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A b s t r a c t  

The parallel solution of initial value problems for ODEs has been the subject of much research in the last thirty years, 
and different approaches to the problem have been devised. In this paper we examine the parallel methods derived by 
block boundary value methods (BVMs), recently introduced for approximating Hamiltonian problems. Here we restrict 
the analysis of the methods when applied to linear problems, since their nonlinear parallel implementation deserves further 
study. However, for linear problems, the methods can reach a high parallel efficiency. 

Some of these solvers can also be adapted for approximating continuous two-point boundary value problems. Numerical 
tests carried out on a distributed memory parallel computer are reported. 
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I. Introduction 

The solution of initial value problems (IVPs) for ODEs, 

y' = f ( t , y ) ,  t E (t0, T], y(to) ---- r/, (1) 

is often approximated by using appropriate discrete numerical schemes. In particular, we are inter- 
ested in methods which are suitable for an efficient implementation on parallel computers. This has 
been subject of investigation in the last thirty years [17, 18], and different approaches to such prob- 
lems have been considered (see, for example, [6, 13, 19, 21]). The most straightforward is that of 
exploiting possible parallelism existing in the continuous problem (parallelism across the problem).  
However, this approach is usually considered when explicit methods are used. As a consequence, a 
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more general way of devising parallel ODE solvers was that of  considering methods whose work per 
step can be split over a certain number of processors. The so-called solvers with parallelism across 
the method are then obtained. Such methods are essentially Runge-Kutta schemes and, in general, 
they have not a high degree of  parallelism. For this reason, another possible approach consists in the 
simultaneous approximation of the continuous solution at several grid points. The obtained solvers 
are then characterized by a parallelism across the steps. 

In the last few years, this scenario has been enriched because of  the introduction of  a new class 
of methods, namely the boundary value methods (BVMs) ,  which presents a natural parallelism in 
time [3, 8, 16]. As a consequence, their parallel implementation leads to the definition of  parallel 
ODE solvers falling in the intersection of  the last two classes of methods. 

Recently, a block version of  such methods has been introduced [11]. It has made possible the 
definition of  a very efficient parallel ODE solver, which is the subject of  the present paper. Here, 
however, we restrict our analysis to the simpler case where problem (1) is linear. This because the 
nonlinear implementation of  the methods is still subject of  research. 

In Section 2 the main facts about BVMs are recalled, along with their block implementation. In 
Section 3 we introduce the parallel solver. A sketch of  the generalization of the parallel algorithm for 
solving continuous two-point boundary value problems (BVPs) is given in Section 4. In Section 5 we 
analyze the complexity of  the algorithm, in order to derive a model for the expected speedup. Finally, 
in Section 6 some numerical examples, carried out on a distributed memory parallel computer, are 
reported. 

2. Boundary value methods 

Suppose that the integration interval of  problem (1) is discretized by using a uniform mesh with 
stepsize h = (T  - to)Is. The simplest way to define BVMs is to consider the application of  a k-step 
linear multistep formula (LMF) 

k k 

E ~iYn+i = h E f l i f  ,+i 
i=0 i=0 

(2) 

over this mesh, relaxing the usual request of  assigning all the k conditions needed by the discrete 
problem at the initial points to, t~ . . . .  , t~-l. The latter choice originates all the known methods based 
on LMF, which approximate the given continuous IVP by means of a discrete IVP. 

Let now kl and k2 be two natural numbers, with kl + k2 = k. Then, in principle one could fix the 
first k~ values of the discrete solution, 

YO, Yl , . . . ,Yk , - I ,  (3) 

and the final k2 ones, 

Ys-k2+l,'.., Ys. (4) 

In this way, the continuous IVP is approximated by means of a discrete BVP with (kl, k2)-boundary 
conditions. The obtained methods have been called boundary value methods or, shortly, BVMs. 
Even if earlier references on this approach exists [5, 14], these methods have been systematically 
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examined only in the last years, starting from [15]. In particular, the usual notions of 0-stability and 
A-stability have been generalized, leading to the definitions of 0k, k2-stability and Ak,~2-stability [10]. 
It has also been shown that no more order barrier exists for such methods. In fact, several families 
of BVMs have been found, each containing 0k, k2-stable, Ak, k2-stable methods of arbitrary high order 
[2, 10], including methods of order p = 2k, which is the highest possible order for a k-step LMF 
[1]. 

