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1. Introduction. The numerical approximation of ODEs is still a very active
field of research, as shown by the very rich amount of significant contributions in the
last forty years. The demand for new methods well-suited for particular classes of
applicative problems is relevant, as well as the need for the efficient implementation
of the methods on modern computers, including parallel computers.

Many of the obtained results have been collected in several books, among which
we quote [2, 7, 10, 12, 15, 17, 23]. Across the years, the required properties for the
numerical methods have had an interesting evolution. Until the fifties, major attention
was devoted to the order of accuracy. Later on, stability and convergence became
more important. In the last years, properties of the methods such as the definition of
efficient splittings, degree of parallelism, etc., more relevant for the implementation
purposes, have become focal. This because such features are essential when solving
large-size problems. In this paper we shall deal with such topics, namely the definition
of methods that, in addition to classical requirements, do have favorable properties
from the point of view of the implementation. In particular, we focus our attention
on r-block implicit methods for approximating the solution of the problem

y′ = f(t, y), t ∈ (t0, T ], y(t0) = y0 ∈ IRm,(1)

over the discrete set of points ti = t0 + ih, i = 1, 2, . . . , N , where h = (T − t0)/N is
the stepsize. An r-block method is a method which provides the approximations at
the first r mesh-points as the solution of the following discrete problem,

F (y) ≡ A ⊗ Imy − hB ⊗ Imf + a ⊗ y0 − hb ⊗ f0 = 0,(2)

where

y =







y1

...
yr






, f =







f1

...
fr






,
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yi is the approximation to y(ti), and fi = f(ti, yi). Finally, A and B are r×r matrices,
a, b are vectors in IRr, and in general, for any integer j, Ij will denote the identity
matrix of size j. Moreover, in the following we shall also consider the augmented
matrices

Â = [ a A ], B̂ = [b B ].(3)

Methods in the form (2) are a generalization of those proposed originally in [3, 4,
27], where the normalization A = Ir is considered. With such a normalization, they
are also related to Runge-Kutta methods (see, for example, [5, 8, 9, 10, 16, 17]). We
prefer, however, to consider the more general formulation (2) for two main reasons:

• in such formulation they are also related to block Boundary Value Methods
(see [7]),

• it presents some advantages in discussing the implementation issues.
The latter point will be discussed in Sections 5 and 6. For such purpose, it will be
hereafter assumed that both the two matrices A and B are nonsingular. Before that,
in Sections 2 and 3 we collect some results, some of them known, concerning the
construction of the methods. Additional considerations are reported in Section 4.
Most results in the two sections dedicated to the implementation of the methods are
new. Finally, in Section 7 we summarize the main facts and provide some final remark.

2. Construction of block implicit methods. An implicit r-block method is
characterized by the fact that the rows of the augmented matrices (3) are defined
through the characteristic polynomials of a suitable set of (distinct) r-step LMFs:

Â =









α
(1)
0 . . . α

(1)
r

...
...

α
(r)
0 . . . α

(r)
r









, B̂ =









β
(1)
0 . . . β

(1)
r

...
...

β
(r)
0 . . . β

(r)
r









.(4)

On the coefficients of such matrices we shall impose order conditions. Let us
consider at first the case where all such methods have (at least) order p ≥ 1. The
following result then holds true.

Theorem 1. Let the matrices (3) satisfy the following set of equations,

Âq̂i = iB̂q̂i−1, i = 0, . . . , p,(5)

where

q̂−1 = 0, q̂i =











0i

1i

...
ri











≡
(

0i

qi

)

, i = 0, 1, . . . .(6)

Then the LMFs defining the block method have a truncation error which is at least
O(hp+1).

Proof. The equations (5) are nothing but the usual order p conditions for LMFs,
simultaneously imposed for all the r LMFs corresponding to (4). 2
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From the above result, when all methods in (4) are consistent (p ≥ 1), one obtains
relations between the first columns of the augmented matrices Â and B̂, and the square
matrices A and B, respectively. In fact, from (5) we obtain, for i = 0, 1, the following
conditions:

a = −Ae, b = Aq1 − Be,(7)

where e ≡ q0 denotes the vector with all unit entries (see (6)). Having spent the
consistency conditions to relate the vectors a and b to the matrices A and B, we
can use the subsequent order conditions to define the entries of such matrices. In
particular, it is an easy matter to verify the following result.

Corollary 1. Let the matrices defined in (3) satisfy (7) and the following set
of equations,

Aqi = iBqi−1, i = 2, . . . , p.(8)

Then the LMFs defining the block method have a truncation error which is at least
O(hp+1).

Note that if (8) holds also true for i = 1, from (7) it follows that b = 0. Such
condition would simplify the derivation of the methods, moreover it implies the L-
stability of A-stable methods. Nevertheless, we prefer not to impose it directly, in
order to obtain a more general framework.

Let now define the following matrices:

Dj = diag
(

1 2 . . . j
)

, Qj =
(

q1 . . . qj

)

, j = 1, 2, . . . .

As a consequence, the order conditions (8) can be rewritten as

ADrQp−1 = BQp−1 (Ip−1 + Dp−1) .(9)

The following result then holds true (see also [6]).

Theorem 2. If p = r + 1, the matrix A−1B is uniquely determined.
Proof. In fact, when p = r+1, the matrix Qr in (9) is a nonsingular Vandermonde

matrix. Consequently, one obtains that

A−1B = DrQr(Ir + Dr)
−1Q−1

r ,(10)

whose right-hand side only depends on r. 2

We observe that the matrix A−1B in (10) is similar to a Frobenius-type matrix.
In fact, we have that

A−1B = Qr

(

Q−1
r DrQr(Ir + Dr)

−1
)

Q−1
r(11)

and
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Q−1
r DrQr =











−α0

1 −α1

. . .
...

