the discrete problem gen-
erated by the method (1.3) when applied to problem (1.1). In general, when in
(1.1) d > 1, the form of a numerical method is more entangled, in order to take
into account of the possible non commutativity (see e.g. [3] for the case of method
(1.3)). Therefore, though the arguments can be suitably extended to the more
general case, it is customary to study the convergence in the simpler case where
d = m = 1:

dy(t) = f(y(t))dt + g(y(t))dW (t), t ∈ [0, T ], (2.3)
y(0) = y0.

In such a case, the lower index j for the Wiener processes, as well as for its
increments, can be avoided, thus giving the discrete problem

k∑

i=0

αiyn−k+i = h
k∑

i=0

βifn−k+i +
k−1∑

s=0

Jn−s
k∑

i=0

γisgn−k+i, (2.4)

n = k, . . . , N.

By introducing the vectors

y =




yk

...
yN



 , f =




fk

...
fN



 , g =




gk

...
gN



 , (2.5)

and the following (N − k + 1) × (N − k + 1) matrices,

A =





αk

...
. . .

α0
. . .

. . . . . .
α0 . . . αk





, B =





βk

...
. . .

β0
. . .

. . . . . .
β0 . . . βk





, (2.6)
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Cs =





γks

...
. . .

γ0s
. . .

. . . . . .
γ0s . . . γks





, Js =




Jk−s

. . .
JN−s



 , (2.7)

s = 0, . . . , k − 1, one easily realizes that the discrete problem (2.4) can be written
as

Ay − hBf −
k−1∑

s=0

Js Csg = v, (2.8)

where the vector v has only the leading k entries different from zero, which depend
on the initial conditions

y0, . . . , yk−1.

By introducing the vectors ŷ, f̂ , ĝ, defined similarly as (2.5), with yn replaced by
y(tn) everywhere, and the vector v̂ containing the exact initial conditions

y(t0) ≡ y0, y(t1), . . . , y(tk−1),

we also obtain that

Aŷ − hBf̂ −
k−1∑

s=0

Js Csĝ = v̂ + τ , (2.9)

where
τ =

(
τk, . . . , τN

)T

is the vector containing the truncation errors. From (2.8) and (2.9) we then obtain

A(ŷ − y) = hB(f̂ − f) +
k−1∑

s=0

Js Cs(ĝ − g) + v̂ − v + τ ,

which, assuming for simplicity exact initial conditions1, reduces to

A(ŷ − y) = hB(f̂ − f) +
k−1∑

s=0

Js Cs(ĝ − g) + τ .

By defining the vectors

e = ŷ − y ≡ (en)n=k,...,N , τ̃ = A−1τ ≡ (τ̃n)n=k,...,N ,

δf = f̂ − f ≡ (δfn)n=k,...,N , δg = ĝ − g ≡ (δgn)n=k,...,N ,

and the matrices
A−1 = (aij)i,j=k,...,N ,

B̃ = A−1B ≡ (bij)i,j=k,...,N ,

C̃ =
∑k−1

s=0 A−1Js Cs ≡ (cij)i,j=k,...,N ,

(2.10)

1In the general case, the obtained results will continue to hold, provided that the leading k entries
of the vector v̂ − v have O(hp) mean and standard deviation, for a method having strong order
p.
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we then obtain
e = hB̃δf + C̃δg + τ̃ . (2.11)

We now need some preliminary results (hereafter, 0-stability is the usual
notion of LMFs for ODEs).

Lemma 2.1. If the method (2.4) is 0-stable, then the following properties hold true:
1. there exists 0 < α independent of N such that |aij | ≤ α,
2. there exists 0 < β independent of N such that |bij | ≤ β,
3. if

γk−ν,s = 0, s = 0, . . . , k − 1, ν = 0, . . . , s, (2.12)

then cij is a stochastic variable depending on Jj+1, . . . , Jη; alternatively
4. cij is a stochastic variable depending on Jj−k+1, . . . , Jη,

where η = min{i, j + k} and, moreover,

E(cij) = 0, E(|cij|) ≤
√

E(c2
ij) = O(

√
h). (2.13)

Proof. The first property is proved, for example, in [1, 2]. The second property
then easily follows from the banded structure of the matrix B.