The problem of finding the values in (3) and (4) not provided by the continuous problem can 
be easily overcome. In fact, let us rewrite formula (2), used with (k~, k2)-boundary conditions, as 
follows: 

k2 k2 
E O~i+k'Yn+i:h E fli+k, fn+i, n : k l , . . . , s - k 2 .  (5) 

i=--kt i=--kl 

We have then a set of s -  k ÷ 1 equations which use the values 

Yo, yl, . . . ,  Ys (6) 

of the discrete solution. Of such values, only Y0 is provided by the continuous problem. The re- 
maining k -  1 additional values in (3) and (4) can also be considered as unknowns, by introducing 
an equal number of equations independent of those in (5). This is usually done by means of a set 
of kL - 1 additional initial equations, 

k k 

EotOi)y i=hEf l~) f i ,  j =  1 , . . . , k l -  1, (7) 
i=0 i=0 

and k2 final ones, 

k k 
(J) Eo~k_iys_i=hEfl°)_ifs_i, j = s - k 2 +  l,... ,s. (8) 

i=O i=0 

The above equations are conveniently obtained by a set of additional methods having the same order 
of the main formula (5). For simplicity, we have assumed such formulae to have the same number 
of steps as the main one. 

One then obtains a set of s equations in the s ÷ 1 unknowns (6). As a consequence, the discrete 
solution is obtained by providing only one more condition, which is that given by the continuous 
problem. In this way, by choosing appropriate BVMs, it is also possible to approximate continuous 
BVPs [9]. 

The previous use of BVMs has another important implication. In fact, let us recast the discrete 
problem (5)-(8) in matrix form. Supposing, for simplicity, that the problem (1) is scalar, one then 
obtains 

(10~)A (Y0)y - h ( b  0~)B ( f 0 ) =  ( 0 q ) ,  (9) 

where, for any integer r, we denote with 0r the null vector in Rr, 

Y = ( Yl,--.,Ys)V, f = ( f l  . . . . .  fs)T, 
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and 

[a IA] : 

( ~ ( 1 )  

A.(kl'-- 1 ) 
~0 

~0 

. .  41> 

~(kll -- 1 ) .(kl -- 1 ) 
" ' "  ~k 

0~ 1 . . .  0~ k 

" °  

0~0 

~ 0  • • • O{k 
~(s -k2+l )  . ( s - k 2 + l )  
0 ' ' '  ~k 

~ x ( s + l )  

[b I B] = 

( ') 

~o 

: 

f l lk , - l )  a(~,-1) • "" P'k 

]~0 • ' •  

• ( s - k 2 + l )  R ( s - k 2 + l )  
0 " ' "  /-'k 

• • 

0 • • "  ~ x ( s + l )  

One then concludes that (9) can also be regarded as a one-step composite method• This feature has 
led to define a block version of  BVMs [11], which has been successfully used for approximating 
Hamiltonian problems• 

In few words, such a block version amounts to discretizing the interval [to, T] by using two 
different meshes: a coarser one and a finer one. Let the coarser mesh contain the p + 1 points 

zi = z i - l  + hi, i :  1 . . . .  , p ,  Zo =-- to, zp - -  T. 

Then, on each subinterval [ Z i _ I , ' I : i ]  , i = 1 , . . . ,  p, we apply the same (composite) BVM, as described 
above, by using the finer stepsize hi = hi/s .  

As a consequence, the points in the finer mesh belonging to the subinterval (Zi-l,Zi], which we 
call in t e rna l  s t eps ,  are given by 

tji = zi-1 + j h i ,  j = 1 , . . . , s ,  i = 1 . . . . .  p ,  
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where the rightmost lower index of  tji identifies the ith subinterval. In this case, we speak about a 
block B V M  with s internal steps. 

