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Abstract.

The modelling of many real life phenomena for which either the parameter estima-
tion is difficult, or which are subject to random noisy perturbations, is often carried out
by using stochastic ordinary differential equations (SODEs). For this reason, in recent
years much attention has been devoted to deriving numerical methods for approximat-
ing their solution. In particular, in this paper we consider the use of linear multistep
formulae (LMF). Strong order convergence conditions up to order 1 are stated, for
both commutative and non-commutative problems. The case of additive noise is fur-
ther investigated, in order to obtain order improvements. The implementation of the
methods is also considered, leading to a predictor-corrector approach. Some numerical
tests on problems taken from the literature are also included.
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1 Introduction.

Many real world phenomena are (or appear to be) liable to random noisy
perturbation. This is the case, for example, in investment finance, turbulent
diffusion, chemical kinetics, VLSI circuit design, etc. (see, e.g., [8, 9, 11]). The
mathematical modelling of such phenomena is, therefore, not well matched by
deterministic equations, and stochastic equations are preferable instead. When
the evolution of such phenomena has to be studied, then one often must handle
a system of stochastic ordinary differential equations (SODEs). As in the case of
deterministic ODEs, only a few, very simple SODEs can be solved analytically.
As a consequence, there is the need for numerical methods for approximating
their solutions.

However, this is a relatively new field of investigation and, for this reason,
there are not yet general purpose codes for handling SODEs.
∗Received November 1998. Communicated by Gustaf Söderlind.
†Work supported by CNR (contract n.98.01037.CT01), Italian MURST, and by the Uni-

versità di Firenze.
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In [1–3, 5–7] the numerical solution of SODEs by means of suitably modified
Runge–Kutta methods has been considered. We are here concerned with the use
of linear multistep formulae (LMF) for approximating a SODE in the form

dy(t) = f(y(t))dt +
d∑
j=1

gj(y(t))dWj(t), t ∈ [0, T ],(1.1)

y(0) = y0 ∈ IRm,

which, without loss of generality, we have assumed to be autonomous, in order
to simplify the notation.

In the formulation (1.1), the Wj(t), j = 1, . . . , d, are independent Wiener
processes, modelling independent Brownian motions, which satisfy the initial
condition Wj(0) = 0 with probability 1 [9]. The deterministic term f(y) is
sometimes called the drift. The Wiener processes are known to be Gaussian
processes satisfying

E(Wj(t)) = 0, E(Wj(t)Wj(s)) = min{t, s},

whose increments ∫ s

t

dWj

are, if not overlapping, independent and N(0, |t− s|) distributed.
The solution of (1.1) can be formally written as

y(t) = y0 +
∫ t

0

f(y(s))ds +
d∑
j=1

∫ t

0

gj(y(s))dWj(s),

where the integrals ∫ t

0

gj(y(s))dWj(s), j = 1, . . . , d,

are stochastic integrals (see, for example, [9]). They are defined as the limit (in
the mean square sense), as n→∞, of the approximating sums

n∑
i=1

gj(y(ξi))(Wj(ti)−Wj(ti−1)),

where ξi = θti + (1 − θ)ti−1, for a fixed θ ∈ [0, 1] and, for simplicity, ti = it/n,
i = 0, . . . , n. For stochastic integrals, different choices of θ usually result in
different values for the integral. The most common choices for the parameter θ
are

• θ = 0, which gives an Itô integral, and

• θ = 1
2 , which gives a Stratonovich integral.
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The Itô formulation has the advantage of preserving the Martingale property
of the Wiener process, so that

E
( ∫ b

a

q(t)dWj(t)
)

= 0, E
(∥∥∥∫ b

a

q(t)dWj(t)
∥∥∥2)

=
∫ b

a

E
(
‖q(t)‖2

)
dt.

On the other hand, the Stratonovich integrals formally satisfy the usual rules of
calculus. For example,∫ b

a

Wj(t)dWj(t) =
1
2
(
W 2
j (b)−W 2

j (a)
)

+
(

θ − 1
2

)
(b− a)

≡ 1
2
(
W 2
j (b)−W 2

j (a)
)
,

because θ = 1
2 for Stratonovich integrals. The latter are usually denoted by∫ b

a

q(t) ◦ dWj(t),

whereas the usual notation is referred to as Itô integrals.
As a consequence, we may reformulate equation (1.1) in its equivalent Strato-

novich form. Considering that in general (see, for example, [9]) one has∫ t

0

q(Wj) ◦ dWj =
∫ t

0

q(Wj)dWj +
1
2

∫ t

0

d

dWj
q(Wj(s))ds,

it follows that the Stratonovich formulation of (1.1) is given by

dy(t) = g0(y(t))dt +
d∑
j=1

gj(y(t)) ◦ dWj(t),(1.2)

where

g0(y(t)) = f(y(t))− 1
2

d∑
j=1

g′j(y(t))gj(y(t)),

with g′j denoting the Jacobian matrix of gj .
In the following, we shall always use Stratonovich calculus. For this rea-

son, we shall assume that the problems have been recast in the corresponding
Stratonovich formulations.