1 −αr−1











,(12)

where

r
∑

i=0

αix
i ≡ (x − 1)(x − 2) · · · (x − r)

is the r-th order Wilkinson’s polynomial. Consequently,

Q−1
r DrQr(Ir + Dr)

−1 =










− α0

r+1
1
2 − α1

r+1

. . .
...

1
r

−αr−1

r+1











= G−1













− 1!α0

(r+1)!

1 − 2!α1

(r+1)!

. . .
...

1 − r!αr−1

(r+1)!













G,(13)

where

G = diag
(

1! 2! . . . r!
)

,(14)

From (2) and (7), it follows that methods having the same matrix A−1B provide
the same discrete solution. For this reason, we shall call as equivalent methods sharing
the same matrix

C = A−1B.(15)

In what follows we shall exploit the possibility of writing a specific method by using
different equivalent forms. Moreover, it is important to point out that equivalent
methods do have the same order and stability properties. For an r-block method, it is
customary to define such properties by taking into account only the last entry of the
solution vector y, because it represents the starting point for subsequent applications
of the same method. In particular, concerning the stability, if we consider the usual
test equation

y′ = λy, y(t0) = η 6= 0,(16)

the application of the block method (2) generates the discrete problem

(A − qB)y = (qb − a)η, q = hλ.(17)

From such equation one obtains that the usual property of A-stability is equivalent
to require, for all q ∈ C−,
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|yr(q)| ≡
∣

∣eT
r (A − qB)−1(qb − a)η

∣

∣ < |η|,

where er is the last unit vector in IRr, i.e.

Re(q) < 0 ⇒ g(q) ≡
∣

∣eT
r (A − qB)−1(qb− a)

∣

∣ < 1.(18)

A necessary requirement for this purpose, is to have problem (17) well-posed for all
such q. For this reason, we give the following definition:

Definition 1. A block method is said to be pre-stable if the spectrum of the
corresponding matrix pencil A − µB is contained in C+.

This fact implies that the result of Theorem 2 is useful only to define pre-stable
methods up to r = 8; as matter of fact, by direct inspection one verifies that the
matrix on the right-hand side of (10) has eigenvalues with negative real part, when
r ≥ 9. Consequently, the corresponding method cannot be pre-stable: in fact, the
spectrum of the pencil (A−µB) coincides with that of C−1 (see (15)), since both the
two matrices A and B are assumed to be nonsingular.

In order to obtain alternative criteria for choosing the matrix C, we shall relax
the order conditions for the LMFs on each row of the block method. In particular, it
will be convenient to impose only an order r condition: i.e. (see (9))

ADrQr−1 = BQr−1 (Ir−1 + Dr−1) .(19)

It remains one more condition to be imposed. It will be used to fix the spectrum of
the matrix C. Such a condition will be written as

AQrd̂ = BQrer,(20)

where d̂ is a suitably chosen vector. The two conditions (19)-(20) can be also written
as (see (15))

Qr

(

0T

(Ir−1 + Dr−1)
−1

)

= CQr

(

Ir−1

0T

)

,

and

Qrd̂ = CQrer,

respectively. Altogether, we then obtain:

Qr

( (

0T

(Ir−1 + Dr−1)
−1

)

d̂

)

= CQr

( (

Ir−1

0T

)

er

)

= CQr.

Consequently, considering that Qr is a nonsingular Vandermonde matrix, we have
that (see (14))
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C = Qr

( (

0T

(Ir−1 + Dr−1)
−1

)

d̂

)

Q−1
r = QrG

−1FGQ−1
r(21)

where

F =

( (

0T

Ir−1

)

−d

)

, d ≡







d0

...
dr−1






= − 1

r!
Gd̂.(22)

One then concludes that the characteristic polynomial of C is given by

d(z) =

r
∑

i=0

diz
i, dr = 1.(23)

Moreover, from (22) it follows that the vector d̂ in (20) and (21) is given by

d̂ = −r!G−1d ≡ −r!







d0

1!
...

dr−1

r!






.

By the way, we observe that the choice (see (10)–(13))

d̂ =
−1

r + 1







α0

...
αr−1







corresponds to the method obtained by imposing the order r + 1 conditions on each
row.

Let us now study the problem of appropriately choosing the characteristic poly-
nomial d(z) in (23). We surely will choose it in order to have all the roots contained
in C+, so that the method is pre-stable. This is not enough, however, to define a
“good” method. An additional requirement may be obtained by considering that, in
order the Absolute stability region of the method (see (18)),

D = {q ∈ C : g(q) < 1} ,

to be unbounded, it would be preferable to have the point at ∞ inside D. From (18),
such a requirement is easily proved to be equivalent to

g(∞) ≡
∣

∣eT
r B−1b

∣

∣ < 1.(24)

The next result relates g(∞) to the characteristic polynomial (23).
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Theorem 3.

g(∞) =

∣

∣

∣

∣

∣

1

d0

r
∑

i=0

ri

i!
di

∣

∣

∣

∣

∣

.(25)

Proof. From (7), (15), (14), (21) and (22), we obtain that

B−1b = B−1A A−1b = C−1(q1 − Ce) = C−1Dre− e = QrG
−1F−1GQ−1

r Dre− e

= QrG
−1F−1G

(

q0 . . . qr−1

)−1
e− e = QrG

−1F−1Ge1 − e

= QrG
−1F−1e1 − e = −QrG

−1







d1

d0

...
dr

d0






− e = −Qr







d1

1!d0

...
dr

r!d0






− e.

Consequently, one obtains

g(∞) =
∣

∣eT
r B−1b

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

(

r1 . . . rr
)







d1

1!d0

...
dr

r!d0






+ 1

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 +
1

d0

r
∑

i=1

ri

i!
di

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

d0

r
∑

i=0

ri

i!
di

∣

∣

∣

∣

∣

.

