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Abstract 

In this paper a new mesh selection strategy, based on the conditioning properties of continuous problems, is 
presented. It turns out to be particularly efficient when approximating solutions of BVPs. The numerical methods 
used to test the reliability of the strategy are symmetric Linear Multistep Formulae (LMF) used as Boundary 
Value Methods (BVMs) since they provide a wide choice of methods of arbitrary high order and have similar 
stability properties to each other. In particular, we shall consider a subclass of such methods, called Top Order 
Methods (TOMs) (Amodio, 1996; Brugnano and Trigiante, 1995, 1996), to carry out the numerical results on 
some singular perturbation test problems. © 1997 Elsevier Science B.V. 
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1. Introduction 

The problem of  variable stepsize selection is fundamental for the efficient numerical solution 
of ODEs. In fact, a uniform mesh is often not adequate to reach a given accuracy, since it would 
require a huge number of  mesh points. 

The strategies used so far are essentially based on the control of the local truncation errors. In 
particular, in the case of BVPs they use as the main tool the equidistribution of an appropriate monitor 
funct ion defined through the estimated local errors [3,4,10-23]. This approach, however, is efficient 
under the basic assumption that the considered continuous BVP is well conditioned. Consequently, 
when this is not the case, numerical methods may not provide good approximations, since the selected 
mesh may be not an appropriate one. 

In this paper we propose a new mesh selection strategy, which utilizes a monitor function based 
on the conditioning properties of the continuous problem. An algorithm is then presented, along with 
several numerical tests. For sake of  brevity and clarity, we restrict ourselves to the linear case. However, 
the extension to nonlinear problems can be done by using standard arguments. 
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The methods used in the numerical tests are LMF of symmetric type used as boundary value methods 
(BVMs) [5,7,9]. However this approach is sufficiently general that it can be used with the standard 
codes COLSYS [4] and TWPBVP [13] which appear in Netlib. 

2. Classification of continuous problems 

We shall consider the case of a two-point boundary value problem, although all the arguments can 
be extended to the more general case of multi-point conditions. Consider 

y ' = L ( t ) y + f ( t ) ,  y , f ,  7/EIR d, 
(1) 

Boy(to) + Bly(T) = ~l. 
Here L(t) is a square d x d matrix whose entries, as well as those of f(t), belong to C(1)([t0, T]). 
The solution of this problem is 

T 

y(t) = ~(t, to)O,-% + / c(t, s)y(8) ds, (2) 
[ .  

to 

where 
(a) ~(t ,  to) is the fundamental matrix, 
(b) Q = Bo + BI~(T, to) is assumed to be nonsingular, and 
(c) 

f~ ( t ,  to)Q-1Bo~(to, s), for t ~> s, 
G(t,s) 

-~6(t, t0)Q-1Bl~(T,  s), for t < s, 

is the Green's function. 
A perturbation & / o f  the boundary condition will cause a perturbation (~y to the solution which is 

bounded by 

I](~y(t)]] ~< ]]~(t, to)Q-IH ]l(~r/ll, 

where I1 II is any norm in R a. Let us define the function 

~(t) = II~(t, to)Q-l[[, 
and the norms in C([to, T]), 

115yll~ = 

One obtains 

115yll~ ~< ,~cllSnll, 
where 

he---- max ~(t),  
to<.t<.T 

T 

max II y(t)ll, I1@111- f ll y(t)lldt to<~t<~T T t o 
to 

115ylla ~< 7cl[~nll, 

T 

7 C - T _ t o  ~(t) dt. 
to 

(3) 

(4) 
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The comparison between the two parameters nc and 7c permits us to classify the problem as follows: 
(1) Both nc and % have moderate sizes. The continuous problem is well conditioned. The error 

is almost uniformly distributed over the integration interval and, therefore, a uniform mesh is 
appropriate. 

(2) The parameter % is of moderate size but nc >> %. In this case the error is concentrated in 
subintervals whose total measure is small with respect to T - to. The problem can be solved 
with a moderate number of mesh points only if they are appropriately chosen. 