We are now concerned with the numerical approximation of (1.2), by means
of a numerical method in the form

k∑
i=0

αiyn+i =
d∑
j=0

k∑
i=0

βjingj,n+i, n = 0, 1, . . . ,(1.3)

y0, . . . , yk−1 fixed,

where, as usual, if y(t) is the continuous solution to (1.2), yn+i is the numerical
approximation to y(tn+i) and gj,n+i = gj(yn+i). We shall only consider here the
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case of a uniform partition of the integration interval, tn = nh, n = 0, . . . , N ,
h = T/N . The coefficients {αi} are assumed to be independent of n (moreover,
we shall fix the usual scaling αk = 1), whereas the remaining coefficients {βjin}
are in general stochastic variables.

In the next section, we shall obtain conditions for the coefficients, in order to
meet suitable accuracy requirements.

2 Strong order conditions.

When speaking about the accuracy of numerical methods for SODEs, we dis-
tinguish between two kind of convergence:

Weak convergence: this case concerns the situations where one is interested
in the moments. One then requires that there exist constants C, δ, p > 0
such that

max
n
‖E (q(yn)− q(y(tn)))‖ ≤ Chp,

for all stepsizes h < δ and polynomials q. In such a case, it is said that
the method has weak order p.

Strong convergence: in this case, one is interested in the mean square con-
vergence of the trajectories, which means that

max
n

E (‖yn − y(tn)‖) ≤ Chp,

for all stepsizes h < δ, for methods having strong order p.

The second requirement is more critical, and will be our matter of investiga-
tion, for methods in the form (1.3).

In the case of deterministic ODEs there is a well established theory which
relates the local order of a numerical method to the global order. Essentially if
the local order behaves as O(hp+1) then the global order is O(hp). Unfortunately,
the situation in the stochastic setting is considerably more complicated and has
only been treated in a sufficiently general way in [4], where the authors have
extended the use of B-series to study the order conditions of stochastic Runge–
Kutta methods. Without describing too many of the details we quote the main
result of that paper.

Theorem 2.1. Let the gj possess all necessary partial derivatives for all
y ∈ IRm, and let ln and εN denote the local error and global error at step n and
N , respectively. Then for any stochastic Runge–Kutta (SRK) method if, for all
n = 1, . . . , N , (

E
(
‖ln‖2

))1/2
= O(hp+1/2),(2.1)

E(ln) = O(hp+1),(2.2)
then (

E
(
‖εN‖2

))1/2
= O(hp).(2.3)
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Remark 2.1. We observe that

• condition (2.1) is (in [1]) called strong local order p, (2.2) is called mean
local order p, and (2.3) is called strong global order p;

• the essential result is that a factor h1/2 is removed from the local error
when moving to the strong error but only if the additional condition (2.2)
is satisfied. While this result has only been proved for SRKs, it can easily
be extended to other classes of stochastic methods through the same for-
mulation as in the deterministic case—namely general linear (also known
as multivalue) methods.

We now examine the local truncation error in light of the above comments by
analyzing the truncation error of the class of stochastic linear multistep methods,
obtained by inserting the continuous solution evaluated at the grid-points in the
discrete equation, to give

τn =
k∑
i=0

αiy(tn+i)−
d∑
j=0

k∑
i=0

βjingj(y(tn+i)).(2.4)

We need to introduce some preliminary results and notations. First of all, we
recall the following stochastic Taylor expansions for the solution y(t) of (1.2)
(see, e.g., [9]):

y(t + h) = y(t) +
d∑
j=0

gj(y(t))Jj(t) +
d∑

`,j=0

g′j(y(t))g`(y(t))J`j(t)

+
d∑

r,`,j=0

(
g′′j (y(t)) (g`(y(t)), gr(y(t))) + g′j(y(t))g′`(y(t))gr(y(t))

)
Jr`j(t)

+ · · ·

where, by setting W0(t) = t,

Jj(t) =
∫ t+h

t

◦dWj , J`j(t) =
∫ t+h

t

∫ s

t

◦dW`(s1) ◦ dWj(s),

Jr`j(t) =
∫ t+h

t

∫ s

t

∫ s1

t

◦dWr(s2) ◦ dW`(s1) ◦ dWj(s).

More generally, for a suitably smooth function g(y), one obtains that

g(y(t + h)) = g(y(t)) +
d∑
`=0

g′(y(t))g`(y(t))J`(t)

+
d∑

r,`=0

(g′′(y(t)) (g`(y(t)), gr(y(t))) + g′(y(t))g′`(y(t))gr(y(t))) Jr`(t)

+ · · · .
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By using the above expansions, we can evaluate the truncation error (2.4) as
follows (all functions are evaluated at y(tn)):

τn =
k∑
i=0

αi

[
y(tn) +

d∑
j=0

gjJ
ni
j +

d∑
`,j=0

g′jg`J
ni
`j(2.5)

+
d∑

r,`,j=0

(
g′′j (g`, gr) + g′jg

′
`gr
)
Jnir`j + · · ·

]

