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Abstract 

The Boundary Value Methods (BVMs) is a class of numerical methods for solving ODEs proposed and 
analyzed in the last few years. They are based on Linear Multistep Formulae (LMF) and do not suffer from 
the theoretical order limitations due to the Dahlquist barriers. In previous papers some families of BVMs have 
been proposed and studied. In this paper we exploit the possibility of using the family of Extended Trapezoidal 
Rules (ETRs) to construct both a sequential and a parallel code. Such methods are used in a block form which 
improves their flexibility, even though in this form some stability problems arise. The potentiality of the resulting 
codes are shown through comparison on some test problems taken from the literature. © 1997 Elsevier Science 
B.V. 
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1. Introduction 

In the last four years, the class of numerical methods for ODEs called B o u n d a r y  Value M e t h o d s  

(BVMs) has been studied by the research group of the authors. Such methods are based on LMF, 
although used in an unusual way, which permits, for example, to overcome the two well-known 
Dahlquist barriers. 

The class is a very wide one and contains methods suitable for all known specific problems arising 
in the applications (e.g., dissipative, Hamiltonian, method of lines, etc.). In previous papers some 
families of BVMs have been proposed such as GBDF [8], GAMs [13], ETRs [4], ETRzs [6], un- 
symmetric ETRzs [7] and TOMs [1]. In particular, the family of TOMs contains stable methods of 
highest possible order, i.e., 2k for k-step methods. A more global analysis which takes into account 
the implementation difficulties suggests, however, the use of ETRs as the most promising for the 
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construction of a general purpose code. We also mention that ETRs can be also used to approximate 
the solution of continuous BVPs [9]. 

In order to improve the flexibility of the methods chosen, a block version of them seems to be 
more appropriate. Such block form, previously introduced for Hamiltonian problems [10], is here 
discussed in detail. In particular, we briefly review the main facts concerning this implementation of 
the methods and we study some stability problems, due to the specific block form, not yet analyzed 
so far. 

At the present, a sequential version of the code for IVPs [18] based on ETRs is almost com- 
pleted. Such code compares with the most efficient existing codes, such as RADAU5. For BVPs there 
exists a Matlab prototype, working on linear problems, which implements a new mesh selection strat- 
egy [11,12,14]. This prototype has been extensively tested [20] on several test problems taken from 
the literature, most of them in the class of singular perturbation problems. Finally, a parallel prototype 
using ETRs is also ready. 

In order to briefly describe BVMs, let us consider the continuous IVP 

y' = f( t ,y) ,  t E [to, T], y(to) = r], (1) 

to be approximated by means of a linear k-step formula, 

k k 

E otiYn+i = h E 3ifn+i, 
i=0  i=0  

h = ( T  - t o ) / N .  (2) 

Eq. (2) needs k independent conditions to be imposed, in order to get the discrete solution. The 
BVM approach essentially consists in relaxing the usual practice of assigning the first k values 
of the discrete solution, thus replacing the continuous IVP (1) by a discrete IVP. Let then kl, k2 
be two natural numbers, kl ~> 1, kl + k2 -- k. The discrete problem is defined by fixing the 
first kl values of the discrete solution, Y0,... ,Yk~-l, and the last k2 ones, YN-k2+l,"" ,YN" That 
is, the continuous IVP is approximated by means of a discrete BVP. This defines a BVM with 
(kl, k2)-boundary conditions. We observe that the usual way of using LMF corresponds to kl -- k 
and k2 = 0. 