3. The parallel algorithm 

From the previous arguments, it is evident that BVMs present a natural parallelism in time. In 
fact, when solving problem (9), one looks for simultaneous approximations of  the discrete solution 
at several grid points. An efficient parallel solution of  such equation would then lead us to define a 
parallel ODE solver which could be regarded as having both a parallelism across the method, and a 
parallelism across the steps. Parallel ODE solvers of  this kind have already been considered in the 
past years [3, 8, 16]. Instead, we shall here consider a different approach, which will gain parallelism 
from the block version of  BVMs. 

In this paper we shall restrict our analysis to the application of the methods to linear problems, 
because in such a case the discrete problem obtained is linear. In the more general case of nonlinear 
problems, the discrete problem is nonlinear, and some iterative procedure (e.g., Newton's method) 
should be considered for its solution. As a consequence, disregarding for the moment the conver- 
gence of  the iterative procedure, the following arguments could be applied to the linearized problem 
obtained at each step. 

Let us then consider the linear problem in ~m, 

y '  = L ( t ) y  + g(t) ,  t E (to, T], y( to)  = 11. (10) 

Moreover, in order to avoid unnecessary complications, we shall also suppose the points in the 
coarser mesh to be equally spaced. Let us introduce, for i = 1,. . . ,  p, the block vectors (see (9)), 

vi = a ® I m  - h b  @ Loi ,  

where, for any integer r, /r denotes the identity matrix of size r, and Lji ---- L(tji).  Moreover, we 
define the sm x sm matrices 

v,. = I v , I ,  

Lli ) 
= A ® - h ( B  ® lm)  ".. , 

Lsi 

where, by denoting by Q,s-i the s × ( s -  1) zero matrix and, for any integer r, with Or the r x r 
zero matrix, 

Os, s-1 = Os,,-1 ® Ore. 

Then, the application of  a block BVM to problem (10) leads to the following discrete problem: 

M<P)y ~p) = gCP), (11 ) 
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where 

M(p) : 

vl M1 
V z M 2  

".. ",. 

VpM  

/i °) (j Yl hgl I 
y(P) : Y2 , g(P) = hg2 , 

p h'gp ] 

Yi contains the approximations at the intemal steps in the ith subinterval, and gi is a block vector 
containing suitable combinations of  the inhomogeneity in (10) at the points in the same subinterval. 

The parallel implementation of  block BVMs will exploit the particular structure of  the coefficient 
matrix M ~p). In fact, in order the discrete solution be defined (as we obviously assume), all the 
square diagonal blocks 34. must be nonsingular. As a consequence, we may consider the following 
factorization: 

M(p) : T(P)S(P), 

where 

/m 
ml 

T(P) = 

(12) 

/ 'm ) 
w, L 

. , S ( p ) =  w2 ~ , 
°. 

m p  ''" ".. 

having denoted, for any integer r, with Ir = Ir ®Im and, for all allowed i, W, = [O~,s_l I w~], while 
w; is the solution of the linear system 

Miwi = vi, i :  1 . . . .  , p.  (13) 

We here assume that such systems are solved by means of  the L U  factorization with partial pivoting 
algorithm. 

As a consequence, Eq. (11) is equivalent to solving the following ones: 

i .e . ,  

T(P)x(p) : g(P) ,  S(P)y (p) : x (p) : 

xo) 
Xl 

Xp 

Xo = q, M~xi = hgi, i = 1 , . . . , p ,  (14) 

y0 = x0, y l  = xl  - wl yo, Yi : X i  - -  W/•i-1, i = 2 , . . . ,  p. (15) 

By the way, we observe that Eq. (14) corresponds to the parallel approximation of  the p IVPs 

x'  : L ( t ) x + 9 ( t ) ,  t c (Zi-l ,Zi],  x ( z i - 1 )  = 0 ,  i = 1 , . . . , p .  
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In order to examine Eq. (15), we need to further partition the vectors xi, Yi 

follows: 

(J~i) ( .]~i ) (Wi) 
Xi = , Yi = , Wi = , i = 1 . . . . .  p ,  

Xsi Ysi W si 

and wi as 

where Xsi, Ysi E ~m and wsi C ~m×m. The existing parallelism is then emphasized by considering the 
following ( p s  + 1 )m × ( p s  + 1 )m permutation matrix: 

p = 

¢6s--1 is--1 6s--I ...  
6~__, 0~__, 6~__, L - ,  6s--, . . .  