−
k∑
i=0

d∑
j=0

βjin

[
gj +

d∑
`=0

g′jg`J
ni
`

+
d∑

r,`=0

(
g′′j (g`, gr) + g′jg

′
`gr
)
Jnir` + · · ·

]
,

where, for all r, `, j = 0, . . . , d, and i = 0, . . . , k,

Jnij =
∫ tn+i

tn

◦dWj ,

Jni`j =
∫ tn+i

tn

∫ s

tn

◦dW`(s1) ◦ dWj(s) ≡
∫ tn+i

tn

Jns` ◦ dWj(s),(2.6)

Jnir`j =
∫ tn+i

tn

∫ s

tn

∫ s1

tn

◦dWr(s2) ◦ dW`(s1) ◦ dWj(s) ≡
∫ tn+i

tn

Jnsr` ◦ dWj(s).

In order to derive the conditions on the coefficients of the method to satisfy
Theorem 2.1, let us denote, for any string {j1, . . . , jν} with ji ∈ {0, . . . , d}, by
z(j1, . . . , jν) the number of zeros in the string. Then, by considering (see, e.g.,
P. M. Burrage [6]) that

E(|Jnij |) = O(h(1+z(j))/2),

E(|Jni`j |) = O(h(2+z(`,j))/2),

E(|Jnir`j|) = O(h(3+z(r,`,j))/2),

the following strong local order conditions are derived from (2.5):
• deterministic consistency and strong local order 1/2:

k∑
i=0

αi = 0, (αk = 1)(2.7)

k∑
i=0

(
αiJ

ni
j − βjin

)
= 0, j = 0, . . . , d;(2.8)

• strong local order 1: all the previous ones and, moreover,
d∑

`,j=1

g′jg`

k∑
i=1

(
αiJ

ni
`j − βjinJni`

)
= 0;(2.9)
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• strong local order 3/2: all the previous ones and, moreover,

d∑
j=1

g′0gj

k∑
i=1

(
αiJ

ni
j0 − β0

inJnij
)

+
d∑
j=1

g′jg0

k∑
i=1

(
αiJ

ni
0j − βjinJni0

)
= 0,(2.10)

d∑
r,`,j=1

(
g′′j (g`, gr) + g′jg

′
`gr
) k∑
i=1

(
αiJ

ni
r`j − βjinJnir`

)
= 0.(2.11)

In order to ensure that the methods have strong global order the mean order
conditions (2.2) given in Theorem 2.1 need to be also satisfied. Thus, to attain
strong global order 1/2, the conditions

E

( k∑
i=1

(
αiJ

ni
`j − βjinJni`

))
= 0, `, j = 1, . . . , d,

i.e. (see (2.12) below)

h

2

k∑
i=1

iαi −
k∑
i=1

E
(
βjinJnij

)
= 0, j = 1, . . . , d,

obtained from zeroing the expectation of (2.9), are needed in addition to (2.7)
and (2.8).

In the case of strong global order 1, we need to zero the expectations of (2.10)
and (2.11), in addition to (2.7), (2.8) and (2.9). However, since the expectation
of the product of stochastic integrals is zero when the number of nonzero indices
is odd, it can be shown (see (2.12) below and the properties of Stratonovich
integrals listed after (3.2)) that strong local order 1 automatically implies strong
global order 1.

We now look for methods (1.3) such that

β0
in = hβi, βjin =

k∑
r=1

Jnrj dir , i = 0, . . . , k, j = 1, . . . , d,(2.12)

where the scalars {βi} and {dir} are to be determined. Consequently, condition
(2.8) becomes

0 =
k∑
i=1

αiJ
ni
j −

k∑
i=0

k∑
r=1

Jnrj dir

=
k∑
i=1

αiJ
ni
j −

k∑
r=1

Jnrj

k∑
i=0

dir ≡ (α̂T − eTD)Ĵnj ,

where

α̂ = ( α1, . . . , αk )T , Ĵnj = ( Jn1
j , . . . , Jnkj )T , e = (1, . . . , 1)T ∈ IRk+1,
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and

D = [d̂0 D̂]T , D̂ = [d̂1, . . . , d̂k], d̂i = ( di1, . . . , dik )T , i = 0, . . . , k.

The above condition then reads as α̂ = DT e, that is,

αr =
k∑
i=0

dir , r = 1, . . . , k.(2.13)

Let us now examine condition (2.9). For this, we shall distinguish between the
following two cases:
• the commutative case, for which

[gj , g`](y) ≡ (g′j(y)g`(y)− g′`(y)gj(y)) = 0,

for all j, ` = 1, . . . , d, and y ∈ IR;
• the non-commutative case, for which

[gj , g`](y) 6= 0,

for at least one pair of different indices j, ` = 1, . . . , d.
Let us now consider the first case, from which (2.9) results in

0 =
d∑

`,j=1

g′jg`

k∑
i=1

(
αiJ

ni
`j − βjinJ

ni
`

)

=
d∑
j=1

g′jgj

k∑
i=1

(
αiJ

ni
jj − βjinJnij

)

+
d∑

1≤j<`≤d
g′jg`

k∑
i=1

(
αi(Jni`j + Jnij` )− βjinJ

ni
` − β`inJnij

)
.