Now from (2.10) one obtains

cij =
η∑

r=j

k−1∑

s=0

airJ
r−sγk+j−r,s, η = min{i, j + k}, (2.14)

and properties 3 and 4 then follow depending on whether (2.12) holds true or not.
Finally,

E(cij) =
η∑

r=j

k−1∑

s=0

airγk+j−r,sE(Jr−s) = 0,

and, from the Lyapunov inequality,

E(|cij|)2 ≤ E(c2
ij) =

η∑

r,n=j

airain

k−1∑

s,p=0

γk+j−r,sγk+j−n,pE(Jr−sJn−p)

=
k−1∑

s,p=0

η∑

r=j

airai,r−s+pγk+j−r,sγk+j−r+s−p,pE((Jr−s)2)

≤
(

k2(k + 1) α2

(
max

r=0,...,k,s=0,...,k−1
|γrs|

)2
)

h.

�

Other simple, though important, results are the following.

Lemma 2.2. For each n ≥ 1, the global error at tn, i.e. en, is independent of Jr,
for all r > n.
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Lemma 2.3. Let the method (2.4) be 0-stable, and let E(τn) = O(hp+1), n ≥ k,
then

|E(τ̃n)| ≤ O(hp).

Proof. From property 1 in Lemma 2.1

|E(τ̃n)| =

∣∣∣∣∣∣
E




n∑

j=k

aijτj





∣∣∣∣∣∣
≤

n∑

j=k

|aij | |E(τj)| ≤ NαO(hp+1) = O(hp).

�

Moreover, we list the following result.

Lemma 2.4. Let

F =





0
1 0
...

. . . . . .
1 . . . 1 0





(N−k+1)×(N−k+1)

, (2.15)

then, given a complex number µ independent of N , one has that, for all allowed
integers N , the matrix

I − |µ|
N

F

is an M -matrix (see, for example, [2]), and
∥∥∥∥
(
I − µ

N
F
)−1

∥∥∥∥ ≤
∥∥∥∥∥

(
I − |µ|

N
F

)−1
∥∥∥∥∥ ≤ e−|µ|.

Proof. See [2, Section 4.4.1]. �

Finally, we need the higher dimensional version of the Mean Value Theorem.

Lemma 2.5. Let f : Ω ⊂ IRm → IRm be suitably smooth, with Ω a convex set.
Then, for each couple of points x, y ∈ Ω, there exist ξ(i) ∈ (0, 1), i = 1, . . . , m,
such that

f(x) − f(y) = D(ξ)(x − y),

where ξ = (ξ(1), . . . , ξ(m))T and

D(ξ) =




∇f1(ξ(1)x + (1 − ξ(1))y)

...
∇fm(ξ(m)x + (1 − ξ(m))y)



 .

Now we can state the main results of this paper.
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Theorem 2.6. Let the method (2.4) be 0-stable and let the truncation error (2.1) be
such that E(τn) = O(hp+1). It follows that, if (2.12) holds true and the functions
f and g are suitably smooth with f Lipschitz-continuous with bounded Lipschitz
constant 
, then the global error (2.2) satisfies

|E(en)| ≤ O(hp), n = k, . . . , N,

provided that the errors on the initial conditions satisfy

|E(ei)| ≤ O(hp), i = 0, . . . , k − 1.

Proof. For brevity, we shall suppose e0 = · · · = ek−1 = 0, but the arguments used
can be easily generalized.

Let us then define the lower triangular matrix, of dimension N − k + 1,

L = I + F ≡




1
...

. . .
1 . . . 1



 , (2.16)

where F is defined according to (2.15). From (2.11), and the results of Lemmas 2.1
and 2.3, we then obtain that

|E(e)| ≤ h|E(B̃δf)| + |E(C̃δg)| + |E(τ̃ )|
≤ hβ
L|E(e)| + |E(C̃δg)| + O(hp).

On the other hand, we have that, since (2.12) holds true, from property 3 in
Lemma 2.1 and Lemma 2.5 it follows that

E
(
(C̃δg)i

)
=

i∑

j=k

E(cijD(ξj)ej) =
i∑

j=k

E(cij)E(D(ξj)ej) = 0,

because cij depends on Jr, r > j, and then it is independent of D(ξj)ej , which
only depends on yj and y(tj). The last equality then follows from (2.13). We then
conclude that

(I − hβ
L)|E(e)| ≤ O(hp).

The proof is completed by observing that, for all h ∈ (
0, (2β
)−1

]
, then from

Lemma 2.4 it follows that the matrix on the left-hand side is an M -matrix, and,
considering that h = T/N ,

‖(I − hβ
L)−1‖ = (1 − hβ
)−1

∥∥∥∥∥

(
I − hβ


1 − hβ

F

)−1
∥∥∥∥∥ ≤ 2e2β�T .