Os--, Os--, Os--I Os--, Os--I L--I Os--1 "'" 

^T 
Im O~_l . . .  

^T ^T 
Om Os--1 Im Os-1 "'" 

^T ^T ^T 
Om Os-- l Om Os- 1 Im Os- 1 

(16) 

where 6s-L = Os-1 @ Om, and Os_ 1 = Os--I ~ Om. In fact, the solution of (15) is equivalent to the 
permuted system 

P S ( P ) p T p y  (p) = p x  (p), 

i.e., 

L-I 

O 

By considering the matrix 

1¢ 1 0 m 

1~ 2 0 m 

Im 

W s l  I m  

w~2 Im 

" , °  

~'p Om 

° 

Wsp lm 

Y2 ~2 
• ° 

.Op = 2 p  . 

Yo Xo 
Ysl Xsl 

• , 

\ Ysp ] \ Xsp 

(17) 

Rp = 

lm 

Ws~ Im 

Ws2 Im 

° . ,  *°• / ' 
Wsp lm 

(18) 
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the solution of  (17) is obtained by first solving the reduced system 

Rp 

Yo 
Ysl 

\ Y~p 

(x0) 
Xsl 

\ Xsp 

(19) 

and then updating in parallel the right-hand side (let)'so = Y0), 

.fi = -ri - wiys,i-1, i = 1 , . . . ,  p. (20) 

As a consequence, one has that only the reduced system (19) cannot be directly solved in parallel. 
The parallel solution of  such system, however, can be obtained by using a block cyclic reduction, 
even if also in this case the degree of parallelism is not constant. 

Finally, we observe that the dimension of  the matrix Rp is (p + 1)m x (p  + 1)m, where p is 
the number of the parallel processors, and m is the dimension of  the continuous problem. It is then 
independent of  both the number s of  internal steps, and the number k of  steps of  the main formula 
of  the block BVM. 

4. Parallel solution of two-point BVPs 

Block BVMs can be also used for approximating continuous two-point BVPs. By considering the 
following linear problem: 

y'  = L ( t ) y  + 9(t),  Bay(a) + Bby(b) = q, 

where Ba and Bb are m x m matrices, the obtained discrete problem is still given by (11), with the 
only difference that, now, 

B a  (Os__ 1 Bb) 
vx Ml 

M~P)= V2 MR . (21) 
• . • ,  

Vp Mp ] 

However, in this case a factorization similar to (12) cannot be used, because of stability reasons, 
since the diagonal blocks M~ may be very ill-conditioned or even singular• 

For this reason, let us consider the following partitioning of  the coefficient matrix (21): 

I Ba Bb I vt N1 zl 
M~p) = v2 N2 z2 , (22) 

• , •  

Vp Np Zp 
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where each block N~ has size s m  x (s  - 1)m and must have full column rank, in order the matrix 
M (p) is nonsingular. As a consequence, Ni can be factored as 

N~ = QiLi ^T , i = 1 , . . . , p ,  (23) 
0s-1 

where Qi is an sm x sm  permutation matrix, Li is lower triangular, and Ui is ( s -  1 )m x ( s -  1 )m upper 
triangular. We observe that the factorizations (23) are independent of each other and, therefore, they 
can be computed in parallel. 

