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Abstract

Deferred correction is a widely used tool for improving the numerical approximation to the solution of ODE
problems [J.R. Cash, WSSIA 2 (1993) 113; J.R. Cash, M.H. Wright, SIAM J. Sci. Statist. Comput. 12 (1991)
971; M. Lentini, V. Pereyra, Math. Comp. 28 (1974) 981; B. Lindberg, BIT 20 (1980) 486; V. Pereyra, Nu-
mer. Math. 8 (1966) 376; V. Pereyra, Numer. Math. 10 (1967) 316; H.J. Stetter, Numer. Math. 29 (1978) 425;
H.J. Stetter, in: Lecture Notes in Math. vol. 630, Springer, 1978, pp. 245–258; R.D. Skeel, SIAM J. Numer. Anal.
19 (1981) 171; R.D. Skeel, Numer. Math. 48 (1986) 1; P. Zadunaisky, Numer. Math. 27 (1976) 21]. Indeed, it
allows to estimate the error due to the use of discrete methods. Such an estimate may be a global one, in the
case of continuous BVPs, or a local one, when IVPs are to be approximated [L. Brugnano, in: Lecture Notes in
Math., vol. 1196, Springer, 1997, pp. 78–89; L. Brugnano, D. Trigiante, Solving Differential Problems by Mul-
tistep Initial and Boundary Value Methods, Gordon and Breach, 1998]. Recently, it has been implemented in the
computational code BiM [L. Brugnano, C. Magherini, J. Comput. Appl. Math. 164–165 (2004) 145, web page:
http://math.unifi.it/~brugnano/BiM/index.html] for the numerical solution of stiff ODE-IVPs. In this paper we an-
alyze deferred correction in connection with the methods used in that code, resulting in an overall simplification
of the procedure, due to the properties of the underlying methods. The analysis is then extended to more general
methods.
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1. Introduction

Deferred correction is a useful framework for error estimation when solving ODEs [10–13,16–21,23].
Its main use is to provide a tool for the iterative improvement of the numerical solution. This approach
has been successfully used in numerical codes for BVPs (see, for example, [11,12]), where it is used to
obtain an approximation of the global error. Nevertheless, when solving IVPs, such an approach may be
also used to estimate local errors, in connection with mesh-selection (see, e.g., [2,7]). This is exactly the
use of deferred correction which has been recently considered in the computational code BiM for the
numerical solution of ODE-IVPs [5,6]. This code is based on the so-called block implicit methods [22],
i.e. methods that, when applied to the solution of the IVP

y ′ = f (t, y), t ∈ [t0, T ], y(t0) = y0 ∈ R
m, (1)

provide, at the nth step of integration, a discrete problem in the form

F(yn) ≡ A ⊗ Imyn − hnB ⊗ Imfn − ηn = 0. (2)

In the previous equation, A and B are r × r nonsingular matrices defining the method, Im denotes, as
usual, the identity matrix of dimension m, hn is the current stepsize, the block vectors

yn = (yn1, . . . , ynr)
T, fn = (fn1, . . . , fnr)

T, (3)

where

ynj ≈ y(tnj ), fnj = f (tnj , ynj ), tnj = tn + cjhn, j = 1, . . . , r, (4)

contain the discrete solution, and the vector ηn only depends on already known quantities. Instances of
methods falling in this class are the majority of implicit Runge–Kutta methods, a number of General
Linear methods and, more recently, block BVMs [7]. Under suitable assumptions, such methods can be
implemented as blended methods [3,4,8], thus allowing the definition of efficient nonlinear splittings for
solving the corresponding discrete problems.

Blended implicit methods have been recently implemented in the computational code BiM [5]. In the
two references [5,6], most of the computational details of this code are described. In particular, in [5] it
is mentioned that deferred correction has been used for estimating local truncation errors. Nevertheless,
when revising paper [5], we realized that, because of the properties of the methods used in the code,
deferred correction allows a noticeable short cut in its actual implementation. This, in turn, has allowed
us to greatly simplify the data structure of the code itself. The analysis of this short cut is the main
concern of this paper. In particular, in Section 2 some preliminary results, concerning the factorization
of a Vandermonde matrix, are given in order to obtain the main results on deferred correction stated in
Sections 3 and 4. Finally, some concluding remarks are contained in Section 5.