(3) Both parameters nc and % are large. The problem is ill conditioned in both norms. In this case 
the numerical solution will need a large number of mesh points, even if a variable mesh is used. 

We also mention that in [8] it was proposed to use the above parameters to define stiffness. In particular, 
problems having a large ratio a = nc/% are stiff. 

Let us now consider the effect on the solution due to a perturbation 5f( t ) ,  that is 

T 

@(t) = / C(t, s)Sf(s) ds. 
to 

Such a perturbation can be bounded by using again the above defined parameters. Suppose, for example, 
that the perturbation on the function f(t) is impulsive, that is ~f(t) = c~( t -  [), where c is a constant 
vector, { C [t0, T] and 5(t - {) is the Dirac function. One has, 

T 
f ~ ~_b(t, to)O-lBo~(to,{)c, f o r t  ~> {, 

@(t) = G(t,s)cr(s - { ) a s  = [ -4( t ,  to)Q- 'B~(T,{)c ,  for t < {. 
to 

One then obtains, 

[l(~y(t)ll~ ~< ncllcll max {lIBo~(to,{)]l , IIBl~(T,{)ll}, 
and 

[15y(t)ll, < 7cl[cH max  IIBl ,(T,{)ll}. 

3. Discrete problems 

We choose to use numerical methods having the imaginary axis as the boundary of their absolute 
stability region. There are solid arguments to support such a choice, but we skip them for brevity 
(see [5,9])• 

When applied to problem (1), a numerical method based on LMF generates a discrete problem such 
as 

My= hlf  
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where y = ( Y o , Y l , . . . ,  YN) T is a block vector of  dimension ( N  + 1)d x 1, whose ith block entry 
contains the approximation of  the solution at ti; h i , . . .  , h  N are the stepsizes used, and, by setting 

f i  = f ( t i ) ,  

f i  = f i  + O(hi)  

is a suitable combination of  the values of  the function f ( t )  at the grid points near ti. 
The entries of  the vector y are numbered starting from O. Consequently, the (block) rows and 

columns of  M will be numbered starting from the same value. 
The discussion made in the previous section for continuous problems can be extended to discrete 

ones. In fact, let us define the matrices 

/ 
GNO . . .  a N N  IlaNoll ..-[[GNNH 

(5) 

Then, a perturbation 5rl of  the boundary condition produces a perturbation 5y  = (Sy0, • . . ,  5yN) T to 
the solution bounded by 

16ul ~< ~,o116~11, 
where 16ul = (l16yoll, . . . ,  [I6YNI[) T, and ~?.j denotes the j th  column of f2. 

For brevity, let us now introduce the mesh vector 

h = (0, h i , . . . ,  hN) T, 

whose entries are the stepsizes used, and the vector 15~1 defined as 

P~51o = II~yoll, 1~Sli = max {ll~yi-lll, II~y~ll}, i = 1 , . . . , N .  

Then, the quantities 

1 
eoo(h) = maxi llSyill, e l ( h )  -- T - to hT[Sy['- 

can be considered the discrete analogs of  the corresponding continuous quantities (4). As before, we 
shall define the parameters 

1 hTj~,O ' ad(h)  = max ~2i0,  fig(h) -- 
i T - to 

such that 

e ~ ( h )  < ~d(h)ll~r/ll, e l (h )  <~ "/d(h)ll(frlll, 

where the vector ~ ,0  has components 

~o0 = f20o, ~io = max {~2i-l,o, ~2io}, i = 1 , . . . ,  N.  

Consequently, the discrete problem can be classified in the same way as the continuous one. 
We observe that only the first (block) column of the matrix M -1 (see (5)) is needed to compute 

~;d(h) and 7d(h)- This is not an expensive task, once a factorization of  the matrix M has been 
computed. 
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In general the values "/d(h) and "/c, as well as the values ha(h)  and nc, will differ. The differences 
between the continuous parameters and the corresponding discrete ones will be used as measure of 
the "closeness" of the two problems. 