The idea has been considered sometimes in the past years (see, for example, [5,16]). Nevertheless, 
it has been deeply studied only recently, by generalizing the usual stability notions [8,14]. Con- 
sidering, in fact, the linear stability, one has that stability requirements for a discrete BVP differ 
from those for an IVP. As an example, the former requires the characteristic polynomial to have 
part of the roots inside the unit circle and part outside it. In particular, the number of initial con- 
ditions, kl, needs to be equal to the number of roots inside the unit circle and the number of fi- 
nal conditions k2 must be equal to the number of roots of modulus greater than one. Of course, 
when k2 = 0, one returns to the classical situation where the characteristic polynomial is required 
to be a Schur polynomial. The stability notions have been then changed accordingly. In particu- 
lar, A-stability corresponds to the situation where the stability polynomial has exactly kl roots in- 
side the unit circle and k2 roots outside, for all hA ¢ C- .  For convenience, in order to distin- 
guish between the stability for BVPs and that for IVPs, the notion of Ak~k2-stability has been intro- 
duced [8,14]. 
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Let us consider the k-step methods having the form 

u - 1  

Yn - Y~-I = h ) _ £ ~ , + i ~ + i ,  i = ~ , . . . , N -  u +  1, (3) 

where k = 2u - 1, and the coefficients are uniquely determined by imposing the formula to have the 
maximum possible order k + 1. When u = 1, we get the trapezoidal rule, from which the name of the 
methods derives [4]. For each value of u, the methods turn out to be A,,~,_ l-stable. In particular, the 
boundary of the stability region coincides with the imaginary axis (perfect A-stability). That is, the 
stability properties are similar to those of the basic trapezoidal rule. The methods must be used with 
(u, u -  1)-boundary conditions, namely the values 

YO, Y l  , . . . , Y v - I  , Y N - u + 2 ,  " " " , Y N  

should in principle be provided. Obviously, of such values only Y0 = ~/is inherited from the continuous 
problem (1), while the remaining ones need to be found. In order to avoid the latter undesirable request, 
such values are treated as unknowns• This is done by introducing an appropriate set of equations 
independent of those provided by the main method (3). These equations are conveniently derived by 
the following set of initial additional methods, 

k 

Y j  - -  Y j - - 1  = h Z / ~ } J ) f i '  

i=0  

and final additional ones, 

k 

V" /3 (j) f , Y j  - -  Y j - I  = h A .  ~ k - i  N - i  

i=0  

j = l , . . . , u - 1 ,  (4) 

j = N - u + 2 , . . . , N .  (5) 

The coefficients {/3} j) } in each of the above formulae are uniquely determined by imposing the same 
order k + 1 of the main method (3). 

Consequently, the discrete problem only needs one condition to be imposed, which is the one 
provided by the continuous problem. For initial value problems, this condition is the initial condition, 
although it can be replaced by more general ones, such as boundary or multipoint conditions, in case 
of continuous boundary value problems [9,14]. 

The properties of the composite method (3)-(5) are better described by introducing the matrices 

[aN lAw] = 

- 1  1 
- 1  1 ...) 

- 1  1 Nx(N+I) 

(6) 
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and 

[bN I BN ] = 

/3(o 1) 

/3 (o ~- l ) 

• o 

97-1  

" . .  " . .  " .  

' - "  

f~(N-u+2) fq(N-u+2) . ~ (N-u+2)  
~'0 . ~ ' 1  . " " ~ ' k  . 

9 V )  . . .  

The discrete problem is then given by 

(AN ~ Im)y  -- h(BN Q I m ) f  = - ( a  N @ ~ / -  hb N ® fQ/)) ,  

where 

Y = ( Y l , . . ' ,  YN) T, f ---- ( f l , . . . ,  f N )  T, f j  = f ( t j ,  yj). 

N×(N+I )  

(7) 

( 8 )  

In this form, the notions of linear stability (e.g., A-stability) can be derived directly by posing as usual 
f ( t ,  y) = Ay. This will be discussed in Section 3. By the way, we note that, although the notion of 
Akj kz-stability will not be used anymore, nevertheless it has had a central role in the derivation of the 
main methods. 

Among the properties of the composite method (3)-(5), we quote the following result, which will 
be used later. Let consider the application of the method to the linear Hamiltonian problem 

y' = Ly, t E [to, T], y(to) = Yo, 

where L E ~2m×2rn is a Hamiltonian matrix, namely 

L =  Im 

It is known that for any matrix C satisfying 

LTc  + CL = O, (9) 

the function 

V(t, C) = yTCy 

is invariant, i.e., W(t, C) = O. A similar result can be proved for the discrete problem. 