2. Preliminary results

In this section we report some results concerning the factorization of a Vandermonde matrix (actu-
ally, its transpose), to be used later: though most of them are known (see, for example, [1,9,14,15]),
nevertheless, they are here cast in the most general and appropriate form for subsequent reference.
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The matrix which we shall consider is the one defined by the abscissae {ci} defining the block method
(2)–(4):

V =
⎛
⎝1 c1

1 . . . cr−1
1

...
...

...

1 c1
r . . . cr−1

r

⎞
⎠ . (5)

Hereafter, we shall assume

0 < c1 < c2 < · · · < cr,

so that the matrix V is nonsingular. As an example, for the methods implemented in the code BiM, one
has: ci = i, i = 1, . . . , r .

In order to state the required results, we also need to introduce the following notations:

• ei , i = 1, . . . , r , is the ith unit vector in R
r ;

• ωj(x) = ∏j−1
k=1(x − ck), j = 1, . . . , r , is the j th Newton polynomial defined by the considered ab-

scissae;
• xj [c1, . . . , ci] is the divided difference of the function xj over the abscissae c1, . . . , ci .

The following basic properties are also recalled, for sake of completeness:

P1: ωj(ci) = 0, if i < j ;
P2: xj−1[c1, . . . , ci] = 0, for j < i; xj−1[c1, . . . , cj ] = 1.

An easy consequence of the above properties is the following result.

Lemma 1. The matrices

L = (
wj(ci)

)
i,j=1,...,r

, U = (
xj−1[c1, . . . , ci]

)
i,j=1,...,r

, (6)

are lower and unit upper triangular, respectively.

Then, the following result follows.

Lemma 2. Let V,L,U be defined according to (5) and (6). Then,

V = LU. (7)

Proof. In fact, for all i, j = 1, . . . , r , from (6) one has:

eT
i LUej =

r∑
k=1

ωk(ci)x
j−1[c1, . . . , ck] = c

j−1
i ,

where the last equality is due to the fact that the corresponding left-hand side is the interpolating polyno-
mial of the function xj−1, over the abscissae c1, . . . , cr , evaluated at ci . �

Concerning the two factors L and U , the following result holds true (see also [9]).
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Lemma 3.

L−1 = (�ij ) ≡
{

0, if j > i,
1∏i

k=1,k �=j (cj −ck)
, if j � i,

and U−1 = (uij ), such that

j∑
i=1

uijx
i−1 ≡ ωj(x), j = 1, . . . , r. (8)

From Lemma 3, the following result follows.

Lemma 4. Let g(x) be a given function and let gi = g(t0 + cih), i = 1 . . . , r . Then,

L−1

⎛
⎝g1

...

gr

⎞
⎠ =

⎛
⎝ h0g[t0 + c1h]

...

hr−1g[t0 + c1h, . . . , t0 + crh]

⎞
⎠ .

Proof. From Lemma 3, for all i = 1, . . . , r , one obtains that

eT
i L

−1

⎛
⎝g1

...

gr

⎞
⎠ =

i∑
ν=1

gν∏i
k=1,k �=ν(cν − ck)

= hi−1
i∑

ν=1

gν∏i
k=1,k �=ν(cν − ck)h

= hi−1g[t0 + c1h, . . . , t0 + cih]. �

3. Deferred correction for block implicit methods

In this section, we shall use the previous results to obtain a remarkably simple implementation of de-
ferred correction for the block methods implemented in the code BiM [5]. Concerning the latter methods,
they are such that (see (2))

[a |A] ≡
⎛
⎝α

(1)

0
...

α
(r)

0

∣∣∣∣∣∣
α

(1)

1 . . . α(1)
r

...
...

α
(r)

1 . . . α(r)
r

⎞
⎠ , [b |B] ≡

⎛
⎝β

(1)

0
...