4 .  T h e  n e w  s t r a t e g y  

The new mesh selection strategy will be based on the requirement that both the discrete and the 
continuous problems belong to the same class of conditioning. Therefore, we shall impose the con- 
dition that the above definite discrete quantities t~d(h) and "yd(h) approximate as well as possible 
the corresponding continuous ones. The only possibility to achieve such result without increasing the 
number of the mesh points is to vary the mesh vector h. 

Let us now look for the vector h which makes "yd(h), for a given N,  a better approximation to %. 
Consider the identity 

1 1 Z 'Td(h)=  "/c + ~ h i ~ ( t i ) -  qo(t) dt + T t-----~ 
i= 1 to i= 1 

= "7c + E1 + E2, 

where 

~ ( t i ) =  max ~(t),  
ti_l <~t<.ti 

qa(t) is the function defined in (3), and 

1 h i~( t i )  - qo(t) at . 
E1 --  T - to 

to 

It follows that E1 is the error in the quadrature formula for the function qa(t). We observe that E1 is 
positive by definition. It is not difficult to check that 

N 
1 V'hi(h l :l) < N h,(hil  l), E1 ~< - -  - -  max t 

to r - t o  i=1 

where qa~ is the value of the derivative of ~ evaluated at a suitable point belonging to the interval 
[t i - l , t i] .  

Concerning the term E2, supposing that ~io is not very small, it can be written as 

(5~o u - ~ ( t d )  1  2hA ° 
]Ezl = T - to ~=l /2io 

where 

I ~ o  - ~(t~)l  
vi -- ~i0 

N 
~< - -  max hi~iotJi, 

T -  to i 

(6) 
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is the absolute value of the relative error. Each term in the sum giving IEel is the product of two 

factors: h i ~ 0  and the factor u~ representing the relative error in the ith interval. As a consequence, if 
the stepsizes are suitably small, IE2[ is very small. Our strategy will then make this quantity negligible 
with respect to El.  The problem of getting ]E21 small is a difficult one and will be solved iteratively. 

This is done by choosing the mesh vector h that minimizes E1 + IE2[, that is by solving the minmax 
problem 

N 

m i n  m a x  hi(1]i iO + h l al), = T -  to, (7 )  
h i 

i=1 

where the quantities {ui} are unknown. We assume that they are bounded by a quantity u which will 
be taken, for example, equal to one. This will require us to solve the problem in different stages. In 
the first stage, all the r,i are taken equal to one and the problem 

N 

min max hi(Y2io + hi]p~l) E hi = T - to, 
h i 

i = l  

is solved instead of (7). The unknown quantities [qz~l are approximated by 

- _ IzXS  -l,01 i = 1 , . . . , N ,  
hi - ' 

so that the problem becomes 

N 

m i n  max h~ (~i0 + I A J ' 2 i - I , 0 ] ) ,  E hi ~- T - t O. 
h i 

i=1 

By introducing the monitor function 

¢(t )  -= S~i0 + IM2i-l,0l, for t E ( t i - l , t i ) ,  (8) 

the minmax problem is then solved by the process of equidistribution of the function ¢,  which 
provides a new mesh vector h (1). That is (see, for example, [3, p. 363]), the new mesh points 
t l l ) =  ÷(1) !1), °i-1 + h~ i --- 1 , . . . ,  N,  are chosen so that 

t~ j) T / 1/ 
¢(t )  d t = ~  ¢( t )  dt, i = l , . . . , N .  

t~01 to 

The new mesh vector is then used to obtain a new matrix M0)  and, consequently, a new vector ~!~). 
As a result, new approximations ~d(h 0)) and 7a(h(1)) are obtained. 

The process may be iterated. According to what has already been said, the new mesh vector will 
have small components where the monitor function ~b(t) is large. Since the latter quantity is large at 
the points where Y2i0 is large, the process tends to concentrate the points in a neighborhood where 
~a occurs. This implies that at each successive iteration, better and better approximations to ~c will 
be obtained. At the same time, the successive values of 7d are decreasing, since smaller stepsizes are 
used where the entries of ~.0 are larger. 
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A failure of the latter sequence to decrease, or a failure of the former sequence to converge, means 
that the number of mesh intervals N is not large enough. 