2

The above result then provides an additional condition for the characteristic polyno-
mial (23) of the matrix C, namely (see (24)-(25))

∣

∣

∣

∣

∣

1

d0

r
∑

i=0

ri

i!
di

∣

∣

∣

∣

∣

< 1.(26)

A further requirement for choosing the polynomial d(z) follows by observing that,
from (7) and (15)–(17), one obtains

yr(q) =
det(M(q))

det(Ir − qC)
η ≈ erqη,(27)

where M(q) is the matrix obtained from the matrix Ir − qC, whose last column has
been substituted by e + q(q1 − Ce). From the above equation, one obtains

erz ≈ det(M(z))

det(Ir − zC)
=

ϕ(z)

zrd(z−1)
≡ ϕ(z)

µ(z)
,(28)

where ϕ(z) = det(−M(z)) is a polynomial of maximum degree r, and

µ(z) =

r
∑

i=0

diz
r−i, dr = 1,(29)
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is a polynomial of exact degree r, since we assume (Ir − qC) to be nonsingular. The
above arguments can then be summarized by saying that the characteristic polyno-
mial of the matrix C (see (23)) coincides with the inverse of the polynomial at the
denominator of a rational approximation to the exponential. By considering that,
from (19), the above approximation to erz is at least O(zr+1), the following result
easily follows.

Theorem 4. Let the denominator µ(z) of the rational approximation (28) be
given (i.e., the characteristic polynomial (23) is given). Then, the polynomial ϕ(z) is
uniquely determined.

We observe that, from (27)-(29), one obtains that (24) is always satisfied, when
deg(ϕ) < deg(µ) ≡ r: in such a case, in fact, one obtains g(∞) = 0 and A-stability
implies L-stability. A complementary result is the following (see also [27]).

Theorem 5. If µ(z) ≡ ϕ(−z) and all the roots of µ(z) have positive real part,
then the corresponding block method is perfectly A-stable and g(∞) = 1.

In other words, the above result states that, under the above condition of symmetry
for µ(z) and ϕ(z), pre-stability and A-stability are equivalent. Moreover, this result
is complementary to the condition (26).

All the above facts then imply that a partial list of good criteria for choosing the
characteristic polynomial d(z) in (23) are the following:

• it must have all the roots contained in C+ (pre-stability);
• zrd(z−1) must be the denominator of a (at least) O(zr+1) rational approxi-

mation to erz;
• the polynomial should satisfy (26) (point at ∞ inside the absolute stability

region D). Alternatively, the conditions of Theorem 5 should be satisfied.
In view of the above criteria, and in particular of the second one, in the next section
we shall review some rational approximations to the exponential. Before that, we
conclude this section by considering the problem of determining the order of a block
method. For this purpose, let us denote by

ŷ =







y(t1)
...

y(tr)






, f̂ =







f(t1, y(t1))
...

f(tr, y(tr))






,

where y(t) is the solution of problem (1). From (2) one then obtains that

A ⊗ Imŷ − hB ⊗ Im f̂ + a ⊗ y0 − hb⊗ f0 = τ ,

where τ is the vector with the truncation errors of the method. By assuming that
y(t) is suitably smooth, the entries of the latter vector are given by

τi =
∑

j>r

y(j)(tn)

j!
hj

(

r
∑

k=0

kj−1(kα
(i)
k − jβ

(i)
k )

)

≡
∑

j>r

y(j)(tn)hjvji, i = 1, . . . , r,(30)

because of the conditions (19). Consequently, we obtain that
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A ⊗ Im(ŷ − y) − hB ⊗ Im(̂f − f) = τ .

By introducing the vector ê = ŷ−y, one then concludes that it satisfies the equation

(A ⊗ Im − hB ⊗ ImĴ) ê = τ ,(31)

where

Ĵ =







Ĵ1

. . .

Ĵr






,

(32)

Ĵi =

∫ 1

0

J(ti, sy(ti) + (1 − s)yi)ds ≡ J0 + O(h),

J(t, y) = ∂
∂y

f(t, y) and J0 = J(t0, y0). The order of the block method is then defined
according to the next definition.

Definition 2. The block method corresponding to (31) has order p provided
that êr = O(hp+1), where êr is the last entry of ê.

It is obvious that, from (30) and (31), we have that the order of the method is
p ≥ r. In general, the relations between the order conditions (30) and the global
order of the method may be very entangled, as the Butcher theory for Runge-Kutta
methods (see, for example, [12]) shows. Nevertheless, in case we look for values of p
only slightly greater than r, the following result may be useful.

Theorem 6. Consider the following possible cases for the method corresponding
to (30)-(31)

0) eT
r A−1vr+1 6= 0;

1) eT
r A−1vr+1 = 0, and eT

r A−1vr+2 6= 0 or eT
r CA−1vr+1 6= 0;

2) eT
r A−1vr+1 = 0, eT

r A−1vr+2 = 0, and eT
r CA−1vr+1 = 0,

where vj =
(

vj1 . . . vjr

)T
. Then the global order of the method is exactly p = r+i

in cases i = 0, 1, and p ≥ r + 2 in case 2.
Proof. From (15), (30) and (31)-(32), by posing

ŷ(j) =
(

y(j)(t1) . . . y(j)(tr)
)T

,

one obtains

ê = (Ir ⊗ Im − hC ⊗ ImĴ)−1 A−1 ⊗ Im τ

= hr+1(A−1vr+1) ⊗ Im ŷ(r+1) +

hr+2
(

(A−1vr+2) ⊗ Im ŷ(r+2) + C ⊗ Im Ĵ (A−1vr+1) ⊗ Im ŷ(r+1)
)

+ O(hr+3)

= hr+1(A−1vr+1) ⊗ Im ŷ(r+1) +

hr+2
(

(A−1vr+2) ⊗ Im ŷ(r+2) + (CA−1vr+1) ⊗ J0 ŷ(r+1)
)

+ O(hr+3),

from which, in view of Definition 2, the thesis easily follows. 2
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3. Approximating the exponential. In this section we review some classical
rational approximation to the exponential. In particular, we look for polynomials
described by (29), i.e. for characteristic polynomials (23), suitable to define “good”
block methods, according to the criteria previously introduced.