By considering that the following relations hold true for double Stratonovich
integrals (see, for example, [9]),

Jni`j + Jnij` = Jnij Jni` , j, ` = 0, . . . , d,(2.14)

it follows that the previous requirement is equivalent to (see (2.12))

0 =
d∑
j=1

g′jgj

k∑
i=1

(αi
2

(Jnij )2 − Jnij

k∑
r=1

Jnrj dir

)

+
d∑

1≤j<`≤d
g′jg`

k∑
i=1

(
αi(Jni` Jnij )− Jni`

k∑
r=1

Jnrj dir − Jnij

k∑
r=1

Jnr` dir

)

=
d∑
j=1

g′jgj
1
2
(Ĵnj )T

(
diag(α̂)− (D̂ + D̂T )

)
Ĵnj

+
d∑

1≤j<`≤d
g′jg`(Ĵ

n
j )T

(
diag(α̂)− (D̂ + D̂T )

)
Ĵn` ,
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which holds true for diag(α̂) = D̂ + D̂T , that is,

αr = 2drr, r = 1, . . . , k,(2.15)
dir = −dri, i, r = 1, . . . , k, i 6= r.

From the above conditions, the following result follows:
Theorem 2.2. There are no explicit methods, in the form (1.3)–(2.12), with

strong order 1.
Proof. In order for the method to be explicit, we should have, for all j =

1, . . . , d,

0 = βjkn =
k∑
r=1

Jnrj dkr .

As a consequence, one obtains dkr = 0, for all r = 1, . . . , k. However, from
(2.15), it follows that

1 = αk = 2dkk,

which contradicts such an assumption.
Theorem 2.2 has important consequences, concerning the properties of the

discrete solutions, which we shall analyze in Section 3.1.
We now study the non-commutative case, for which, by means of arguments

similar to those previously used, the following condition must be satisfied, in
order to get strong local order 1 (conversely, the order collapses to 1/2 (see
also [1])):

0 =
d∑

`,j=1

g′jg`

k∑
i=1

(
αiJ

ni
`j − βjinJni`

)
(2.16)

=
d∑
j=1

g′jgj

k∑
i=1

(
αiJ

ni
jj − βjinJnij

)

+
d∑

1≤j<`≤d
g′jg`

k∑
i=1

(
αi(Jnij` + Jni`j )− βjinJ

ni
` − β`inJnij

)

−
d∑

1≤j<`≤d
[gj, g`]

k∑
i=1

(
αiJ

ni
j` − β`inJnij

)
.

Consequently, by setting

γnj` =
k∑
i=1

(
αiJ

ni
j` − β`inJ

ni
j

)
,(2.17)

one has that the modified scheme
k∑
i=0

αiyn+i =
d∑
j=0

k∑
i=0

βjingj,n+i +
∑

1≤j<`≤d
γnj`[gj , g`](2.18)

has still strong global order 1, provided that (2.12)–(2.15) hold true.
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Remark 2.2. We observe that in (2.18) the commutators [gj , g`] may be
evaluated at any point y(tn+s), with s ∈ {0, . . . , k − 1}, in order that (2.16) be
satisfied, provided that the functions gj are suitably smooth. In fact, in such a
case one has that

E (‖[gj, g`](y(tn))− [gj , g`](y(tn+s))‖) = O(
√

sh).

Moreover,
E ([gj , g`](y(tn))− [gj , g`](y(tn+s))) = O(sh),

which is needed to satisfy the corresponding mean local order conditions (2.2).
Consequently, the commutators can be recomputed every, say, k consecutive
steps.

We now study the problem of getting methods of strong order higher than 1.
The following negative result holds true.

Theorem 2.3. There are no methods, in the form (1.3)–(2.12), of strong
order 3/2.

Proof. We consider the simpler case of only one Wiener process. That is,
d = 1 in (1.2). Consequently, from (2.11) one has that the following equation
needs to be satisfied:

k∑
i=1

(
αiJ

ni
111 − β1

inJ
ni
11

)
= 0.

Considering that Jni11 = (Jni1 )2/2, and Jni111 = (Jni1 )3/6 (see, for example, [9]),
and taking into account (2.12), it then follows that

k∑
i=1

(
αi(Jni1 )3 − 3(Jni1 )2

k∑
r=1

Jnr1 dir

)
(2.19)

=
k∑
i=1

(
αi

( i−1∑
r=0

Jn+r,1
1

)3

− 3
( i−1∑
r=0

Jn+r,1
1

)2 k∑
r=1

dir

r−1∑
s=0

Jn+s,1
1

)
≡ p3(Jn1

1 , . . . , Jn+k−1,1
1 ) = 0,

where p3 is a polynomial in k variables of degree 3 (indeed, it contains only
monomials of degree 3). Since the number of the distinct monomials of degree
3 made up with the k integrals Jn+r,1