The subsequent step is the solution of the linear systems defining the block vectors u~ and wi: 

QiLilli -= zi, QiLiwi = Vi, i = 1, . . . ,  p, 

which can be also computed in parallel. For convenience, we partition these vectors as follows: 

U i ~ , W i ~ , Usi ,Wsi E ~mxm. 
Usi Wsi 

The above steps then lead to the following factorization of matrix (22): 

M(p) = L(P)D(P)U(P), 

where 

L(p) = i II'ml Q1L1 , Utp) = Ul 
"° "°. 

QpLp 

U i = (  & i ~ i  ) [m ' D(P)= 

na 

ff'l i s - l  
Wsl Usl 

ws2 

~ 0 O 

Us2 
° .  

'G L-l 
w~p 

Bb 

Usp 

(24) 

( Ba Bb ) 
Wsl Usl 

Rp = ".. ".. . (25) 

Wsp Usp 

At this point the solution of the linear systems with the matrices L (p) and U tp) can be easily 
performed in parallel on the p processors. The existing parallelism in the solution of the system 
with the matrix D (p) requires the use of the permutation matrix (16), thus showing that the only 
sequential section amounts to the solution of a reduced system, with the reduced matrix 
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However, we observe that matrix (25) has a structure similar to that of  the original matrix (21), but 
smaller size. As a consequence, the same steps considered above can be repeated recursively, thus 
obtaining a cyclic reduction-like solution of  the reduced system, as already proposed by Wright [22] 
for the solution of  ABD systems (see also [4]). 

5. Expected speedup 

Let us now examine the parallel complexity of  the algorithms described in the previous sections. 
For this purpose, observe that when a distributed memory parallel computer is used and its processors 
are numbered from 1 to p, the rightmost lower index in each mentioned quantity denotes the 
index of the processor where this quantity has to be stored. The only exception is for the vectors 
and the matrices involved in the initial or boundary conditions. In fact, they are all stored on the 
first processor, when the reduced system is sequentially solved. Conversely, they are stored on the 
processor performing the last step in the reduction of  the reduced system, when the parallel approach 
is used. 

The following estimates are obtained in the case where p = 2 r. In the general case, they are 
slightly modified. 

The parallel algorithm derived by factorization (12) is summarized by the following steps, where 
we have assumed that kl ~ k/2, since this is the case for the most effective BVMs [1, 2, 10, 12]. 
Then, we derive a simplified model for the expected speedup on p processors. The simplifying 
assumption consists in neglecting data communication time, thus considering only the number of  
flops (floating point operations). This is because data communication originates terms with a much 
smaller complexity. 

Step 1 (Computation of  the factorization (12)): For all i = 1, . . . ,  p, processor i computes the LU 
factorization of  M, and solves the ith linear system in (13); n l ~ pskam 3 flops, equally redistributed 
on the p parallel processors, are required. 

Step 2 (Parallel solution of  the system with the matrix T(P)): For all i = 1, . . . ,  p, processor i 
solves the ith linear system in (14); n2 ~ 2pskm 2 flops, equally redistributed on the p parallel 
processors, are required. 

Step 3 (Solution of  the reduced system (18)-(19)): /73 ~ 2pm z flops are required if a sequential 
solution of  the reduced system is considered. Conversely, when it is solved by using block cyclic 
reduction, the parallel complexity is n~ ~ 2m 3 log 2 p flops. 

Step 4 (Parallel updates required by system (17)): For all i = 1, . . . ,  p, processor i computes the 
ith update (20); n 4 ,~ 2psm 2 flops, equally redistributed on the p processors, are required. 

Observe that step 3, that is the solution of  the reduced system, represents the only synchronization 
point among the processors. In particular, when the reduced system is sequentially solved, p -  1 
data communications of  length m are needed. Conversely, when a block cyclic reduction is used, 
one needs approximately log 2 p data communications of  length m 2. 

The standard LU factorization with partial pivoting algorithm applied to problem (3) represents 
the scalar algorithm of  comparison. It requires ns ~ psk2m 3 flops. 