Theorem 2.1. Let C satisfy (9). Then 

yT Cy ° T = YNCYN , 

independently of the stepsize h. 
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Proof. See [10,14]. [] 

That is, the continuous invariants are exactly preserved at the initial point and at the last point of 
the discrete solution. In the remaining points it differs for O(h k+l) (the order of the method) [6]. 

3. Block version 

The result of the previous Theorem 2.1 suggests a different implementation of ETRs (and, in general, 
of BVMs), which increases the flexibility of the methods. The idea is to discretize the integration 
interval by using two meshes: 

• a coarse mesh, containing the points 

"l-j -~- Tj--1 2¢_ hj ,  j = 1 , . . .  ,p, T0 = to, rp = T; (10) 

• a fine mesh, obtained by applying on each subinterval [Tj_l,'rj] the composite method, e.g., 

(3)-(5), with stepsize hj = h j / 8 ,  where N = s is kept fixed. 
Therefore we can decrease the stepsize by increasing the number p of subintervals in the coarse mesh, 
while s is kept fixed. The above approach defines a block BVM (B2VM). 

This block implementation of BVMs has relevant consequences in practice. For example, it al- 
lows a simple stepsize variation, by changing only the stepsizes in the coarse mesh. Moreover, 
for ETRs applied to linear Hamiltonian problems, by considering that Yj.s is the approximation to 
y(~-j), j = 0 , . . .  ,p, from Theorem 2.1 we obtain that 

y T C y  ° T C = Yj.s Yj.s, j = 1 , . . .  ,p, 

for all matrices C satisfying (9). That is, the continuous invariants are exactly preserved at the points 
of the coarse mesh. Finally, B2VMs can be efficiently implemented on parallel computers, as described 
in Section 4. 

We now briefly discuss the stability of the block version of ETRs. The application of the B2VM de- 
rived from (3)-(5) over the j th  subinterval of the coarse mesh, j = 1 , . , . , p ,  can then be written as 
(see (8) with N -- s) 

(As ® Im)u j  - h j ( B s  ® I m ) f j  = - ( a s  ® Y(j-1) .s  -- hjbs ® f(j-1).s), (11) 

where 

Y j  = ( Y ( j - l ) . s + l , ' ' ' ,  Yj.s) T, f j  = ( f ( j - 1 ) . s + l , . . . ,  f j . s )  T (12) 

are the vectors containing the approximations over the considered subinterval and the vectors 
Y(j-1).s, f(j-1).s are inherited from the previous subinterval. It is obvious that, since both the main 
method and the additional methods have k-steps, one must assume s ~> k. Suppose now to apply the 
method to the test equation, 

y ~ = A y ,  Re(A) ~<0, 

with stepsize h. Then, by setting as usual q = hA, the discrete problem (11) over the first subinterval 
becomes 

(As - qB s ) y l  = - ( a s  - qbs)yo. 
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Fig. 1. Eigenvalues of the pencil (13) corresponding to the tenth order ETR, s = 10, 40, before (plots 1 and 2) and after 
(plots 3 and 4) the introduction of the auxiliary points (r = 2). 

As a consequence, the discrete solution is defined for all q E C -  iff the matrix pencil 

(As - qBs)  (13) 

has all the eigenvalues with positive real part. This is in fact the case for B2VMs derived from ETRs 
of order 2, 4, 6 and 8. However, for k ~> 9 some eigenvalues of  the pencil (13) may enter C - ,  as 
shown in the first and second plots of  Fig. 1 for the tenth order ETR, s = 10, 40. It is not difficult to 
slightly modify the methods in order to avoid this problem. A possible modification consists in taking 
the points inside each block not equally spaced. We choose such points, i.e., 

to ,  t l , . . .  , t r ,  t r + l , .  • • ,  t s - - r - -1 ,  t s - - r , .  • • ,  t s - - l ,  t s ,  (14) 

SO that 

to ,  t r ,  • • • , t s - r ,  t s  

are still equally spaced with stepsize h, while the remaining points are defined as 

t i - t i - l = t s - i + l - t s - i = T r + l - i h ,  i = l , . . . , r ,  (15) 

where 7 is a positive parameter such that }--~i~l 7 ~ = 1. The points (15) will be called a u x i l i a r y  p o i n t s .  