1 , r = 0, . . . , k − 1, is given by(
(k − 1) + 3

3

)
=

(k + 2)(k + 1)k
6

,

we obtain a corresponding number of linear equations to zero the coefficients of
all monomials. However, by taking into account (2.7), (2.13) and (2.15), one
obtains that the number of free parameters is 1

2 (k+1)k−1. Consequently, there
is no solution, for all k ≥ 1, provided that all such equations are independent.
Instead of proving this fact, however, we only prove that there is no solution
satisfying (2.19) and the previous order conditions. In fact, the coefficient of
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the monomial (Jn+k−1,1
1 )3 is easily seen to be αk − 3dkk. It then follows that

dkk = αk/3 = 1/3, whereas from (2.15) one has dkk = αk/2 = 1/2.
We then conclude that we cannot have methods of strong order greater than

1 in the given assumed form. Nevertheless, this can be achieved for particular
problems, as shown in the next subsection.

2.1 The case of additive noise.

An important instance of problem (1.2) is that of additive noise, namely,

gj(y) ≡ gj , j = 1, . . . , d.

In such a case, in fact, some simplification occurs. First of all, the problem is
commutative, since

g′j = 0, j = 1, . . . , d.(2.20)

Moreover, the truncation error is given by (see (2.10)–(2.11))

τn =
d∑
j=1

g′0gj

k∑
i=1

(
αiJ

ni
j0 − β0

inJ
ni
j

)
+ Rn ≡ τ (1)

n + Rn,(2.21)

where E(‖Rn‖) = O(h2), because from (2.20) it follows that Rn does not contain
terms involving the multiple integrals Jnir`j , r, `, j ≥ 1. Consequently, we can
obtain strong order 3/2 by adding to (1.3) an extra term zeroing τ

(1)
n , namely

k∑
i=0

αiyn+i =
d∑
j=0

k∑
i=0

βjingj,n+i − g′0

d∑
j=1

γnj0gj,(2.22)

where

γnj0 =
k∑
i=1

(
αiJ

ni
j0 − β0

inJnij
)
.(2.23)

Obviously, we need to satisfy also the corresponding mean local order condition
(2.2). It can be easily seen that the latter reduces to require

E(Rn) = O(h
5
2 ),

which, in turn, is equivalent to have (see also (2.12)), for all r, ` = 1, . . . , d,

0 = E

( k∑
i=0

αi(Jnir`0 + Jni`r0)− β0
in(Jnir` + Jni`r )

)

= hE

( k∑
i=0

∫ i

0

Jnsr Jns` ds − βiJ
ni
r Jni`

)
,
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where the last equality follows from (2.6) and (2.14). Since

E(Jnsr Jns` ) =
{

0, for r 6= `,
sh, for r = `,

we obtain that the previous equation holds iff

k∑
i=0

i2αi − 2iβi = 0,

namely if the method has order p ≥ 2, when applied to a deterministic ODE.
In addition to this, in the case where the drift is linear, namely

g0(y) = Ay + b,

with A and b constant, then the term Rn in (2.21) contains only the triple
integrals Jnij00. Consequently, E(‖Rn‖) = O(h5/2), and (2.22) gives a strong
order 2 method, since also in this case it can be verified that the mean local
order condition, which reduces to require

E(Rn) = O(h3),

is satisfied, provided that the deterministic order of the method is at least 2.

3 Adams-type methods for SODEs.

We now consider the following family of strong order 1 methods for SODEs:

yn+k = yn+k−1 + h

k∑
i=0

βig0,n+i +
1
2

d∑
j=1

Jn+k−1,1
j (gj,n+k + gj,n+k−1) ,

obtained by setting (see (2.12))

dir = 0, for min{i, r} ≤ k − 2,

dk−1,k = dkk = −dk−1,k−1 = −dk,k−1 = 1
2 .

The coefficients {βi} are those of the Adams–Moulton method of order k + 1.
The above scheme may be conveniently rewritten as

yn+1 = yn + h

k∑
i=0

βk−ig0,n+1−i +
1
2

d∑
j=1

Jn1
j (gj,n+1 + gjn) .(3.1)

Moreover, by considering that the following properties hold true for Stratono-
vich integrals, which allow us to handle combinations of the basic Stratonovich
integrals

Jn1
j , Jn1

`j , j, ` = 0, . . . , d :(3.2)
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1. Jnij = Jn,i−1
j + Jn+i−1,1

j ,

2. Jni`j = Jn,i−1
`j + Jn+i−1,1

`j + Jn,i−1
` Jn+i−1,1

j , i = 2, . . . , k,

3. Jn+1,i
j = Jnij + Jn+i,1

j − Jn1
j ,

4. Jn+1,i
`j = Jni`j + Jn+i,1

`j − Jn1
`j + Jni` Jn+i,1

j − Jn1
` Jn+1,i

j , n = 0, 1, . . . ,

the corresponding schemes (2.17)–(2.18) and (2.22)–(2.23) become, respectively,

yn+1 = yn + h
k∑
i=0

βk−ig0,n+1−i +
1
2

d∑
j=1

Jn1
j (gj,n+1 + gjn)(3.3)

+
∑

1≤j<`≤d

(
Jn1
j` − 1

2Jn1
j Jn1

`

)
[gj , g`]

and

yn+1 = yn + h

k∑
i=0

βk−ig0,n+1−i +
1
2

d∑
j=1

Jn1
j (gj,n+1 + gjn)(3.4)

− g′0

( d∑
j=1

(
Jn1
j0 + h

(
Jn−k+1,k−1
j −

k∑
i=1

βiJ
n−k+1,i
j

))
gj

)
.