Suppose now that a minimum value of 3'd has been reached in correspondence of the mesh vector h*. 
The first stage of the procedure terminates. At this point, one may check the reliability of the obtained 
approximations Kd(h*) and 7d(h*), that is to get an estimate for 

[Kc -- Kd(h*)[, 17c -- 7d(h*)[. 

If the considered method has order p, this can be achieved either by mesh doubling, or by considering 
a more accurate method, with similar stability properties, over the same mesh h*. This allows us to 
obtain new approximations Kne w and 7new, as well as a new approximated discrete solution Ynew. If 
the values Kne w and ')'new are close to Kd(h*) and 7d(h*), respectively, one accepts the current mesh. 
If not, this means that N needs to be increased. If the mesh is accepted, then one also has an estimate 
of the global error. 

Remark  1. Observe that it may seem a difficult task to find, in the class of LMF, methods of different 
order and having similar stability properties and higher order. This is certainly true when LMF are 
used as initial value methods, but the task becomes really trivial if one uses LMF as boundary value 
methods (BVMs). In fact, there are a lot of BVMs, namely the "symmetric schemes" [5,7,9], which 
essentially share the same stability properties of the trapezoidal rule, but having arbitrarily high order. 

As a result, at the end of the first stage we have that the continuous function qo(t) is well approx- 
imated in a set Z1 C_ [to, T], called the p r e c i s i o n  set .  A criterion to estimate the precision set will be 
described in Section 4.1. For the moment, suppose that Z1 is known. 

The second stage then assumes ui = 0 for the points belonging to 271 and ui = 1 elsewhere. From (7) 
one then obtains a new monitor function. Some more mesh points, say N1, are introduced in the mesh 
contained in [to, T] \Zl .  Such new points, along with those already contained in [to, T] \771, are the only 
ones used to equidistribute the new monitor function. This will leave unchanged the mesh inside ZI. 
One then obtains a new precision set 272 and so on. The process terminates when 

z r  - [to, T]. 

In practice, in the above procedure it is preferable to use the perturbed monitor function (see (8)) 

~(t)  = ~( t )  + a,  

where a is a suitable small positive parameter [2]. This is done in order to avoid the selection of too 
large stepsizes where ~b(t) is small. 

4.1.  E s t i m a t e  o f  the  p r e c i s i o n  se t  

After the end of  the first stage, we need to estimate the precision set, that is the set where the relative 
errors vi in (7) are suitably small. In principle, after the check of the parameters Kd(h*)  and 7d(h*), 
we have the discrete functions 

5(new) 
~2i0, °"iO , i = O, . . . , N ,  
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obtained with the less accurate and the more accurate method, respectively, in correspondence of the 
mesh vector h*. Consequently, one could use the estimates (see (6)) 

I i0-   oeW) I 

We prefer, however, to use a different approach, which has been found to be more effective. The idea 
can be easily described by considering the scalar problem 

y ~ = A y ,  AEI~.  

It follows that the function ~¢(t) defined in (3) satisfies the relation 

qo(ti) = qo(ti-1 + hi) = qo(ti-1)e ;~h'. 

Then, by setting qi = Ah/, we have that 

qi = log (~( t / ) /~( t i -1 ) ) .  

Similarly, when a one step method is used, we have that the discrete approximation ~2i0 of ~(t/) 
satisfies 

J'2/O = Zi 3"2/__ 1,0, 

where z/ is the characteristic root of the method. If qi is sufficiently small, then z / ~  e q~, so that 

qi "~ l o g ( ~ i O / / ~ i -  1,0) • 

Hence, we shall assume that ti belongs to the precision set when the above quantity is suitably small. 
Conversely, it belongs to its complement. 

0.6~ 
! 
i 

0 . 4 ~  

I 
0.2~ 

i 

el 

0.8L 

I i l l l l i l l ]  " 1 1 1 - ~  i , , ~  . . . . .  = .  . . . . .  h , ,  , ~ l  . . . .  i . . . .  I l . . . . . . . . . .  n . . . . . . . . . . . . . . . . . . . .  , 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 
t (n=200) 

Fig. 1. Discrete approximation of the solution of problem (10), e = 10 -5,  at the end of the first stage. 
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10 ° 

psi(t)/le4 

i0 -s 

10-1° ,, 

10-15 i .... 
-1 

I'V'I v 

error 

• L I I J J 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Fig. 2. Error on the computed solution of problem (10), e = 10 -5, along with the monitor function (8). 

l°° I 

1 0  -5 
J 

psi1 (t)/le4 j 

 olo j 

error 
, / !  