3.1. Padé approximation. One of the most classical rational approximation
to the exponential is the Padé (ν, r), where (see (28))

ϕ(z) ≡ ϕν,r(rz), µ(z) ≡ µν,r(rz)(33)

are polynomials of degree ν and r, respectively, such that

ϕν,r(z) = µν,r(z)ez + O(zν+r+1).

The expression of the two polynomial is well-known, and is given by

ϕν,r(z) =
ν
∑

i=0

(ν + r − i)!ν!

(ν + r)!i!(ν − i)!
zi,

(34)

µν,r(z) =

r
∑

i=0

(−1)i (ν + r − i)!r!

(ν + r)!i!(r − i)!
zi.

Such choice has been already considered in [27]. The following properties hold true
for the polynomials ϕν,r and µν,r (see [24] and the references therein).

Theorem 7. For all ν, r ≥ 0:

1. µν,r(z) ≡ ϕr,ν(−z);
2. if r ≥ 1, all the zeros of the polynomial µν,r(z) lie in the annulus

(r + ν)ξ < |z| < r + ν + 4/3,

where ξ ≈ 0.278465 is the unique positive root of x ex+1 = 1.

Moreover, it is also known (Ehle conjecture, see also [26]) that, for ν ∈ {r− 2, r−
1, r}, one obtains A-stable methods. Such methods are also L-stable when ν < r,
conversely, when ν = r one obtains g(∞) = 1, since the result of Theorem 5 applies.

Concerning the order of convergence of the corresponding block methods, by
applying the criteria in Theorem 6, it can be verified that it is given by

p = r + 1, for r odd,

r ≥ 3, ν = r − 2, r − 1, r.(35)

p ≥ r + 2, for r even,

We shall consider again such a choice in the next sections.

10



3.2. Bernoulli numbers. One of the way of defining Bernoulli numbers is
through the following formal power series:

P (x) =

∞
∑

i=0

xi

(i + 1)!
,

whose sum is x−1(ex − 1). Its reciprocal, in fact, is given by

P−1(x) =
∞
∑

i=0

Bi

i!
xi,

where {Bi} is the sequence of Bernoulli numbers. Consequently, by means of simple
calculations, one obtains that

erq =
P−1(−rq)

P−1(rq)
=

∞
∑

i=0

Bi

i!
(−rq)i

∞
∑

i=0

Bi

i!
(rq)i

.(36)

Consequently (see (28)-(29)), we choose the polynomial (23) as

d(z) =
r
∑

i=0

Bi

i!
(rz)r−i,

obtaining corresponding block methods. By considering that B2i+1 = 0, for i ≥ 1,
we can take into account only methods with blocks of even size. In such a case, by
using the result of Theorem 6, it can be verified that the order of the corresponding
methods is p ≥ r + 2, for all even values of r.

However, there is a severe drawback concerning such methods. In fact, for r ≥
4, the characteristic polynomials have roots with negative real parts, so that the
corresponding block methods are not pre-stable. For this reason, it is not appropriate
to use such an approximation if high order methods are needed, and we shall not
consider it further.

3.3. RITZ fractions. In this case, the rational approximation to the exponen-
tial is obtained by using a truncated continuous fraction. To begin with, let us look
for an approximation defined through a continuous fraction [18]

ez =
a0

b0 +
za1

b1 +
za2

b2 + . . .

,(37)

where the sequences {ai}, and {bi} are suitably defined. In more detail, by defining
the Moebius transformation
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Φi : u → ai

bi + zu
, i ≥ 0,(38)

we obtain that the right-hand side in (37) can be written as

Φ0 ◦ Φ1 ◦ Φ2 ◦ · · · (0).

Since the transformation (38) involves a rotation (R), an inversion (I), a translation
(T) and, moreover, it depends on a complex parameter z, the corresponding fraction
(37) is called a RITZ fraction. The entries of the two sequences {ai} and {bi} are
determined in order the ith truncated fraction,

pi(z)

qi(z)
≡ Φ0 ◦ Φ1 ◦ . . . Φi−1(0) =

a0

b0 +
za1

b1+
.. .

bi−2 +
zai−1

bi−1

,(39)

to be the best possible approximation to ez. It can be shown that this lead to this
(not unique) choice for the two sequences in (37):

ai = (−1)i, b0 = 1, b2i+1 = 2i + 1, b2i+2 = 2, i = 0, 1, . . . .

Since (38) are Moebius transformations, the corresponding matrix of the transforma-
tion,

Mi =

(

0 ai

1 bi

)

, i ≥ 0,

provides the following recursion for the polynomials (39):

pi+1(z) = zaipi−1(z) + bipi(z),

qi+1(z) = zaiqi−1(z) + biqi(z), i ≥ 1,

with the initial conditions p0 = 0, q0 = 1, p1 = a1, q1 = b1. An easy induction
argument shows that

ν ≡ deg(pi) = b i − 1

2
c, r ≡ deg(qi) = b i

2
c, qi(0) = 1, i ≥ 1.(40)

However, in such a way we obtain again Padé approximations: in fact, one verifies
that

pi(z)

qi(z)
≡ ϕν,r(z)

µν,r(z)
, i ≥ 2,

where ν and r are defined according to (40) and the polynomials ϕν,r(z) and µν,r(z) are
respectively the numerator and denominator of the Padé approximation (see (34)).
It is an easy matter to verify that, for i ≥ 2, the couples (ν, r) assume the values
(r − 1, r), (r, r), r ≥ 1.
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4. Conditioning and nonlinear iteration. From the results in the previous
section, we can conclude that the choice of the Padé approximation for constructing
A-stable (or L-stable) block methods of arbitrary high order is appropriate. We now
shall study aspects related to the conditioning of the discrete problem, which make
such a choice appealing from this point of view as well. Such aspects are related to
the solution of the discrete problem (2), which is usually carried out by means of the
Newton method (or its variants), tipically through the iteration

(A ⊗ Im − hB ⊗ J0) δ
(i) = F (y(i)),(41)

y(i+1) = y(i) − δ
(i), i = 0, 1, . . . .