3.1 Predictor-corrector implementation.

The formulae (3.1) (or (3.3)–(3.4), depending on the problem to be solved)
have some advantages and drawbacks.

Amongst the former, we can mention the possibility of obtaining high deter-
ministic order for the method, which may be useful in the case where the noise
terms in (1.2) are very small.

On the other hand, the fact of having implicitness in the stochastic terms of
the method may be a severe drawback. As an example, let us apply the scheme
(3.1) to the scalar equation

dy = λy dt + µy ◦ dW, λ, µ ∈ C,

thus obtaining the scheme

(
1− hλβk − Jn1µ/2

)
yn+1 =

(
1 + hλβk−1 + Jn1µ/2

)
yn + hλ

k∑
i=2

βk−iyn+1−i,

whose solution may be unbounded, when the real part of µ is nonzero, even
though Re(λ) < 0. As matter of fact (see, for example, [9]) E(|yn|) does not
exist.
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However, we can recover this drawback by using a predictor-corrector imple-
mentation of the method. In more detail, consider the following explicit scheme:

yn+1 = yn + h

k∑
i=1

β̂k−ig0,n+1−i +
d∑
j=1

Jn1
j gjn,(3.5)

where the coefficients {β̂i} are the coefficients of the Adams–Bashforth method
of order k. It is easily verified that the scheme (3.5) has strong order 1/2. In
particular, for k = 1 one obtains the well known Euler–Maruyama scheme.

We can use (3.5) as a predictor for the scheme (3.1):

ŷn+1 = yn + h
k∑
i=1

β̂k−ig0,n+1−i +
d∑
j=1

Jn1
j gjn,

(3.6)

yn+1 = yn + h

(
βkĝ0,n+1 +

k∑
i=1

βk−ig0,n+1−i

)
+

1
2

d∑
j=1

Jn1
j (ĝj,n+1 + gjn) ,

where ĝj,n+1 = gj(ŷn+1). In this implementation, the previously mentioned
problems are overcome, because the new scheme is essentially an explicit one.
Moreover, the following result holds true.

Theorem 3.1. For commutative problems, the predictor-corrector scheme
(3.6) has strong order 1.

Proof. By considering that

ŷ(tn+1) ≡ y(tn) + h
k∑
i=1

β̂k−ig0(y(tn+1−i)) +
d∑
j=1

Jn1
j gj(y(tn)) = y(tn+1) + Sn,

where E(‖Sn‖) = O(h), one obtains

τ̂n ≡ y(tn+1)− y(tn)− h

(
βkg0(ŷ(tn+1)) +

k∑
i=1

βk−ig0(y(tn+1−i))
)

+
1
2

d∑
j=1

Jn1
j (gj(ŷ(tn+1)) + gj(y(tn)))

= y(tn+1)− y(tn)− h

( k∑
i=0

βk−ig0(y(tn+1−i)) + R0
n

)

+
1
2

d∑
j=1

Jn1
j

(
gj(y(tn+1)) + gj(y(tn)) + Rj

n

)
≡ τn + Rn,

where τn is the truncation error of formula (3.1), and E(‖Rn‖) = O(h3/2), since
E(‖Rj

n‖) = O(h), j = 0, . . . , d. Consequently, we obtain strong order 1.
Similar arguments can be used to prove the following corollaries.
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Corollary 3.2. For non-commutative problems, the predictor-corrector sche-
me

ŷn+1 = yn + h

k∑
i=1

β̂k−ig0,n+1−i +
d∑
j=1

Jn1
j gjn,

(3.7)

yn+1 = yn + h
(
βkĝ0,n+1 +

k∑
i=1

βk−ig0,n+1−i

)
+

1
2

d∑
j=1

Jn1
j (ĝj,n+1 + gjn) +

∑
1≤j<`≤d

(
Jn1
j` −

1
2
Jn1
j Jn1

`

)
[gj , g`],

has strong order 1.
Corollary 3.3. In the case of additive noise, the predictor-corrector scheme

ŷn+1 = yn + h
k∑
i=1

β̂k−ig0,n+1−i +
d∑
j=1

Jn1
j gjn,

(3.8)

yn+1 = yn + h
(
βkĝ0,n+1 +

k∑
i=1

βk−ig0,n+1−i
)

+
1
2

d∑
j=1

Jn1
j (ĝj,n+1 + gjn)

−g′0

( d∑
j=1

(
Jn1
j0 + h

(
Jn−k+1,k−1
j −

k∑
i=1

βiJ
n−k+1,i
j

))
gj

)
.

has strong order 3/2. If, moreover, the drift g0 is linear, then the scheme has
strong order 2.