The choice (15) implies that the points (14) are symmetrically distributed in the interval [to, ts]. As a 
consequence, it can be shown that the properties of the methods on Hamiltonian problems continue 
to hold (see [14]). 

When r = 1 then 7 = 1 and no auxiliary point is introduced. The value r = 2 is sufficient to avoid 
eigenvalues with nonnegative real part for the B2VM based on the tenth order ETR, as shown in the 
third and fourth plots of  Fig. 1. 



L. Brugnano, D. Trigiante / Applied Numerical Mathematics 25 (1997) 169-184 175 

The above choice of the points (14) is able to guarantee A-stability for B2VMs derived from ETRs, 
as stated by the next result. 

Theorem 3.1. Let the method (11) be derived from ETRs and suppose that the corresponding pen- 
cil (13) has all the eigenvalues with positive real part. The method is then A-stable. 

Proof. Suppose, in fact, to apply the method to the test equation 

z' = oAz, Z(to) = 1, (16) 

where o~ • R and i is the imaginary unit. Since the pencil (13) has all the eigenvalues with positive 
real part, from the maximum-modulus theorem, it follows that the thesis holds true iff Izj.sl <. 1, j = 
1 , . . . , p ,  independently of c~ and of the stepsize h used. Let us prove the thesis for j = 1, since the 
result can be readily generalized by induction. For this purpose, let us denote 

z = ~ + i ~ ,  ~,~ • R. 

Consequently, Eq. (16) can be recast in the equivalent real form 

(0 l) 
y ' =  c~ 0 Y' y(to) = , y : . (17) 

It is easily verified that problem (17) is Hamiltonian, with Hamiltonian function 

yTy = ~2 + ~2 = izl 2. 

For B2VMs based on ETRs, Theorem 2.1 applies, thus giving (N --= s) 

Izsl2 T = = y oyo = Iz012 = l ,  

for all values of a and for any stepsize h. [] 

Remark 3.1. The previous result can be generalized to B2VMs based on symmetric schemes, as 
defined in [10,14]. In particular, ETRs belong to this wider family of methods. 

4. Parallel implementation 

The purpose of this section is to present the approaches followed for deriving an efficient parallel 
implementation of ETRs in both cases of IVPs and BVPs. A detailed presentation would be too long 
to be contained in this paper, so we confine ourselves to sketch the main ideas (see [2,3,14,15]). In 
order to simplify the presentation, we consider a linear autonomous problem of size m, 

y' = Ly + g(t), t • It0, T], V(to) = ~7, (18) 

to describe the parallel algorithm. 
Supposing that the coarse mesh (10) is fixed, the use of a B2VM over the entire interval [to, T] 

leads to the following lower block bidiagonal linear system: 

M ( P ) y  (p) : g(P), (19) 
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where 

M(p)  = 

Vl 

½ M2 , y(p) = 
" .  ",. / J 

Y2 , g(P) = h292 , 

yp \ hpgp / 

the block vector yj (see (12)) contains the discrete approximation to the solution over the j th subinter- 
val of the coarse mesh, and 9j is a block vector containing suitable combinations of the inhomogeneity 
in (18) at the points in the same subinterval. The block matrices Mj are defined as (see (6)-(7)) 

Mj = As ® Im - hjBs ® L, j =  1,.. .  ,p. 

Finally, 

V j = [ O l v j ] ,  j = 2 , . . . , p ,  

where O is the sm x (s - 1)m zero matrix and 

vj = as @ Im - hjbs ® L, j = 1,.. .,p. 