We have, therefore, the problem of having the iteration (41) converging as fast
as possible, as well as to accurately solve the linear system at each iteration. By
means of a suitable modification of the Newton-Kantorovich theorem (see, for exam-
ple, [22]) and of standard arguments of Numerical Linear Algebra, one obtains that
both the two facts can be accomplished by requiring the condition number of the
matrix (A ⊗ Im − hB ⊗ J0), which we rewrite in the equivalent form (see (15))

(Ir ⊗ Im − hC ⊗ J0) ,

to be as small as possible. Obviously, when h is small there are no problems, since
such matrix reduces to the identity matrix. Conversely, when h is large, the main
contribute is due to hC ⊗ J0. By considering that

κ(hC ⊗ J0) = κ(C)κ(J0),

(where obviously κ denotes the condition number of the specified matrix) we then
conclude that it would be very appreciable to have the matrix C with a small condition
number. We observe that the case where the stepsize h is large is a significant one,
since it corresponds to the use of large stepsizes when, for example, in a stiff problem
an asymptotically stable stationary solution has been approached. In such a case,
in fact, the solution is approximately constant and, consequently, any (appropriate)
nonlinear iteration should converge rapidly.

Moreover, a necessary condition for having the matrix C well-conditioned is to
have its eigenvalues bounded away from zero and infinity, as the size r increases. In
this respect, the block methods derived by the Padé (ν, r) have this property. In fact,
from (33)-(34) and the result of point 2 in Theorem 7, one obtains that the eigenvalues
of C (which have positive real part) belong to the annulus

r + ν

r
ξ < |z| <

r + ν + 4/3

r
, ξ ≈ 0.278465.(42)

If, in addition, we consider that the best values for ν are r − 1 and r, we conclude
that all the eigenvalues of C have positive real part and are approximately contained
in the annulus

2ξ < |z| < 2, r � 0.(43)

In Table 1 we list the condition numbers of the matrix C corresponding to the block
methods obtained from the Padé (r, r) and (r − 1, r), r = 1, . . . , 12.
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Table 1

Condition numbers of the matrix C for the block methods derived from the Padé (r, r) and
(r − 1, r).

r 1 2 3 4 5 6

(r, r) 1.00E0 6.88E0 1.49E1 3.10E1 5.62E1 1.15E2
(r − 1, r) 1.00E0 4.19E0 8.15E0 1.67E1 3.03E1 6.08E1

r 7 8 9 10 11 12

(r, r) 2.19E2 5.61E2 1.28E3 4.23E3 1.14E4 4.08E4
(r − 1, r) 1.17E2 2.95E2 6.86E2 2.26E3 6.16E3 2.23E4

5. Implementation of block implicit methods: blended schemes. We
now consider the problem of the efficient implementation of the block methods (2),
namely we shall devise procedures for the solution of the corresponding discrete prob-
lem. This topic is focal for a numerical method to be competitive and has been,
therefore, extensively studied for various classes of numerical methods (see, e.g.,
[1, 6, 11, 19, 20, 25]), even when implemented on different computer platforms. Con-
cerning the the latter field, we mention Galligani’s contributions [13, 14].

From the point of view of the implementation, the main problem is the efficient
solution of the linear systems required by the iterative solution of the discrete prob-
lem. According to the general ways of solving linear systems, i.e. by using direct or
iterative procedures, it is possible to classify the currently used approaches in two
main categories:

• diagonalization (or block diagonalization) of the matrix C [11, 17];
• definition of a suitable splitting [1, 6, 19, 20, 21].

Concerning the first category, it would be preferable to have the matrix C with all
real eigenvalues. This because in such a way it is possible to solve real linear systems
of the same size of the continuous problem. Nevertheless, there is some drawback on
this point, since the matrix which diagonalize the matrix C may be ill-conditioned.
As matter of fact, from (21), by considering that (assuming for simplicity all distinct
eigenvalues)

F = V −1ΛV,

where

Λ =







λ1

. . .

λr






, V =







λ0
1 . . . λr−1

1
...

...
λ0

r . . . λr−1
r






,

one obtains that the matrix

W = V G−1Q−1
r(44)

diagonalizes the matrix C. If we assume, for example, that the eigenvalues are equally
spaced in the interval [2ξ, 2] (see (42)-(43)), i.e.

λi = 2ξ + (i − 1)
2(1− ξ)

r − 1
, i = 1, . . . , r,(45)
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Table 2

Condition numbers for the matrix (44) in the case of the real eigenvalues (45) (first column)
and for the block methods derived from the Padé (r − 1, r) (second column).

r κ(W )
2 4.66E0 3.03E0
3 6.65E1 1.01E1
4 3.71E2 3.47E1
5 1.34E4 1.37E2
6 1.24E5 6.16E2
7 3.49E6 3.18E3
8 5.29E7 1.82E4
9 9.58E8 1.08E5

10 2.26E10 6.51E5

we obtain the condition numbers listed in the first column of Table 2. One may
observe that the matrix W becomes rapidly ill-conditioned, as r grows. This feature
is less evident when the eigenvalues are chosen more appropriately: for example, in
the second column we list the condition numbers of the matrices W corresponding to
the block methods derived from the Padé (r − 1, r), r = 2, . . . , 10.

Concerning the second approach, in general there is the problem of finding a
splitting having satisfactory convergence properties.

The first strategy is used, for example, in the code RADAU5 [17], whereas the
second strategy is used in the code GAM [21]. In this paper, after the introduction
of the notion of “blended block method”, we shall obtain a natural way to define
appropriate splittings for the methods. Our approach, which is derived from the
results in [6], is based on the definition of methods obtained as the combination of
a couple of equivalent block methods. For this reason, such methods will be called
blended block methods.