/ 

1(3 -15 ± l i ~ ~ J , i J 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Fig. 3. Error on the computed solution of  problem (10), e = 10 -5, along with the modified monitor function (11). 
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The previous considerations are generalized to multistep methods, by considering that their solutions 
are essentially generated by only one of the characteristic roots [5,6,9]. 

In the case of systems of equations, the analogous quantity 

qi = ] log([2iO/~i-l ,O)l ,  (9) 

is used. Observe that large values of ~ correspond to large relative variations of the discrete function. In 
this case, it is reasonable to expect a large relative error. Conversely, a small value of ~ means that the 
discrete function has small relative variations. Therefore, we consider the mesh points corresponding 
to small values of ~ as belonging to the precision set. 

The estimate (9) is very cheap to obtain. Nevertheless, it is quite reliable. As an example, let us 
consider the following singular perturbation problem, 

ey " + ty I = O, 
(lO) 

y ( - 1 )  = o, y(1)  = 1, 

where ~ = 10 -5. In Fig. 1 we report the computed discrete solution at the end of the first stage of 
the procedure, obtained by using the trapezoidal rule. The final mesh is also reported. It is easily seen 
that most of the 200 mesh points are around the layer at t = 0. The values t~d and "Yd computed on 
the final mesh are very close to the corresponding continuous parameters. In fact, by considering the 
infinity norm, we have obtained t~d ~ 252, which is exactly the value of the continuous parameter, 
and "/d ~ 2, whereas 1 ~< 7c < 1.5 [8]. 

In Fig. 2 the error on the discrete solution, along with the monitor function (8) (scaled by a 
factor 104), are reported. In Fig. 3 we plot the monitor function modified by taking ui = 0 inside the 
estimated precision set, that is, 

ff)l(t) - =  12i~iO-~- IAS?i-~,01, for t E ( t i - l , t i ) .  (11) 

In particular, ui has been taken equal to zero if both ti-1 and ti are inside the precision set, and 
equal to one otherwise. Moreover, a mesh point ti has been considered inside the precision set if the 
corresponding value ~ computed as in (9) was smaller than one. 

By comparing Fig. 3 with Fig. 2, one realizes at once that the weights ui are equal to one only in 
a small neighborhood of t = 0, that is where the error is maximum. 

5. The nonhomogeneous  case 

At the end of the above procedure, we have that both It% -t~d(h*)l and 1% --'Td(h*)[ are minimized. 
This means that the entries {Gi0} in the first block column of M -1 (see (5)) are good approximations 
of the corresponding matrices {qs(ti, t0)Q-1}. Concerning the remaining block entries of M -I ,  the 
following result holds tree. 

Theorem 1. I f  the matrix M is suitably scaled, and the first block column of  M -1 is an accurate 
approximation of  the function ~5(t, to)Q -1 at the grid points, then Gij is an accurate approximation 
of  G(ti,  tj), for  all i ---- 0 , . . . ,  N, j = 1 , . . . ,  N. 
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Proof. The proof will be carried out in the simpler case where the method used is the trapezoidal 
rule. However, the arguments can be extended to more general multistep methods, although the proof 
becomes longer. 

Let us apply the trapezoidal rule to problem (1). Then, we scale the matrix M as follows, /,0 "/ 
-Z1  I 

M ~  o ° ~ 

• ° ° o  

--ZN I 

Z i= ( I - -  ½hiL(ti)) -1(I  + ½hiL(ti_l)), i = 1 , . . . ,N .  