The parallel algorithm, working on p parallel processors, then consists in assigning the subproblem 
over the j th subinterval to the j th  processor, j = 1 , . . . , p .  This is done by considering the following 
factorization of the coefficient matrix: 

(20) M(p) r)(p) r~(p) 

where 

D}p) M1 and D~ p) wl  
= . = L 

Hereafter, for any integer r we set/~r = / ~  ® Ira, and for all allowed j, Wj = [O t wj], where wj is 
the solution of the linear system 

M j w j = v j ,  j = l , . . . , p .  

Of course, each block Mj, which represents the application of the method over the subinterval [~-j_ t, ~-j] 
of the coarse mesh, must be nonsingular. When L has no eigenvalues with positive real part, the 
previous Theorem 3.1 implies that each block Mj is nonsingular, whatever is the stepsize hj  used. 

The solution of Eq. (19) is then obtained by first solving the block diagonal system 

D}P)x  (p) = g(P), (21) 

and then the block lower bidiagonal one 

D~P) y (p) = x (p). (22) 

For convenience, we partition the auxiliary vector x (p) as done for y(P), 

x(p) T : . , W p )  , XO C ]l~ rn, X j  E I~ srn. 
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Owing to its block diagonal structure, the solution of Eq. (21) can easily be obtained in parallel on 
p processors• This is not the case for Eq. (22), even though some parallelism is still present• To make 
this evident, we consider a further partition of the block vectors x j, y j  and wj ,  

( ~ y )  ( ~ t j ) ,  w j = ( ~ j )  j = l , . . . , p ,  
X j  : Xj . s  ' YJ : Yj .s  Wj . s  ' 

where Xy.s, Yj.s E ]R "~ and wj.~ E R "~×m. Moreover, we define the (ps + 1)m × (p8 + 1)m permutation 
matrix Q such that 

z . ~ p ~ X O  ~ 1.s~.. •~xp . s )  . 

Then, we consider the permuted system 

QD~p) QT Qy (p) = Qx (p), 

which is a 2 × 2 upper block triangular system (let Om be the m × m zero matrix), 

0 

'm 1 Om 

"~2 

Wl .s 

W2.s 

~p O~ 

wps 

Yp = 

Yl .s 

A 

X2 

A 
Xp 

T (23) 

Xl.s 

\ Xp.s / 

Consequently, the solution is obtained by first solving the reduced system 

wls  Im y l s  
(24) 

" • •  " • •  " 

Wp.s [rn Yp.s / Xp.s 

and then updating in parallel the right hand side in (23)• Only the reduced system (24) is not directly 
solvable in parallel• However, if needed, its solution could be also parallelized, by using block cyclic 
reduction• 

We observe that the size of the reduced system only depends on the number p of points in the coarse 
mesh and on the size m of the continuous problem. It is then independent of both the number k of 
steps of the main method and the blocksize s in its block version• 

When block cyclic reduction is considered for the solution of the reduced system (24), we obtain 
(see [2,3,14]) that the parallel complexity of the algorithm on p processors is approximately given 
by skZm 3 + Itm 3 log 2 p flops (# = 2) plus log 2 p communications of length m. On the other hand, 
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the sequential complexity for solving (19) amounts to approximately psk2m 3 flops. Consequently, the 
expected speed-up on p processors is given by 

P 
Sp ~ 1 + (#logzp)/(sk2)" (25) 

It is worth nothing that Sp rapidly approaches p, as k and s grow. 
Concerning the case of two-point boundary value problems, let us consider the following linear 

problem, 

y'(t) = Ly(t) + 9(t), Boy(to) + Bly (T)  = ~7, 

where/3o and B1 are m × m matrices and ~ c ~m. The discrete problem is still given by Eq. (19), 
which now assumes the following form, (io) ( / 

Vl M1 Yl h~gl 
V2 M2 Y2 = h292 , 

"o. ". .  