The following expression for the expected speedup of  the parallel algorithm, over the sequential 
implementation of  the same method, is then obtained, 
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Sp ~- 

ns p 
nl -q- n2 -k- n4 1 + 2(sk2m)-l p 

+ n3 
P 

when the reduced system is solved sequentially, 
ns p 

, 1 + 2(sk2) -1 log 2 p ' nl + n2 -k- n4 -q-n3 

P 
otherwise. 

(26) 

From the above expressions, it is evident that the parallel solution of the reduced system via block 
cyclic reduction is conveniently used only if n3 > n~, i.e., when 

m < p/log 2 p. 

Consequently, it is convenient when the number of parallel processors p is suitably large, and/or 
the size m of the continuous problem is suitably small. In this case, the expected speedup is almost 
independent of m. Moreover, in both cases, the parallel efficiency grows with the number k of steps 
of the main formula, and the number s of internal steps of the block BVM. 

We now briefly examine the case of two-point BVPs, thus analyzing the algorithm corresponding 
to the factorization (24). It can be shown that the complexity of the sequential LU factorization 
algorithm applied to the system (11 )-(21) is still given by ns ~ psk2m 3 flops. Moreover, concerning 
the parallel solver, it can be shown that the complexity of the operations with perfect degree of 
parallelism is essentially the same as in the previous case. The only significant difference consists 
in the solution of the reduced system with matrix (25). In fact, it requires approximately 12pm 3 
flops, if sequentially solved, or a parallel complexity of approximately 20/3 m 3 log 2 p flops, when 
the cyclic reduction-like approach is used. 

One easily verifies that, in this case, it is always convenient to consider the parallel solution of the 
reduced system, thus obtaining the following expression for the expected speedup on p processors: 

P 
1 + 20/3(sk2) -1 log 2 p" 

6. Numerical examples 

We now consider some numerical examples, in order to show the effectiveness of the presented 
parallel implementation of block BVMs. We first consider two initial value problems, then we 
examine the solution of a boundary value problem. 

In all the cases, the parallel solution of the reduced system has been considered. Moreover, 
the chosen BVMs are extended trapezoidal rules (ETRs) [2], i.e., methods having the following 
form: 

v-I 

Yn -- Yn--I ~ h ~ f l i+v f  n+i, 
i=--v 

n = v , . . . , s - v + l ,  v>.l.  

In this case, k = 2 v -  1 ( k l  ----- v ,  k2 = v -  1), and the coefficients {fli} are uniquely determined 
by imposing a O(h ~+2) truncation error. The above formula is conveniently used with the following 
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additional initial equations: 

k 

y j - y j _ l = h Z f l O i ' ) f i  , j =  1 , . . . , v -  1, 
i=0  

and the following additional final ones: 

k 

yj - yj_, = h Z fl~2if s-i' j = s - v + 2,. . .  ,s. 
i=O 

The coefficients of  the additional methods are uniquely determined by imposing the same order k + 1 
of  the main formula. 

Such methods are suitably used either for approximating Hamiltonian problems [7, 11, 20], or 
continuous BVPs [9]. 

The parallel computer used is a transputer based machine, which is a distributed memory parallel 
computer. Its nodes communicate through four physical channels called links. 

The first problem is 

y' = 19 -21  20 y, y(0) = , t E [0,5]. (27) 
40 --40 --40 -- 

The second problem is a Hamiltonian one 

Y ' =  (15 -15 )  Sy, y(0) = , t E [0,50], (28) 

where S = 8110 + Q, and the (i , j)th entry of Q is i + j ,  i , j  = 1 . . . . .  10. 
In both cases, a uniform mesh has been considered, and the speedup over the sequential imple- 

mentation of  the methods is computed. In this case, the time for the parallel execution includes both 
computations and communications. 

In Table 1 we report the measured speedups on p = 1,2,4,8,16 processors for problem (27), 
while Table 2 summarizes the results for problem (28). For both problems, we have considered ETRs 
of  different order (k = 3, 5, 7, 9) and two values for the number of  internal steps (s = 20,40) in order 
to observe the predicted growth of  the speedup with k and s. In this case, since we are considering 
linear problems, there is no difference (up to machine precision) between the solution computed on 
one processor, and those computed in parallel. Consequently, the accuracy of  the computed solutions 
completely reflects the order of  the methods. 