In the case of scheme (3.7), the commutator [gj, g`] may be evaluated at any
point yn−s, s = 0, . . . , k. Moreover, it can be implemented in a matrix-free
fashion, by approximating the Jacobian-times-vectors involved as follows:

g′j(yn)g`(yn) =
gj(yn + hg`(yn))− gj(yn)

h
+ O(h),

where h is the stepsize used. In such a way, since the quantities γnj` have O(h)
mean square expectation, we are able to preserve order 1 for scheme (3.7) and
order 3/2 for scheme (3.8). Obviously, for the latter scheme, the approximation
is exact when g0 is linear, so that, in such a case, we still get a strong order 2
method.

4 Numerical tests.

To carry out the numerical tests, we need to generate the basic Stratonovich
integrals (3.2). They can be computed, or approximated, as shown in [9, pp. 202–
205] (see also [3]). We here report the basic facts for completeness. The starting
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point is that a Wiener process Wj(t), such that Wj(0) = 0 and for which the
increment at t = h is known, can be expanded in Fourier series as

Wj(t) =
t

h
Wj(h) +

aj0
2

+
∞∑
r=1

(
ajr cos

(2rπt

h

)
+ bjr sin

(2rπt

h

))
,(4.1)

where

ajr =
2
h

∫ h

0

(
Wj(s)−

s

h
Wj(h)

)
cos
(2rπs

h

)
ds,

bjr =
2
h

∫ h

0

(
Wj(s)−

s

h
Wj(h)

)
sin
(2rπs

h

)
ds,

r = 1, 2, . . . , are known to be N
(
0, (2π2r2)−1h

)
random variables, and (see

[9, p. 203]) aj0 is N(0, h/3). Then, one considers a partial sum with p terms,
approximating the series in (4.1). The following procedure, which is a slight
modification of that presented in [9, pp. 202–203] (see also [3]), is then derived
(the upper indices n1 of the integrals are omitted, for brevity):
• for j = 1, . . . , d, and r = 1, . . . , p, let {ξj}, {νj}, {ζjr} and {ηjr} be independent
standard Gaussian random variables;
• set:

J0 = h,

J00 =
h2

2
,

Jj0 =
1
2
h3/2(ξj + νj/

√
3),

J0j =
1
2
h3/2(ξj − νj/

√
3),

aj0 =
2
h

Jj0 − Jj ≡ νj

√
h

3
, j = 1, . . . , d,

J`j =
1
2

(
J`Jj − a`0Jj − aj0J` +

h

π

p∑
r=1

1
r

(ζ`rηjr − η`rζjr)
)
,

j, ` = 1, . . . , d.

According to the analysis in [7], the value p = 5 has been considered as being
appropriate (as matter of fact, the multiple stochastic integrals are sufficiently
well approximated for all h ≤ 0.5, which is the maximum stepsize considered in
the numerical tests).

For Problems 1 and 2, we implement the predictor-corrector schemes (3.6) and
(3.7) (depending on the problem) with k = 1, 2. For Problem 3 we consider the
scheme (3.8) with k = 1. For the two-step method, the second initial condition
is provided by the method with k = 1, thus preserving strong order 1 and a
deterministic order 3. All methods are implemented with a constant stepsize.
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Table 4.1: Mean square global error, Problem 4.1.

k = 1

error for error for
1/h scheme (3.6) rate scheme (3.7) rate

2 5.76E-1 – 5.75E-1 –
4 9.97E-2 2.53 9.93E-2 2.53
8 2.68E-2 1.90 2.63E-2 1.92

16 8.92E-3 1.59 8.49E-3 1.63
32 3.84E-3 1.22 3.31E-3 1.36
64 2.05E-3 0.90 1.60E-3 1.05

128 1.22E-3 0.75 8.18E-4 0.97
256 7.92E-4 0.63 4.13E-4 0.98
512 5.23E-4 0.59 2.15E-4 0.94

1024 3.41E-4 0.63 1.04E-4 1.05

k = 2

error for error for
1/h scheme (3.6) rate scheme (3.7) rate

2 1.93E-1 – 1.94E-1 –
4 3.71E-2 2.38 3.69E-2 2.39
8 1.39E-2 1.42 1.36E-2 1.44

16 7.12E-3 0.96 6.75E-3 1.01
32 3.65E-3 0.97 3.13E-3 1.11
64 2.06E-3 0.82 1.60E-3 0.97

128 1.22E-3 0.75 8.21E-4 0.97
256 7.92E-4 0.63 4.16E-4 0.98
512 5.28E-4 0.59 2.15E-4 0.95

1024 3.41E-4 0.63 1.04E-4 1.05

Problem 4.1. This problem is a nonlinear and non-commutative problem
describing the satellite dynamics in the atmosphere of the earth, whose density
fluctuates randomly [10]. We here consider the Stratonovich formulation of the
problem,

dy1 = y2dt, t ∈ [0, T ], y1(0) = y2(0) = 1,

dy2 =
(
− b0y1 + c0 sin(2y1)− a0y2 − 1

2a2
1y2

)
dt(4.2)

− a1y2 ◦ dW1 − b1y1 ◦ dW2.