In order not to unnecessarily complicate the notation, we shall derive the new
methods when the continuous problem to be solved is the usual test equation (16).
Then, we look for methods generating a discrete problem in the following form,

M(q)y ≡ (A(q) − qB(q))y = (qb(q) − a(q))η ≡ g,(46)

where, being θ = θ(q) a suitable “weight” matrix, M(q) is the r× r matrix defined by

A(q) = θA1 + (Ir − θ)A2, B(q) = θB1 + (Ir − θ)B2,(47)

and

a(q) = θa1 + (Ir − θ)a2, b(q) = θb1 + (Ir − θ)b2.(48)

The couples of augmented matrices

Â1 = [a1 |A1], B̂1 = [b1 |B1], Â2 = [a2 |A2], B̂2 = [b2 |B2],(49)

define two suitable equivalent block methods. In particular, we start considering the
following choices:
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A1 = Ir, B1 = C, A2 = C−1, B2 = Ir , θ(q) = (1 − q)−1Ir,(50)

with the remaining vectors obtained through the consistency conditions (7). We shall
choose the block methods in (49) so that the discrete problem (46) can be solved by
using an iterative procedure,

N(q)y(i+1) = (N(q) − M(q))y(i) + g, N(q) = A1 − qB2.(51)

In view of the choice (50), we obtain

N(q)−1 = (1 − q)−1Ir ≡ θ(q),(52)

i.e. (51) defines a diagonal splitting. Moreover, the diagonal entries are equal, so that
the resulting computational cost per iteration is relatively low.

The iteration (51) converges to the solution of (46) if and only if the spectral
radius, say ρ(q), of the iteration matrix

Ir − N(q)−1M(q)(53)

is smaller than 1. According to [19, 20], the region of convergence of the iteration (51)
is given by

Γ = {q ∈ C : ρ(q) < 1} .

Moreover, the iteration is said to be A-convergent if C− ⊆ Γ (A(α)-convergence is
similarly defined). From the definition of N(q), A-convergence is equivalent to require
that

ρ∗ ≡ sup
x>0

ρ(ix) < 1,

where, as usual, i is the imaginary unit. Another interesting property of the iteration
(51) is that from the definition of N(q) one obtains

ρ(q) → 0, as q → ∞.

Such property is very welcome, in order to have the iteration rapidly converging when
the method is applied to stiff problems [19, 20].

A simple expression for the parameter ρ∗ may be derived from (51)-(53). In fact,
if λ is an eigenvalue of C, then

ζ(λ) =
q(λ − 1)2

λ(q − 1)2
(54)

is an eigenvalue of the iteration matrix (53). Consequently, by assuming q = ix, we
obtain that
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Table 3

Value of ρ∗ for the blended block methods corresponding to the Padé (r, r) and (r − 1, r).

r 1 2 3 4 5 6 7 8 9 10 11 12
(r, r) .250 .289 .419 .522 .600 .661 .710 .749 .783 .811 .835 .856

(r − 1, r) .0 .204 .386 .508 .595 .661 .712 .753 .787 .815 .840 .861

ρ∗ = max
x>0

max
λ∈σ(C)

g(x; λ),(55)

where, by posing λ = a + ib,

g(x; λ) =
x((1 − a)2 + b2)√
a2 + b2(x2 + 1)

(56)

is the modulus of ζ(λ). By considering that g(0; λ) = g(∞; λ) = 0, one concludes that
if there is one stationary point, this must be a maximum. By differentiating g(x; λ),
we obtain

g′(x; λ) =
(1 − x2)((1 − a)2 + b2)√

a2 + b2(x2 + 1)
,

from which we conclude that x = 1 is the point of maximum for g(x; λ). As a
consequence, we get

ρ∗ = max
λ∈σ(C)

(1 − a)2 + b2

2
√

a2 + b2
,(57)

which is easy to compute, since we have the possibility of choosing the spectrum
of C. In Table 3 we list the value of ρ∗ for the block methods obtained from the
Padé approximations (r, r) and (r − 1, r), r = 1, . . . , 12. One then concludes that the
iterations corresponding to all such methods are A-convergent. Moreover, it can be
verified that this property holds true at least up to r = 24, for both type of methods.

An improvement can be obtained by considering an alternative choice to (50),
still providing us with a diagonal splitting, namely

A1 = Ir, B1 = C, A2 = DC−1, B2 = D, θ(q) = (Ir − qD)−1,(58)

where D is a diagonal matrix with positive real entries. The first possibility that we
consider is the following:

D = αIr , α > 0,(59)

which reduces to the previous choice (50) in the case α = 1. In such a case, (54), (55),
(56) and (57) become, respectively,

ζ(λ; α) =
q(λ − α)2

λ(αq − 1)2
, ρ∗ = max

x>0
max

λ∈σ(C)
g(x; λ, α), g(x; λ, α) =

x((α − a)2 + b2)√
a2 + b2(αx2 + 1)

,
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Table 4

Values of ρ∗ for the modified blended block methods corresponding to the Padé (r, r).

r 1 2 3 4 5 6 7 8 9 10 11 12
αr .5 .5774 .5902 .5901 .5867 .5826 .5786 .5748 .5713 .5682 .5653 .5628
ρ∗

αr
.0 .134 .277 .379 .454 .511 .556 .592 .622 .647 .668 .687

Table 5

Values of ρ∗ for the modified blended block methods corresponding to the Padé (r − 1, r).

r 1 2 3 4 5 6 7 8 9 10 11 12
αr 1. .8165 .7387 .6952 .6671 .6471 .6322 .6205 .6111 .6033 .5968 .5911
ρ∗

αr
.0 .184 .340 .442 .512 .564 .605 .637 .663 .685 .703 .720

and, considering that x = α−1 is the point of maximum for g(x; λ, α),

ρ∗α = max
λ∈σ(C)

(α − a)2 + b2

2
√

a2 + b2
.(60)

Consequently, the convergence properties of the iteration (51) now depend on the
parameter α > 0, which can be chosen in order to minimize the corresponding value
of ρ∗α. In Tables 4 and 5 we list, respectively, the optimum parameters αr, along with
the corresponding parameter ρ∗

αr
, for the block methods obtained from the Padé (r, r)

and (r − 1, r), r = 1, . . . , 12. One verifies that there has been an improvement over
the previous values in Table 3. A different choice for the matrix D will be considered
in the next section.