�

Remark 2.7. We observe that the proof of the above result strongly relies on the
requirement (2.12) since, conversely, cij and D(ξj)ej wouldn’t be independent.
Consequently, it seems that the numerical methods in the form (2.4) must be
explicit in their stochastic part.
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Theorem 2.8. Let the method (2.4) be 0-stable and let the local truncation error
(2.1) be such that

E(τn) = O(hp+1), (2.17)
E(τ2

n) = O(h2p+1), (2.18)
E(τn | y(tj)) = O(hp+1), ∀ tj ≤ tn−k. (2.19)

It follows that, if (2.12) holds, and the functions f and g are Lipschitz-continuous
with bounded Lipschitz constants, then the global error (2.2) satisfies

E(e2
n) ≤ O(h2p), n = k, . . . , N,

provided that the errors on the initial conditions satisfy

E(e2
i ) ≤ O(h2p), i = 0, . . . , k − 1.

Remark 2.9. From a probabilistic point of view, the request (2.19) means that the
random variable τn must be measurable with respect to the σ-tail generated by
y(tj) for all j ≤ n − k. That is, for all subsets A of the the Borelian sets B(IR),
τ−1
n (A) = {ω ∈ Ω : τn(ω) = A} is an element of σ(y(tj)) = {y(tj)−1(A), A ∈

B(IR)}. Moreover, we observe that the requirement (2.19) implies (2.17), since
E(τn) = E ( E(τn | y(tj)) ).

From the point of view of numerical methods for differential equations, (2.19)
means that the truncation error τn must roughly behave like O(hp+1), whatever
the local trajectory is. Indeed, the requirement is on the expectation of τn. In
light of this interpretation, it is then evident that the two requirements (2.17) and
(2.19) are essentially equivalent.

Proof. As done in the previous Theorem 2.6, for brevity we shall consider the
simpler case where e0 = · · · = ek−1 = 0, but the arguments used can be readily
generalized. Let ◦ denote the Hadamard (i.e., componentwise) product. Then, from
(2.11),

e ◦ e = (hB̃δf + C̃δg + τ̃ ) ◦ (hB̃δf + C̃δg + τ̃ )

= h2(B̃δf) ◦ (B̃δf) + (C̃δg) ◦ (C̃δg) + τ̃ ◦ τ̃

+2h(B̃δf) ◦ (C̃δg) + 2h(B̃δf) ◦ τ̃ + 2(C̃δg) ◦ τ̃ .

It then follows that, for all n = k, . . . , N ,

E(e2
n) ≤ 3 h2E








n∑

j=k

bnjδfj




2


 (2.20)

+ 3 E








n−1∑

j=k

cnjδgj




2


 (2.21)

+ 3 E(τ̃2
n). (2.22)
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Let us now analyze all the expressions on the right-hand side of the last inequality.
Starting from (2.20), we have,

h2E








n∑

j=k

bnjδfj




2




≤ h2E








n∑

j=k

|bnj | |δfj |



2


 ≤ h2
2
n∑

j,r=k

|bnj | |bnr|E(|ej | |er|)

≤ h2
2

2

n∑

j,r=k

|bnj | |bnr|E(e2
j + e2

r) ≤ h2
2β2
n∑

j=k

(n − k)E(e2
j)

≤ hT
2β2
n∑

j=k

E(e2
j),

where β is the uniform upper bound for the entries of B̃, as defined in Lemma 2.1,

 is the maximum between the Lipschitz constants of f and g, and, moreover,

n − k ≤ N − k ≤ T

h
.

For (2.21), we have

E








n−1∑

j=k

cnjδgj




2


 = E




n−1∑

j,r=k

cnjcnrδgjδgr



 =
n−1∑

j,r=k

E (cnjcnrδgjδgr) .

Now, from Lemma 2.1 we have that, if |j − r| ≥ k, than

E (cnjcnrδgjδgr) = E(cnj) E(cnrδgjδgr) = 0.

Conversely, from Lemma 2.2 we have that

E (cnjcnrδgjδgr) ≤ 
2 E(cnjcnrejer) ≤ 
2 O(h) E

(
e2
j + e2

r

2

)
.

Consequently, there exists c > 0, independent of N , such that

n−1∑

j,r=k

E (cnjcnrδgjδgr) ≤ ch
2

2

n−1∑

j=k

min{n−1,j+k}∑

r=max{k,j−k}
(E(e2

j) + E(e2
r))

≤ 2(k + 1)ch
2
n−1∑

j=k

E(e2
j).
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Considering now (2.22), by taking into account the results of Lemmas 2.1 (property
1) and 2.3 and the hypotheses (2.18) and (2.19), we have

E(τ̃2
n) = E








n∑

j=k

anjτj




2


 =
n∑

j,r=k

anjarjE(τjτr)

≤ α2




n∑

j,r=k

|j−r|<k

E

(
τ2
j + τ2

r

2

)
+

n∑

j,r=k

|j−r|≥k

∣∣E(τmax{j,r}|y(tmin{j,r})) E(τmin{j,r})
∣∣





≤ α2
(
k n O(h2p+1) + n2 O(h2p+2)

)
.