Vp mp p hpgp 

where 0 is the m × ( s -  1)m zero vector. In this case, however, the factorization (20) cannot be 
considered for obtaining a parallel algorithm, because of stability reasons (the diagonal blocks My, in 
fact, are in general ill conditioned or even singular). Nevertheless, a different factorization can still be 
defined, originating a parallel algorithm whose speed-up is given by (25) with p = 20/3. We refer to 
the above quoted references for details. 

5. Numerical tests 

In this section we report some numerical tests carried out on both sequential and parallel computers. 
The comparison among different codes is a difficult task, which requires to fix significant evaluation 
parameters. For example, it is reasonable to compare methods having similar stability properties. 
Nevertheless, due to the complexity of the implementation strategies, the most significant evaluation 
parameter seems to be the execution time on the same computer. For this reason, we refrain from 
generic considerations on the advantages of ETRs. Instead, we prefer to report some comparisons with 
the code RADAU5 [17], whose reliability is well known. 

The sequential tests concerning IVPs are obtained by using a code currently being developed by 
Iavernaro and Mazzia [18]. It performs quite well, even though it still requires to be fully optimized. 
We also report results on a couple of BVPs, obtained by using a Matlab prototype implementing a 
new mesh selection strategy, recently defined in [12]. For the tests on parallel computer, we have used 
a prototype of code which works for linear problems, both IVPs and BVPs. All the codes are based 
on BzVMs derived from ETRs. 

The test problems for the sequential code, which works on IVPs, are taken from the test set [19]. 
In particular, the Pollution problem (ODE of dimension 20) and the Emep problem (ODE of dimen- 
sion 66) have been considered. The runs were performed on an Alpha workstation 200 4/233 using the 
Fortran 77 compiler with optimization f7  7 -0  4 -0  5. The code has been compared with RADAU5. 
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Table 1 
Pollution problem 

Solver rtol atol h0 scd steps accept # f # Jac # L U  CPU 

ETR 

RADAU5 

10 -4 10 4 10-4 1.36 12 12 265 6 12 0.01 

10 -6 l0 -6 l0 6 3.56 19 19 615 12 19 0.02 

10 - 9  10 9 10 - 9  8.04 49 49 2385 42 49 0.08 

10 -4 10 -4 10 -4 1.23 22 18 156 15 21 0.01 

10 -6 10 -6 10 -6 2.84 29 24 201 19 29 0.02 

10 - 9  10 - 9  10 - 9  6.79 49 48 366 28 42 0.04 

Table 2 
Emep problem 

Solver rtol atol h0 scd steps accept # f # Jac # LU CPU 

ETR 

RADAU5 

10 2 1 10 -7 2.29 220 186 8508 218 160 3.38 

10 4 1 10 -7 3.59 355 293 16838 282 342 6.41 

10 - 6  1 10 -7 6.20 673 581 39506 482 644 14.82 

10 -e  1 10 7 2.81 327 239 3312 224 324 3.86 

10 4 1 10 7 2.67 493 407 4726 378 479 5.67 

10 6 1 10 - 7  4.81 942 821 8138 756 905 10.45 

Tables 1 and 2 summarize the numerical results. Figs. 2 and 3 contain the corresponding work- 
precision diagrams. In each table and figure, scd denotes the number of significant computed digits. 
For the diagrams, the following parameters have been used: 

• E m e p :  rtol = 10 -(2+m/4), rrt z 0 , . . .  ,24; atol = 1; h0 = 1 0 - 7 ;  

• Pol lu t ion:  atol = rtol = h0 = 10 -(4+m/4), zr~ z 0 , . . . ,  M ,  where M = 24 for ETR, and M = 32 
for RADAU5. 