β
(r)

0

∣∣∣∣∣∣
β

(1)

1 . . . β(1)
r

...
...

β
(r)

1 . . . β(r)
r

⎞
⎠ , (9)

where the coefficients on the ith row of the two matrices define an r-step LMF of order r , and ηn =
−a⊗yn +hnb⊗fn. Since A is nonsingular, and taking into account consistency, we can assume, without
loss of generality, that

A = Ir , a = −e ≡ −(1 . . . 1)T. (10)

The order r conditions for the LMF defining each row of the matrices in (9) can then be cast in matrix
form, by introducing the matrix

D = diag(c1 . . . cr),

as follows:
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De − b − Be = 0, (11)

Die − i B Di−1e = 0, i = 2, . . . , r. (12)

Remark 1. In general, when the scaling (10) is not considered, the previous equations are, respectively,

ADe − b − Be = 0, ADie − iBDi−1e = 0, i = 2, . . . , r.

We observe that, from (11), the vector b turns out to be uniquely determined, provided all LMFs are
consistent, from the choice of the matrix B . The latter turns out to be uniquely determined by the order
conditions (12) and by fixing its spectrum [4,8]. However, since we are dealing with order r LMFs, one
obtains that, for i = r + 1, (12) becomes

Dr+1e − (r + 1)B Dre = vr+1 ≡
⎛
⎝vr+1,1

...

vr+1,r

⎞
⎠ . (13)

In more detail, by setting hereafter c0 = 0, the right-hand side of the previous equation reads,
component-wise, as follows (see (9), (10) and Remark 1):

vr+1,k =
r∑

i=0

(
α

(k)
i cr+1

i − (r + 1)β
(k)
i cr

i

)
, k = 1, . . . , r, (14)

i.e., 1
(r+1)!vr+1,k is the coefficient of the leading term of the truncation error of the LMF defined by the

kth rows of the matrices in (9). Then, from (12)–(13) one obtains that (see (5))

D2V − BDV G = vr+1eT
r , where G = diag(2 . . . r + 1), (15)

from which

B = (
D2V − vr+1eT

r

)
G−1V −1D−1 (16)

follows. Now, in order to apply deferred correction, we need an additional couple of matrices in the form
(9), whose rows define r-step LMFs of order (at least) r + 1 (see, for example, [2,7]), which are defined
over the same set of abscissae {ci}. By using the same normalization (10), and denoting by [b1|B1] the
remaining matrix, then the corresponding order conditions are given by:

De − b1 − B1e = 0, (17)

Die − iB1D
i−1e = 0, i = 2, . . . , r + 1. (18)

Similarly to what seen in (11), now (17) uniquely defines the vector b1, once B1 is fixed. For the latter
matrix, from (18) one readily obtains that

B1 = D2V G−1V −1D−1, (19)

that is, the matrix is uniquely determined by the order conditions. Such matrix can be used for estimating
the truncation error of the method defined by (9). Indeed, if we consider the very first application of the
method, thus neglecting, for sake of brevity, the index n in (2), we have that the discrete solution satisfies
the equation

Ir ⊗ Imy − hB ⊗ Imf − e ⊗ y0 − hb ⊗ f0 = 0. (20)



L. Brugnano, C. Magherini / Applied Numerical Mathematics 56 (2006) 608–617 613
Deferred correction is then implemented by plugging in the above discrete solution in the discrete prob-
lem defined by the block method (17)–(19), thus obtaining (see, for example, [2,7])

Ir ⊗ Imy − hB1 ⊗ Imf − e ⊗ y0 − hb1 ⊗ f0 ≈ −τ . (21)

In the above equation, τ is the vector of the (local) truncation errors of the method (9). In more detail
(see (13)–(14)), one has:

τ = hr+1

(r + 1)!vr+1 ⊗ y
(r+1)

0 + O
(
hr+2

)
, (22)

where y
(r+1)

0 denotes the (r + 1)st derivative of the (local) solution y(t) at t0. The following result pre-
cisely quantifies the approximation to the truncation error provided by the left-hand side of Eq. (21).