By taking into account all the above intermediate results, we finally obtain

E(e ◦ e) ≤ h ζ L E(e ◦ e) + O(h2p),

where the scalar ζ > 0 is independent of N , and L is the matrix defined in (2.16).
Consequently,

(I − h ζ L) E(e ◦ e) ≤ O(h2p).
From Lemma 2.4, we then obtain that, for h ∈ (0, hζ/2],

E(e ◦ e) ≤ ∥∥(I − hζL)−1
∥∥O(h2p)

= (1 − hζ)−1

∥∥∥∥∥

(
I − hζ

1 − hζ
F

)−1
∥∥∥∥∥O(h2p) ≤ 2e2ζT O(h2p) ≡ O(h2p).

Therefore, we finally obtain

E(|en|) ≤
√

E(e2
n) = O(hp), n = k, . . . , N,

which implies that the method (2.4) has strong order p. �
Remark 2.10. In addition to what is stated in Remark 2.7, we observe that the
above arguments cannot be extended to cover the case where (2.12) does not hold.
Consequently, this confirms that the method must be explicit in its stochastic
component.

3. An example: the Euler-Maruyama method

As an example, let us apply Theorems 2.6 and 2.8 to the Euler-Maruyama method,
which, when applied to the one-dimensional problem (2.3), has the following simple
form

yn = yn−1 + hf(yn−1) + Jng(yn−1), n = 1, . . . , N. (3.1)
If we denote by τn and τ̃n the local truncation errors of method (3.1) when the
equation is in Itô and in Stratonovich form, respectively, we obtain

E(τn) = O(h2), E(τ2
n) = O(h2),

E(τ̃n) = O(h), E(τ̃2
n) = O(h2).
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Consequently, from Theorem 2.8, it follows that the Euler-Maruyama method is
strongly convergent only if the problem is in the Itô form, with order p = 1

2 , which
is known to be its actual order, in this case. Moreover, it is also well known that the
Euler-Maruyama method does not converge if applied to a Stratonovich problem
[7]: in such a case, the method converges to the solution of the problem formally
written in the Itô form. This can be easily proved by resorting to the matrix
formulation of the discrete problem, which is the framework used so far. In more
detail, let us assume that the one dimensional problem (2.3) is in Stratonovich
form. By introducing the vectors

y =




y1

...
yN



 , f =




f1

...
fN



 , g =




g1

...
gN



 ,

and the following N × N matrices,

A =





1

−1
. . .
. . . . . .

−1 1




, B =





0

1
. . .
. . . . . .

1 0




,

J =




J1

. . .
JN



 ,

the method (3.1) can be written as

Ay − hBf − J Bg = e1 ⊗
(
y0 + hf0 + J1g0

)
.

After left multiplication by the matrix

A−1 =





1
... 1
...

. . .
1 . . . . . . 1




,

we then obtain that the ith approximation to the solution of (2.3) is given by

yi = y0 + hf0 + J1g0 + h

i−1∑

j=2

fj−1 +
i−1∑

j=2

Jjgj−1

= y0 + h
i−1∑

j=1

fj−1 +
i−1∑

j=1

Jjgj−1.

From the definition of Riemann’s and Itô’s integrals we easily see that the latter
converges to the solution of problem (2.3) in the Itô form, as N → ∞.
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4. Generalizations

The results of Theorems 2.6 and 2.8 can be readily generalized to the case of block
methods (that is, general linear methods), i.e. methods which can be cast in the
form (let us consider again, for sake of simplicity, the case m = d = 1)

A




yrn+1

...
yr(n+1)



 = hB




frn+1

...
fr(n+1)



+
r∑

s=0

Jn−sCs




grn+1

...
gr(n+1)



+ wn,

n = 0, 1, . . . , where the vector wn depends on already known quantities. In such a
case, in fact, the corresponding matrices A, B and Cs (see (2.6) and (2.7)) are block
Toeplitz matrices, for which the convergence statements can be easily generalized.