6. Implementation of block implicit methods: further analysis. We now
consider a particular case of the above approach, namely

λi(C) = α, i = 1, . . . , r,(61)

where α is the same parameter in (59). From equation (60), we then obtain ρ∗

α =
0. This conclusion may appear astonishing, since it implies that the iteration (51)
converges in one iteration, when q ∈ C− (actually, for all q 6= α−1). Nevertheless,
the choice of a r-fold eigenvalue for the matrix C has a severe drawback, since the
matrix C becomes very ill-conditioned, for increasing values of r. In fact, let us first
consider the problem of choosing appropriately the parameter α. From (23) and (61),
one obtains that

d(z) =
r
∑

i=0

(

r
i

)

(−α)r−izi,

i.e.

di =

(

r
i

)

(−α)r−i, i = 0, . . . , r.

In order to obtain a method with ∞ ∈ D, we impose (see (24)-(25))

0 =
(−α)−r

d0

r
∑

i=0

ri

i!
di =

r
∑

i=0

(−1)i

i!

(

r
i

)

( r

α

)i

≡ w(rα−1).(62)
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Table 6

Condition numbers for the matrix C obtained from (61)–(63).

r ᾱ κ(C)
2 .58578643762690497 3.08E0
3 1.3075995645253780 4.19E1
4 2.2912642499285432 2.15E3
5 1.3902692056822543 2.16E3
6 2.0048542024083011 6.92E4
7 2.7259875357196162 3.98E6
8 1.8749852768446345 3.86E6

In such a case, in fact, A-stability implies L-stability. The polynomial w(z) turns
out to have all positive and real zeros. Among them, we obviously shall choose the
one which generates the method with the best stability properties. Let it be z̄. In
correspondence of such root, we get the parameter

ᾱ = r z̄−1.(63)

When more than one zero fulfills the above requirement, in view of the arguments in
Section 4, we shall choose the one which minimizes the condition number of the matrix
C. As an example, for r = 2 from (62)-(63) one obtains, after a few calculations, that
the two values of α are

α1 =
2

2 +
√

2
, α2 = 2 +

√
2,

both generating A-stable methods. The parameter which minimizes the value of κ(C)
is α1. From such value, one obtains an L-stable block method of order 2 having the
following matrix

A−1B̂ =
(

4.9264068711928521E − 1 5.1471862576142957E − 1 −7.3593128807148411E − 3
6.5685424949238014E − 1 6.8629150101523972E − 1 6.5685424949238014E − 1

)

,

for which (see (3) and (15)) κ(C) ≈ 3. Nonetheless, for increasing values of r one
realizes that the condition number of the matrix C grows very rapidly with r, as it
is shown in Table 6. For each listed value of r, the corresponding block method has
order r and is A-stable (or A(α)-stable). Nevertheless, due to the growth of κ(C), it
is advisable to use such methods only for r very small.

Remark 1. We observe that the method corresponding, for example, to r = 8
in Table 6 is A-stable (see Figure 1). Nevertheless, the corresponding matrix C is
ill-conditioned (see the third column in Table 6). The reason for this is the large value
of departure from normality of the matrix, which can be measured by

∆(C) = ‖C CT − CT C‖2.

In fact, for this method one obtains ∆(C) ≈ 3.0E9, whereas the corresponding value
for the method derived from the Padé (7,8) (see Table 1, r = 8) is ∆(C) ≈ 66.
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Fig. 1. Stability region D for the block method corresponding to r = 8 in Table 6.

Let us now consider, instead of (59), the more general choice

D = diag
(

γ1 . . . γr

)

, γi > 0, i = 1, . . . , r,(64)

for the iteration (51)-(58). The diagonal entries of D will be chosen in order to reduce
the value of the parameter ρ∗. Unfortunately, the spectral analysis is not as simple
as in the case of the choice (59) and we must resort to a computational approach
to obtain such entries. In particular, we have used the Matlab function fmins to
minimize ρ∗ ≡ ρ∗(γ1, . . . , γr), for the block methods obtained from the Padé (r, r)
and (r − 1, r), r = 1, . . . , 10. The obtained diagonal entries are listed in Tables 7 and
8. The corresponding values of the parameter ρ∗ are listed in Table 9: in all cases
we obtain an improvement over the corresponding values listed in Tables 3 and 4-5.
Moreover, for comparison we also plot in Figure 2 the function ρ(ix) for x > 0, for
the block methods obtained from the Padé (7, 8) with the choices (50) and (58)-(59),
corresponding respectively to α = 1 and α = 0.6205 (see Table 5), and to the choice
(58)-(64), where the diagonal entries of D are those listed in Table 8, r = 8. From the
plots, one may infer that the choice (58)-(64) is definitely an improvement over (50),
since the curve in solid is always below the dashed one. Conversely, the dotted curve,
corresponding to the choice (58)-(59) has a maximum greater than that of the curve
in solid; nevertheless, for x < 0.77 it is under such curve. This means that, for the
corresponding values of q, the iteration (58)-(59) is faster than (58)-(64), even though
for larger values of x the roles are reversed.