Consequently, by setting (~ = Bo + B1 H;-I  zj, we obtain 

N 
( 0--1 - - 0 - 1 H i  H Zr "'" - 0 - 1 B 1  

r=2 

Z I O  -1 Z 1 Q - 1 B o Z 1 1  . . .  - Z I O - 1 B 1  

N- l  N-1 N-1 

H zr~-' II  z~O-l"OZl 1 ... - II  z ~  - l ' ,  
r=l r=l r=l 

II  z ~ - '  I I z ~ - ~ B o Z ~  1 ... IIz~O-iBo z~ 
r=l r=l r=l r=l 

M - l =  

i 
The proof is then almost completed, since if for all i = 0 , . . . ,  N, we assume that ~T=l Zr~)-I  is a 
good approximation of ~(ti, to)Q -1, then for j ~> 1 and i ~> j we get 

-1 

~(ti, to)Q-1BoQ -1 (~(tj, to)Q -1) -1 = ~(ti, to)Q-l Bo~(to, tj) = G(ti, tj ). 

The proof in the case i < j is obtained by similar arguments. [] 

The above result justifies our strategy which tends to obtain good approximations on the first block 
column of M -1 . However, this may not be sufficient when the inhomogeneity f ( t)  in (1) is not smooth 
enough. In fact, in this case the solution of the continuous problem can be written as (see (2)) 

y ( t )  : Yhorn(t) -+- z(t) ,  (12) 
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where Ynom(t) is the solution of the associated homogeneous problem, while z(t) is the solution of 
the problem when ~ = 0. The first term Ynom(t) has already been discussed in the previous sections 
and a good approximation of it has been obtained on the mesh h*. Moreover, from (2) we obtain 

T N t j  N t j  

z ( t ) = f G ( t , s ) f ( s ) d s = j ~ l / G ( t , s ) f ( s ) d s = E G ( t ,  tj) f q s ( t j , s ) f ( s ) d s  
= "- t j _  I to t j = l  

N t j  

= a(t, tj) f (I + O(hj))f(s)ds.  
j = l  t j - l  

At the point ti, the numerical method provides the value 

N N 

zi = ~ hjGijfj = E hjGij(fj  + O(hj)). 
j = l  j = l  

From Theorem l, we have that Gij ~ G(ti, tj), so that from the previous expressions we obtain 

z(ti) - zi ~ E Gij f(s)  ds - hjfj  . 
j = l  t 

By proceeding as before, we may define the following global measure of these errors, 

T_to f(s) ds-hjfj  =:E3. 
i=1 "= j = l  t 

It follows that, for suitable (j E (tj_l, t j), j = 1, . . . ,  N, 

N N 
d 

E3 <~ T - t------~ E hi E hj iJllf'( J)ll  <~ d/2max max (hjllf'( j)fl ), 
i=1 j = l  3 

where d is the dimension of the continuous problem, and (see (5)), 

S2max = max f2ij. 
~3 

Therefore, in the intervals where h~llf'(~j)ll~ is large (i.e., where y(t) has large variations and a 
suitable small stepsize is not used), the error on the approximation of z(t) may become large. To get 
such error small we proceed to a further equidistribution. This time we shall equidistribute the monitor 
function 

¢=(t) -- max IIf'(tdl] ), for t E (ti-l,ti). 
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The new equidistribution must maintain the points of the mesh h*, otherwise the errors in the approx- 
imation of Yhom(t) (see (12)) could increase. This implies that the new equidistribution may only add 
new mesh points to the old ones. This will also have the effect to decrease the errors E1 and E2. 

Remark  2. By observing that in the intervals where f ( t )  varies rapidly the local errors are presumably 
large, one could then handle the inhomogeneous term also by equidistributing the principal term of 
the local errors. This is, in fact, the strategy used by most of the currently available codes. 

The overall process is described by the following pseudocode. 