The choice of the parameters is the same as those considered in [3]:

a0 = c0 = 1/4, b0 = 1, a1 = b1 = 10−1, T = 40.

In Table 4.1 we report the numerical results obtained with the schemes (3.6) and
(3.7), with k = 1, 2, both with a PEC implementation. For each stepsize, we have
computed the expected mean square global error on 100 random trajectories.
The reference solutions have been computed by using a strong order 3/2 Taylor
expansion.
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For the methods in the form (3.6), which do not handle the non-commuta-
tivity of the problem, the order collapses towards 1/2, whereas the modified
schemes (3.7) maintain the strong order 1 convergence. From the results, it is
evident that there is no apparent advantage in using the two-step method over
the one-step scheme.

Problem 4.2. This is a nonlinear problem, whose Stratonovich form is

dy = −α(1− y2)dt + β(1 − y2) ◦ dW, t ∈ [0, T ], y(0) = y0.(4.3)

Table 4.2: Mean square global error for method (3.6), Problem 4.2.

β = 1 β = 10−4

1/h k = 1 rate k = 2 rate k = 1 rate k = 2 rate

8 1.45E-1 – 1.43E-1 – 3.61E-3 – 4.18E-04 –
16 7.70E-2 0.91 7.74E-2 0.89 9.01E-4 2.00 4.96E-05 3.07
32 3.94E-2 0.97 3.95E-2 0.97 2.24E-4 2.00 6.03E-06 3.04
64 2.14E-2 0.88 2.14E-2 0.89 5.60E-5 2.00 7.51E-07 3.00

128 1.01E-2 1.09 1.00E-2 1.09 1.40E-5 2.00 9.81E-08 2.94
256 4.69E-3 1.10 4.68E-3 1.10 3.49E-6 2.00 1.45E-08 2.75
512 2.60E-3 0.85 2.60E-3 0.85 8.73E-7 2.00 2.74E-09 2.41

1024 1.38E-3 0.91 1.38E-3 0.91 2.18E-7 2.00 6.97E-10 1.97
2048 7.03E-4 0.98 7.03E-4 0.98 5.45E-8 2.00 2.38E-10 1.55
4096 3.41E-4 1.04 3.41E-4 1.04 1.36E-8 2.00 8.61E-11 1.47

For this problem, the solution is known to be [9]

y(t) =
(1 + y0) exp(−2αt + 2βW (t)) + y0 − 1
(1 + y0) exp(−2αt + 2βW (t))− y0 + 1

.

We have considered the following two sets of parameters for the numerical tests:

• T = 2, y0 = 0, α = β = 1;

• T = 2, y0 = 0, α = 1, β = 10−4.

In the first case, one has that the stochastic part is significant, whereas it is
much smaller in the second case. As a consequence, for the second set of param-
eters, the deterministic order of the method plays a significant role, as shown
by the numerical results listed in Table 4.2. Also in this case, the mean square
expectation of the global error has been computed on 100 trajectories. The PEC
implementation of method (3.6), with k = 1, 2, has again been considered.

Problem 4.3. This is a linear problem with additive noise [9],

dy =
(

0 −1
1 0

)
y dt +

(
0
σ2

)
◦ dW, t ∈ [0, T ], y(0) = y0.(4.4)
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Table 4.3: Mean square global error, Problem 4.3.

k = 1

error for error for
1/h scheme (3.6) rate scheme (3.8) rate

2 4.36E-1 – 4.31E-1 –
4 9.90E-2 2.14 9.96E-2 2.11
8 2.75E-2 1.85 2.53E-2 1.98

16 8.18E-3 1.75 6.40E-3 1.98
32 3.27E-3 1.32 1.54E-3 2.06
64 1.52E-3 1.10 3.93E-4 1.97

128 8.20E-4 0.89 9.91E-5 1.99
256 3.80E-4 1.11 2.43E-5 2.03
512 1.93E-4 0.98 6.17E-6 1.98

1024 9.89E-5 0.96 1.50E-6 2.04

According to the analysis in Section 2.1, the modified scheme (3.8) would have
strong order 2 convergence, whereas (3.6) has only strong order 1. This is con-
firmed by the numerical tests, listed in Table 4.3, where the expected mean
square global error has been computed over 100 trajectories using a PECE im-
plementation.

The reference solution has been computed by means of a strong order 3 Taylor
expansion. The parameters used for the problem are

T = 10, y0 = (1 0)T , σ2 = 10−1.

5 Conclusions.

In this paper we have shown how to construct strong order 1 linear multistep
methods for both commutative and non-commutative problems, using the tech-
nique of prediction-correction. In the case of non-commutative problems this
required the additional evaluation of commutator (Lie bracket) terms at some
point. In the case of additive problems, methods of strong order 1.5 were con-
structed. The effectiveness of these methods was demonstrated on three simple
test problems.
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