As an example, in [3] a family of Adams-type methods for Stratonivich
SODEs, of the form

yn − yn−1 = h

k∑

i=0

βifn−k+i +
Jn

2
(gn + gn−1), (4.1)

has been introduced, where the coefficients {βi} are those of the corresponding
Adams-Moulton method. Such a method, whose local errors satisfy

E(τn) = O(h2), E(τ2
n) = O(h3), (4.2)

would be a candidate for a (strong) order 1 method. According to our analysis,
this would be the case if the method would have been explicit in its stochastic
component. Nevertheless, this is obviously not the case for (4.1). On the other
hand, in [3] the following predictor-corrector implementation for the method was
proposed:

y∗
n = yn−1 + h

k−1∑

i=0

β∗
i fn−k+i + Jngn−1,

yn = yn−1 + h

k−1∑

i=0

βifn−k+i +
Jn

2
gn−1 + hβnf∗

n +
Jn

2
g∗n,

where the coefficients {β∗
i } are those of the corresponding Adams-Bashforth

method of order k and, obviously, f∗
n = f(y∗

n), g∗n = g(y∗
n).

In such a case, the arguments of Theorems 2.6 and 2.8 can be generalized,
provided that some conditions hold true. First of all, the vector of the unknowns
is now given by

y =
(

y∗
k, yk, y∗

k+1, yk+1, . . . , y∗
N , yN

)T
,
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the vectors f and g are similarly defined and, consequently,

A =





1
1

−1 1
−1 1

−1 1
−1 1

. . .





B =





0
βk 0
0 β∗

k−1 0
0 βk−1 βk 0
0 β∗

k−2 0 β∗
k−1 0

0 βk−2 0 βk−1 βk 0
. . .





,

C0 =





0
1
2 0

1 0
1
2

1
2 0

1 0
1
2

1
2 0

. . .





,

J0 =





Jk

Jk

Jk+1

Jk+1

. . .
JN

JN





.

The error equation turns out to be formally still given by (2.11) (again, let us
assume for simplicity exact initial conditions), with

τ =
(

τ∗
k , τk, τ∗

k+1, τk+1, . . . , τ∗
N , τN

)T
,

where τ∗
n is the local error at step n for the predictor scheme, and τn is that of the

corrector. Such errors (see [3]) satisfy (4.2) and

E(τ∗
n) = O(h), E((τ∗

n)2) = O(h2).

Moreover, it is not difficult to see, by setting as before τ̃ = A−1τ , that

E(τ̃ ) = O(h), E(τ̃ ◦ τ̃ ) ≤ O(h2).
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Consequently, the same arguments used in the proof of Theorems 2.6 and 2.8 can
be used, to prove (strong) order 1 convergence, since now, in such a formulation,
the predictor-corrector method is explicit in its stochastic component.

In light of the above results, it is possible to show that the following semi-
implicit scheme has (strong) order 1:

y∗
n = yn−1 + h

k−1∑

i=0

β∗
i fn−k+i + Jngn−1,

yn = yn−1 + h
k∑

i=0

βifn−k+i +
Jn

2
(gn−1 + g∗n),

since the corresponding matrices B and C0 are lower triangular and strictly lower
triangular, respectively and, consequently, the results of Theorems 2.6 and 2.8
apply. Such a formulation may be useful, when k = 1, for problems where the drift
is stiff.

5. Conclusions

In this paper we have discussed the convergence of numerical methods for sto-
chastic ordinary differential equations in the form (1.3). The main results can be
summarized as follows. Assuming that:

– the method is 0-stable,
– the local errors of the method are random variables with O(hp+1) mean and

O(h2p+1) variance,
– the explicitness condition (2.12) is satisfied,

then the method has global error which has (at least) O(hp) mean and O(h2p)
variance. In such a case, we say that the method has strong global order p.

Concerning the explicitness condition (2.12), it is a sufficient condition for
convergence, even though its fulfilment allows us to avoid the drawbacks that, for
example, may arise when applying the scheme to the scalar equation

dy = λy dt + µy dW,

where λ and µ are complex parameters. In fact, in such a case, at the nth step one
should solve an equation in the form

(αk − hλβk − Jnµγk0)yn = φn,

where φn is a known quantity. The solution may, in such a case, be unbounded,
when the real part of µ is nonzero, even though Re(λ) < 0.

Equivalently, we may reformulate the explicitness condition (2.12) by say-
ing that, in formula (1.3), each Wiener increment Jn−s

j must multiply quantities
which are independent of it (i.e., terms involving yr, r < n − s). By using such
interpretation, the above explicitness condition is easily generalized to the case
where the formula contains multiple stochastic integrals.
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Finally, we have seen that the obtained results can be extended to handle
the case of block methods, thus providing a proof of convergence for the predictor-
corrector formulae introduced in [3].
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