Let us now end the section by studying the application of a blended block method
to the more general problem (1). In such a case, the discrete problem corresponding
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Table 7

Diagonal entries of the matrix D for the blended block methods derived from the Padé (r, r).

r γi, i = 1, . . . , r

2 0.66275204106065 0.99880381565137
3 0.79177839434600 0.66142441654254 1.09728375380713
4 0.71248323670683 0.68572979240044 1.00835280450325 0.94336189309863
5 0.73794709503502 0.69667939234304 0.94678950632936 0.96925988167893 1.08556894280691
6 0.78960666760857 0.77764317616699 1.10379439358622 1.12287112979631 1.04425410677717

0.97747272393049
7 0.90328518460926 0.93588189061015 1.27378358368408 1.06482337773942 0.95699568328484

0.87962577636270 0.88647177187620
8 0.90189079913764 0.96029017717008 1.20044261367058 1.06182151859105 0.98279767187713

0.95130581186793 0.95477396330476 0.97709719034535
9 0.78890956014085 0.98692274344950 1.16031736214545 1.06429394889840 0.97558449511996

0.97973125397795 0.97616792047847 1.01092465767460 1.02624249573684
10 0.98194772536412 0.91245934163159 1.04481326127609 1.00603860548456 1.00089107693710

0.99217500074166 1.00032852544433 1.00860473013924 1.02306653120170 1.05905836178089

Table 8

Diagonal entries of the matrix D for the blended block methods derived from the Padé (r − 1, r).

r γi, i = 1, . . . , r

2 0.96936165526039 1.50848352835328
3 0.81868602814689 0.87495096575515 1.44998332454753
4 0.35337640949037 0.80121932984835 1.27762338976231 1.66446327607499
5 0.63946725983491 0.82968839663997 0.91909524862064 1.42126433313185 1.52443079963375
6 0.79474199557416 0.69885470794190 0.96328076538840 1.17906063317010 0.96006333245803

1.34062294955658
7 0.76154788274216 0.77052101658868 1.03651805522176 1.06062392757843 0.98001202471669

1.07157541314092 1.33204542634207
8 0.90280588616216 0.94667898522012 1.16837318551763 0.97151531383934 0.94628652026249

0.92599286317791 1.01107530401679 1.15188588598478
9 0.95021396531815 0.96824923001551 1.16031142832145 1.00905109392683 0.98542777497508

0.95758015675129 0.97574516430175 0.97853576014775 0.97686463476444
10 0.89639578999006 0.95322083486291 1.09782034111785 1.01308990374127 0.97688329481101

0.97154048045308 0.96942938230334 0.99731505715738 0.97199798518272 1.08135584615257

Table 9

Values of ρ∗ for the blended block methods corresponding to the Padé (r, r) and (r − 1, r) with
the diagonal scaling D.

r 2 3 4 5 6 7 8 9 10
(r, r) .055 .230 .273 .359 .414 .444 .479 .527 .622

(r − 1, r) .086 .280 .317 .450 .501 .536 .515 .541 .593

to the application of the method (46), (47)-(48), (58) over the first r mesh points is
given by

Ãy − hB̃ f = hb̃ f(t0, y0) − ã y0,(65)

where, by setting I = Ir ⊗ Im,

N = I − hD ⊗ J0

Ã = N−1I + (I − N−1)
(

(DC−1) ⊗ Im

)

,

B̃ = N−1 (C ⊗ Im) + (I − N−1) (D ⊗ Im),

ã = N−1 (e⊗ Im) + (I − N−1)
(

(DC−1e) ⊗ Im

)

,

b̃ = N−1 ((q1 − Ce) ⊗ Im) + (I − N−1)
(

(D(C−1q1 − e)) ⊗ Im

)

.
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Fig. 2. Spectral radius of the iteration matrix for the blended block method derived
from the Padé (7, 8), in its original formulation (dashed line), with the scaling α8I8 (dotted
line) and with the scaling D (solid line).

From the above expressions, it is evident that the application of the method requires
the factorization of the matrix N , i.e. of the block

Im − hαJ0(66)

in case we use the method corresponding to (59); alternatively, when (64) is consid-
ered, we need to factorize the blocks

Im − hγiJ0, i = 1, . . . , r.(67)

It is customary to solve the equation (65) by using the modified Newton method,
then solving linear systems with the matrix

M = Ã − hB̃ (Is ⊗ J0).

In place of such linear systems, we solve an inner iteration similar to (51), thus
involving only linear systems with the matrix N , which has already been factored.

We then conclude that, leaving aside for simplicity function and Jacobian eval-
uations, the arithmetic complexity for solving (65) when ` Newton iterations are
performed, each requiring µ inner iterations, amounts to

2

3
m3 + O(`µrm2) floating operations,
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in the case of (59), or

2

3
rm3 + O(`µrm2) floating operations,

in the case of (64). The leading term is obviously due to the factorizations of the
matrices (66) and (67), respectively. In the latter case, however, by observing that the
r factorizations are independent each other, it is possible to use r parallel processors
to execute them concurrently. Consequently, the choice (64) will result in a method
having a natural parallelism across the method.

7. Conclusions. In this paper we have reviewed the derivation of r-block meth-
ods for ODEs. The derivation of such methods has been done in a unified framework,
which allows to discuss many important theoretical properties of the methods.

Among the possible choices, it has been confirmed that the methods derived from
the Padé approximation to the exponential have good stability properties. In more
detail, the methods derived from the Padé (r, r) are perfectly A-stable and those
derived from the Padé (r − 1, r) are L-stable, for all r ≥ 1. Moreover, from (35)
one obtains that even values of r are preferable, because they provide higher order
methods than the subsequent odd values.

The implementation of the block methods as blended block methods has also
been introduced. Such an implementation exploit the possibility of writing a given
block method in different equivalent forms. The blended block methods here studied
are characterized by a diagonal splitting, which is A-convergent for all values of r
of practical interest. Improvements of the basic splitting have been also considered,
which can be tailored for an efficient implementation either on sequential or parallel
computers. In both cases, we obtain methods with a (possibly parallel) complexity
whose leading term is 2m3/3 flops per integration step (apart function and Jacobian
evaluations), when the size m of the continuous problem is large.
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