From Tables 1 and 2, one can also observe a moderate growth of  the speedup with the dimen- 
sion m of the continuous problem, not predicted by our simplified model (26). However, the most 
interesting feature is that the proposed parallel solver is very effective, since all the speedups are 
very close to p. Moreover, the parallel solution of  the reduced system allows the use of  parallel 
computers with a large number p of  processors, since the complexity for its solution grows as 
log2 p. 



P. Amodio, L. Brugnano l Journal of Computational and Applied Mathematics 78 (1997) 197-211 

Table 1 
Measured speedups for problem (27) 

S 

p \ k  

20 40 

3 5 7 9 3 5 7 9 

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2 1.89 1 . 9 3  1 . 9 4  1 . 9 5  1 . 9 4  1 . 9 6  1 . 9 7  1.98 
4 3.55 3.68 3.77 3.83 3.74 3.84 3.88 3.92 
8 6.42 6.93 7.20 7.44 7 . 1 1  7.43 7.58 7.72 

16 12.46 13.52 14.13 14.52 14.03 14.70 14.98 15.24 
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Table 2 
Measured speedups for problem (28) 

s 20 40 

p \ k  3 5 7 9 3 5 7 9 

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2 1.95 1 . 9 9  1 . 9 9  1 . 9 9  1 . 9 9  1 . 9 9  1 . 9 9  1.99 
4 3.77 3 . 9 1  3.94 3.96 3.94 3.94 3.97 3.97 
8 7.34 7.67 7.77 7.85 7.67 7.78 7.88 7.90 

16 14.16 15.05 15.34 15.55 15.10 15.41 15.67 15.72 

Finally, let us consider the following second-order boundary value problem (e = 10-3) :  

EU tt : U, 

_ _  1 ! ey"  = t + ½tu' ~ty  - en 2 cos(nO - ½trc sin(nO, 

u ( - 1 )  = - y ( - 1 )  = 1, u(1) = y(1)  = e -2/v~. (29) 

It is solved after recasting as a first-order system. In this case, we fix the number s = 40 of  internal 
steps for the considered BVMs. Then, we solve the above problem on p processors, by using a 
constant stepsize h = ( p s )  -~, p = 1,2,4,8,16. This means that when the stepsize is halved, and 
consequently the size of  the discrete problem is doubled, the number of  the parallel processors used 
is also doubled. As a consequence, we expect the execution time to remain approximately constant 
for increasing number of  processors, even if the accuracy of  the solution improves, due to the use 
of  a smaller stepsize. 

In Table 3 we report the measured execution times, expressed in units of  time ( t i cks ) ,  each 
corresponding to 64 #s. Finally, in Table 4 the maximum absolute errors are reported. As predicted, 
as the number p of  processors increases, the maximum error decreases. 

Concerning Table 3, it is worth mentioning that the execution times on multiple processors are 
often smaller than the execution times on one processor. This is due to the fact that, as the stepsize 
is decreased (i.e., p increases), the discrete problem changes, and the L U  faetorization algorithm 
requires less permutations for pivoting. 
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Table 3 
Measured execution times for problem (29) 

p \ k  3 5 7 9 

1 4217 6137 8482 10899 
2 3955 5822 8571 10993 
4 4110 5987 8007 10259 
8 4176 6043 8116 10404 

16 4265 6030 8151 10551 

Table 4 
Measured maximum absolute errors for problem (29) 

p \ k  3 5 7 9 

1 3.6e-2 1.2e-2 7.5e-03 5.5e-03 
2 3.8e-3 9.3e-4 1.2e-04 5.0e-04 
4 2 .4e-4  1.4e-5 3.5e-06 1.6e-06 
8 1.1e-5 1.9e-7 3.9e-09 4.5e-10 

16 8.3e-7 3.1e-9 2 . 1 e - l l  5.6e-13 
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