Theorem 1 (Main Result). Let g(t) be any function such that

g(t0 + cih) = f (t0 + cih, yi), i = 0, . . . , r.

Then,

Ir ⊗ Imy − hB1 ⊗ Imf − e ⊗ y0 − hb1 ⊗ f0 = − hr+1

r + 1
vr+1 ⊗ g[t0 + c0h, . . . , t0 + crh]. (23)

Remark 2. By considering that the discrete solution is an O(hr+1) approximation to the (local) solution
at the grid points, and recalling that (see (1)) y ′ = f (t, y), it follows than that, under suitable smoothness
assumptions for f ,

g[t0 + c0h, . . . , t0 + crh] = 1

r!y
(r+1)

0 + O(h).

Consequently, (23) provides a O(hr+2) approximation to the (opposite of the) leading term at the right-
hand side of Eq. (22).

Proof of Theorem 1. From Eq. (20), by setting

f̂ =
(

f0

f

)
≡

⎛
⎝f0

...

fr

⎞
⎠ ,

where

fi = f (t0 + cih, yi) ≡ g(t0 + cih), i = 0, . . . , r,

and taking into account (11)–(19), we obtain:

Ir ⊗ Imy − hB1 ⊗ Imf − e ⊗ y0 − hb1 ⊗ f0

= h
([b|B] − [b1|B1]

) ⊗ Imf̂ = h(B − B1)[−e|Ir] ⊗ Imf̂

= −hvr+1eT
r G

−1V −1D−1[−e|Ir ] ⊗ Imf̂

= − h

r + 1
vr+1eT

r V
−1D−1[−e|Ir] ⊗ Imf̂ = (∗).

From (6)–(7), property P2, Lemmas 3 and 4, and considering that c0 = 0, one then obtains:
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(∗) = − h

r + 1
vr+1eT

r U
−1L−1D−1[−e|Ir] ⊗ Imf̂

= − h

r + 1
vr+1eT

r L
−1D−1[−e|Ir] ⊗ Imf̂

= − h

r + 1
vr+1eT

r L
−1

⎡
⎢⎣

−1
c1

1
c1

...
. . .

−1
cr

1
cr

⎤
⎥⎦ ⊗ Imf̂

= − h2

r + 1
vr+1eT

r L
−1

⎡
⎢⎣

−1
(c1−c0)h

1
(c1−c0)h

...
. . .

−1
(cr−c0)h

1
(cr−c0)h

⎤
⎥⎦ ⊗ Imf̂

= − h2

r + 1
vr+1eT

r L
−1 ⊗ Im

⎛
⎝g[t0 + c0h, t0 + c1h]

...

g[t0 + c0h, t0 + crh]

⎞
⎠

= − hr+1

r + 1
vr+1

((
r∏

k=2

(c1 − ck)h

)−1

. . .

(
r−1∏
k=1

(cr − ck)h

)−1)
⊗ Im

⎛
⎝g[t0 + c0h, t0 + c1h]

...

g[t0 + c0h, t0 + crh]

⎞
⎠

= − hr+1

r + 1
vr+1 ⊗ g[t0 + c0h, . . . , t0 + crh]. �

4. Generalizations

The result of Theorem 1 has been directly used in the actual implementation of the code BiM [5],
starting from its release 1.1. Nevertheless, it is worth mentioning that this result can be generalized to the
case of a general block implicit method, that is when the LMFs in (9) have order p � r and those of the
block method used for the deferred correction have order q > p. In such a case, Eq. (11) still holds true,
whereas (12) holds true for i = 2, . . . , p � r . Moreover, Eq. (13) now becomes

Dν+1e − (ν + 1)BDνe = vν+1 ≡
⎛
⎝vν+1,1

...

vν+1,r

⎞
⎠ , ν = p, . . . , r, (24)

where (compare with (14))

vν+1,k =
r∑

i=0

(
α

(k)
i cν+1

i − (ν + 1)β
(k)
i cν

i

)
, k = 1, . . . , r, (25)

i.e., the vector of the truncation errors of the block method is given by (compare with (22))