Consider now the singularly perturbed BVP, 

c y "  - t y '  + y = 0, y ( - 1 )  = 1, y(1) = 2, (26) 

where e = 10 - 4 .  This problem is very difficult to solve, and most of the currently available BVP solvers 
fail to provide the correct solution, when started from a uniform mesh. For example, the current 
version of the popular code COLSYS fails to provide a correct answer for e <~ 10 -2. We obtain the 
approximated solution reported in Fig. 4. The final mesh contains 480 points, and the estimated error 
is 9 x 10 -5. For c = 10 -5, we obtain a final mesh of 840 points, and an estimated error 10 -4. 

The second test problem, still in the class of singularly perturbed problems, is the following: 

ey"  - 2 t J  = 0, y ( - 1 )  = 1, y(1) = 2, (27) 
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where e = 10 -4. As in the previous case, COLSYS fails to provide the correct solution, when started 
from a uniform mesh. We obtain a final mesh of 480 points, and an estimated error 9 × 10 -5 (see 
Fig. 5). For e = 10 -5, we obtain a final mesh of 760 points, and estimated error 2 × 10 -5. 
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For the parallel algorithm, we consider two linear problems, one is an IVP and the other a BVE In 
both cases, a uniform mesh has been considered, and the speedup over the sequential implementation 
of the methods is computed. In this case, the time for the parallel execution includes both computations 
and communications. The parallel computer used is a transputer based machine. The results have been 
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Table 3 
Measured speedups for problem (28), s = 40 

p \ k  3 5 7 9 

1 1.00 1.00 1.00 1.00 

2 1.94 1.96 1.97 1.98 

4 3.74 3.84 3.88 3.92 

8 7.11 7.43 7.58 7.72 

16 14.03 14.70 14.98 15.24 

Table 4 
Measured execution times for problem (29) 

p\ I¢  3 5 7 9 

1 4217 6137 8482 10899 

2 3955 5822 8571 10993 

4 4110 5987 8007 10259 

8 4176 6043 8116 10404 

16 4265 6030 8151 10551 

obtained by using a simplified parallel prototype, even though a more general parallel solver, which 
is able to efficiently solve nonlinear problems, is under development  [15]. 

The first problem is 

- 2 1  19 
yt = 19 - 2 1  

40 - 4 0  

2o) (o) 
20 y, y(0) = , t E [0, 5]. (28) 

- 4 0  1 

In Table 3 we report the measured speedups on p = 1 ,2 ,4 ,  8, 16 processors. We have considered 
ETRs of  different order (k = 3, 5, 7, 9), having fixed the blocksize s = 40. 

Finally, we consider the following second order boundary value problem (e = 10-3), 

~ U  It = U, 

t 
e y " =  t + 2 u ' -  2 # ' -  eTr 2 c o s ( T r t ) -  5zr sinQrt), (29) 

u ( - 1 )  = - V ( - 1 )  = 1, u(1) = V(1) = e -2/v~,  

solved after recasting it as a first order system. Also in this case, we have fixed the blocksize s = 40 
for the methods. Then, we solve the problem on p processors by using a constant stepsize h = 
2(ps)  -1,  p = 1, 2 ,4 ,  8, 16. This means that when the stepsize is halved, and consequently the size 
of  the discrete problem is doubled, the number of  the parallel processors used is also doubled. As a 
consequence,  we except  the execution time to remain approximately constant for increasing number  
of  processors, even if the accuracy of  the solution improves, due to the use of  a smaller stepsize. In 
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Table 5 
Measured maximum absolute errors for problem (29) 

p \ k  3 5 7 9 

1 3.6e-2 1.2e-2 7.5e-03 5.5e-03 

2 3.8e-3 9.3e-4 1.2e-04 5.0e-04 

4 2.4e-4 1.4e-5 3.5e-06 1.6e-06 

8 1. le-5 1.9e-7 3.9e-09 4.5e- 10 

16 8.3e-7 3.1e-9 2.1e-11 5.6e-13 

183 

Table 4 we report the measured execution times (the unit corresponds to 64 p.sec). In Table 5 we 
report the maximum absolute errors, showing that, as predicted, the maximum error decreases with 
the number p of processors. 
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