O. it  = 0, h = (uniform mesh of N intervals), 
ad(ho ld)  = 0, 7d(hold)  = CX), Sk = 0 

1. compute ad(h),  ~d(h), y ( h )  and hnew 
if ad(h) ~ ad(hold) 

s k =  1 
if ")'d(h) / )  0,95 • '~d(hold) 

h* -- h, goto 2 
else 

hold = h ,  h = hnew, go to  1 
end 

elseif sk  = 1 
h* -- hold, goto 2 

elseif i t  > itmax 
if N > Nmax 

error(too many mesh points required) 
else 

increase N, goto 0 
end 

else 
hol d ---- h, h ---- hnew, it  = it + 1, goto 1 

end 
2. compute anew, ")'new and Ynew 

if anew ~ ad(h*) and "/new ~ 7d(h*) 
err  = estimate_error(Ynew, y ( h *  ), h*) 
if err  < tol 

exit 
elseif N < Nmax 

call refine.mesh 
if (non void complement of the precision set) 

goto 1 
else 

call new_equid_mesh, goto 2 
end 

else 
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error(too many mesh points required) 
end 

elseif N < Nmax 
increase N, goto 0 

else 
error(too many mesh points required) 

end 

In the above pseudocode, the routine refine_mesh computes the precision set. Finally, the routine 
new_equid_mesh handles the eventual inhomogeneity of the problem, as seen in this section. 

We conclude this section by observing that, when the continuous problem is well conditioned (i.e., 
when both nc and 7c have moderate size), the above described procedure does not work better than 
those based on the equidistribution of the local errors. Conversely, when nc is large (i.e., for stiff and 
ill conditioned problems), the new strategy seems to be superior, as shown in the numerical tests. 

Regarding to the cost needed by the new strategy for each equidistribution step, it is essentially given 
by the computation of the first block column of M -1 (see (5)), and this is obtained by solving d (the size 
of the continuous problem) linear systems with the matrix M. On the other hand, strategies based on 
local errors would require only one or two linear systems with the matrix M to be solved. Nevertheless, 
since the main cost in the solution of the linear systems is due to the LU factorization of M (and this 
must be done anyway), the computational cost per step is comparable for both approaches. 

6. Numerical examples 

The solution of problem (10) has already been obtained by using the trapezoidal rule and the mesh 
selection strategy previously described. In order to show the effectiveness of this strategy on different 
kinds of problems, in this section we shall consider some more numerical examples. With the only 
exception of the third problem, all of them are chosen among singularly perturbed BVPs. 

We continue to use the trapezoidal rule, but every symmetric scheme (see [7,9]) could be used. 
The check of the parameters t~d(h* ) and ")'d(h*) (and then, the estimate of the error), is carried out 
by considering the sixth order TOM over the same mesh. The details of the implementation will be 
presented in a forthcoming paper. 

Example 1. Consider the singularly perturbed BVP, 

~ y " - t y ' + y = O ,  y ( - 1 )  = l, y(1)----2, (13) 

where ~ = 10 -4, whose solution has two boundary layers. This problem is very difficult to solve, and 
most of the currently available BVP solvers fail to provide the correct solution, when started from a 
uniform mesh. For example, the current version of the popular code COLSYS, started from a uniform 
mesh with 50 subintervals and used with ispace = 150,000, fspace = 500,000, fails to provide a 
correct answer for c ~< l0 -2. This is shown in Fig. 4, where we plot the discrete solution obtained for 

= l0 -2. It is easily realized that the right boundary layer is missed. 
By using the new strategy, we obtain the approximated solution reported in Fig. 5. The final mesh 

contains 480 points, and the estimated error is 9 x l0 -5. Moreover, as by-product we obtain that 

t~d(h*) ~ 10 4, "yd(h*) ~ 3, 
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Fig. 4. Discrete solution for problem (13), e = 10 - 2 ,  computed by COLSYS. 
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Fig. 5. Computed discrete solution for problem (13), e = 10 - 4 .  

thus conf irming that this is a stiff problem. The same procedure,  w h e n  e = 10 - 5 ,  terminates with a 
m e s h  o f  840  points,  est imated error 10 -4  , and est imated parameters 

~d ~ 105, "/d "~ 3, 

that is, the problem b e c o m e s  more stiff, as c tends to zero.  
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Fig. 6. Computed discrete solution for problem (14), e = 10 -4. 

Example  2. Consider now the problem, 

sy"  - 2ty '  = 0, y ( - 1 )  ---- 1, y(1) = 2, (14) 

where ~ = 10 -4. Even for this problem COLSYS, used with the same input parameters considered in 
the previous example, fails to provide the correct solution. 