τ = hp+1

vp+1 ⊗ y
(p+1)

0 + hp+2

vp+2 ⊗ y
(p+2)

0 + · · · . (26)

(p + 1)! (p + 2)!
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As a consequence, Eq. (16) now becomes

B =
(

D2V −
r∑

ν=p

vν+1eT
ν

)
G−1V −1D−1. (27)

Similarly, the matrix B1 of the block method used for the deferred correction, made up of order q > p

LMFs, will be given by (compare with (19))

B1 =
(

D2V −
r∑

ν=q

v̂ν+1eT
ν

)
G−1V −1D−1, (28)

with the vectors v̂ν+1 defined similarly to the vectors vν+1. This allows us to generalize the result of
Theorem 1 as follows (the notation is the same used in that theorem).

Theorem 2 (Generalization of Theorem 1). With reference to (27)–(28), let define the vectors

wi+1 =
{

vi+1, if i < q,

vi+1 − v̂i+1, if i � q.
(29)

Then,

Ir ⊗ Imy − hB1 ⊗ Imf − e ⊗ y0 − hb1 ⊗ f0

= − hp+1

p + 1
vp+1 ⊗ g[t0 + c0h, . . . , t0 + cph]

−
r∑

j=p+1

hj+1

(
j∑

i=p

uij

i + 1
wi+1

)
⊗ g[t0 + c0h, . . . , t0 + cjh], (30)

where the coefficient uij are defined according to (8).

Proof. The proof strictly follows that of Theorem 1, by taking into account (24)–(28):

Ir ⊗ Imy − hB1 ⊗ Imf − e ⊗ y0 − hb1 ⊗ f0

= h
([b|B] − [b1|B1]

) ⊗ Imf̂ = h(B − B1)[−e|Ir] ⊗ Imf̂

= −h

r∑
i=p

wi+1eT
i G

−1V −1D−1[−e|Ir ] ⊗ Imf̂

= −h

r∑
i=p

1

i + 1
wi+1eT

i U
−1L−1D−1[−e|Ir] ⊗ Imf̂

= −h2
r∑

i=p

1

i + 1
wi+1eT

i U
−1L−1 ⊗ Im

⎛
⎝g[t0 + c0h, t0 + c1h]

...

g[t0 + c0h, t0 + crh]

⎞
⎠

= −h2
r∑

i=p

1

i + 1
wi+1eT

i U
−1 ⊗ Im

⎛
⎜⎜⎝

g[t0 + c0h, t0 + c1h]
hg[t0 + c0h, t0 + c1h, t0 + c2h]

...
r−1

⎞
⎟⎟⎠
h g[t0 + c0h, . . . , t0 + crh]
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= −h2
r∑

i=p

1

i + 1
wi+1 ⊗

r∑
j=i

uijh
j−1g[t0 + c0h, . . . , t0 + cjh]

= −
r∑

j=p

hj+1

(
j∑

i=p

uij

i + 1
wi+1

)
⊗ g[t0 + c0h, . . . , t0 + cjh].

The thesis then follows from (29), by considering that q > p and (due to Lemmas 1 and 3) ujj = 1 for
all j . �
Remark 3. Evidently, (30) provides a O(hp+2) approximation to the (opposite of the) leading term of the
truncation error (26), assuming f suitably smooth.

5. Conclusions

In this paper we have proved that deferred correction, when used in connection with block implicit
methods defined by order r LMFs, greatly simplifies in its practical implementation. The result of The-
orem 1 has been actually used in the computational code BiM [5], allowing to halve, in the practice,
the data structure of that code. Indeed, for each method implemented in the code, which is defined by
a suitable matrix B , the corresponding matrix B1 is no longer required to obtain the error estimate via
deferred correction, since the vector vr+1 is known and, moreover, we can directly compute the divided
difference at the right-hand side of Eq. (23). In addition to this, the results of Theorems 1 and 2 provide
a much better insight into deferred correction, when used with block implicit methods.
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