We obtain a final mesh of 480 points. The estimated error is 9 x 10 -5 (see Fig. 6). Moreover, we 
have 

~d(h*) ~ 2 x 10 4, "/d(h*) ,-~ 3, 

showing that it is a stiff problem. In the case where e = 10 -5, we obtain a final mesh of  760 points, 
an estimated error 2 x 10 -5, and estimated parameters 

~d ~ 2 x 105, "}/d "~ 3. 

Example  3. Consider the following problem, 

y" = y + f~(t) ,  y ( - 1 )  = - y ( 1 )  = 1, (15) 

where the inhomogeneity is constructed such that the solution is given by (see Fig. 7) 

y ( t ) - - ~ l + ( t + l ) e r f ( - t E - 1 / 2 ) ,  ~----10 -6 . 

The function re(t) is quite smooth and has moderate size, except for a small neighborhood of  t = 0, 
where it assumes values ranging from approximately - 1 0  6 to 10 6. Such variation is responsible of  the 
layer at t --- 0 in Fig. 7. 
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Fig. 7. Solution of  problem (15), e = 10 -6. 

The first stage of the procedure ends producing an almost uniform mesh of 200 points, and estimated 
values 

~d~d~2~ 

for the corresponding continuous parameters, thus confirming that the associated homogeneous problem 
is well conditioned. However, the computed solution (see Fig. 8) is far from the correct one. This 
drawback is recovered by the handling of the inhomogeneity, which produces a final mesh of 680 points 
and the discrete solution reported in Fig. 9. 

Example 4. Consider the following problem, 

ey" + t2y ' + y = 0, y ( - 1 )  = 1, y(1) = 2, (16) 

where ~ -- 10 -4. This is a very hard to solve singular perturbation problem. In fact, its solution has a 
layer at t = - 1, where, in a very short interval, it reaches a value ~ 7.9 x 10 9 (see Fig. 10). Moreover, 
the solution heavily oscillates near t = 0 (see Fig. 11). 

One obtains a final mesh of 3160 points, where the trapezoidal rule gives a maximum relative error 
of ~ 2 x 10 -1. However, the estimated relative error on the solution of the sixth order TOM on the 
same mesh is ~ 5 x 10 -7, with a maximum value 7.9151 x 109. The plots in Figs. 10 and 11 are 
relative to this solution. Moreover, we obtain the estimates 

nd ~ 4 x 1013, 7d ~ 5 X 109. 

One then concludes that the problem is both very ill conditioned and stiff. 
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Example 5. Consider the following two-point BVP, 

3e -0 .1  
y" + (17) (e + t2) 2y = 0, y ( -0 .1 )  = -y (0 .1 )  - v/e + 10_2. 

For e > 0 and e ¢ 10 -2, this problem is well posed, and its solution is given by 

t 
y(t)  = + t 2  

However, for ~ = 10 -2 the solution is not unique, so that the problem is ill posed. In fact, one verifies 
that for all a E 

t t 2 -- e 

y~(t) -- ~ + ~V,c + t-------- 5 

is a solution of problem (17). 
If we apply the presented mesh selection with the trapezoidal rule to problem (17) with e = 10 -2, 

the first stage of the procedure provides an almost uniform mesh of 560 points, and estimated discrete 
parameters 

~d(h*) ~ 1.5 × 10 6, "yd(h*) ~ 1.2 x 10 6. (18) 

One would then infer that this is an ill conditioned problem. In fact, the effect of the discretization is 
equivalent to consider a perturbed continuous problem. Since this perturbed problem is close to an ill 
posed one, an ill conditioned problem is then obtained. 

However, the check of the approximations (18) by using the sixth order TOM on the same mesh 
provides 

t~ne w ,~ 8.5 X 1013, ')'new ~ 6.7 X 1013, 

while the estimated maximum error on the discrete solution is approximately 10 -2. Since the new 
estimated parameters nnew and 7new are both much larger than rid(h*) and 7d(h*), respectively, one 
may deduce that the continuous problem has nc and % unbounded, that is it is ill posed. 
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