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Abstract 

Linear multistep methods (LMMs) are extensively used for the numerical approximation of initial value problems 
(IVPs) for ODE. However, they are not commonly used to approximate continuous boundary value problems 
(BVPs), except in connection with the shooting method. 

Recently, boundary value methods (BVMs) have been considered for the approximation of IVPs. We show that 
many of these methods can also be conveniently used to approximate with high accuracy continuous BVPs. 

I. Introduction 

In this paper we shall analyze the use of LMMs for the numerical approximation of 
continuous BVPs. The LMMs are not commonly used for approximating continuous BVPs, 
except in connection with the shooting method, where the continuous BVP is transformed into 
an IVP. This is in contrast with their extensive usage to approximate continuous IVPs. In fact, 
the most efficient codes for BVPs rely on one-step collocation schemes [4-6]. 

In the last few years LMMs have been used as boundary value methods (BVMs) for the 
approximation of continuous IVPs [1-3,7-11,13]. These methods replace the given continuous 
IVP by a suitable discrete BVP. In Section 2 the basic theoretical results on BVMs are briefly 
presented. In Section 3 we propose to use some BVMs to obtain high-order accuracy 
approximations of continuous boundary value problems. This is obtained by slightly modifying 
their use for IVPs. Thus, the same BVMs (and the same codes) can be used, with minor 
changes, to accurately solve both initial and boundary value problems. Their implementation is 
discussed in Section 4, where some numerical tests are also presented. 
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2. Boundary value methods 

In this section we briefly recall the basic results on BVMs [3,9,10]. Let us first consider the 
IVP 

y ' = f ( t ,  y), t ~ [ a , b ] ,  y(a)=Yo, (1) 

By considering the partition 

t i = a + i h ,  i = O , . . . , N + k 2 - 1 ,  h=  
b - a  

N + k  2 - 1 ' 

one can consider the k-step LMM 
k k 

E aiYn+i = h ~., f l i fn+i ,  (2) 
i=O i=O 

to approximate the solution of problem (1) over the considered partition. As usual, Y,,+i and 
fn+i denote the approximations to Y(tn+ i) and f(t~+~, y(t,+i)), respectively. It is known that 
the discrete problem (2) needs k independent conditions to be imposed, in order to get the 
discrete solution. The most commonly used way of imposing such conditions is to fix the values 
of the discrete solution at the first k grid points, that is one fixes the values Y0,.. . ,  Yk- r The 
continuous problem (1) provides only the first of these values (that is the initial condition Y0), 
while the remaining ones must be obtained by other means. In other words, the continuous IVP 
is approximated by means of a discrete IVP. The methods obtained in this way will be called 
initial value methods (IVMs). This approach is very simple, but suffers of heavy limitations, 
summarized by the two well-known Dahlquist barriers. 

An alternative approach has been considered, where the k conditions needed by the 
difference equation (2) are imposed by fixing the values 

Y0 . . . .  , Y k l - l '  Y N , ' ' ' '  YN+k2-1'  (3) 

where k I and k 2 are two integers, k 1 + k 2 = k. In this way, one fixes the first kl and the final 
k 2 values of the discrete solution. This means that the continuous IVP is now approximated by 
means of a discrete BVP. The methods obtained in this way have been called boundary value 
methods (BVMs). If the values (3) are fixed, we say that scheme (2) is used with (k 1, k2)- 
boundary conditions [9,10]. As before, only the value Y0 is provided by the continuous problem, 
while the remaining values must be obtained in some way. 

The definition of 0-stability and absolute stability for IVMs are now generalized to BVMs by 
introducing the following two kinds of polynomials. 

Definition I. A polynomial p(z) of degree k = k I + k 2 is sa id to  be a n  SklkzpOlynomial if its 
roots are such that 

[ Z l l ~ l z 2 [ ~ <  " "  ~ < [ z ~ l l < l < l z ~ , + l l <  "'" ~<[zk[, 

while it is called an Nklk2-polynomial if 

Izll<lz21<"" <lz~,l-<l<lzk~+ll<'"-<<lzkl, 
where the roots of unit modulus are assumed to be simple. 
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We observe that for k 1 = k and k 2 = 0, Nk,k-pOlynomials reduce to Von Neumann polyno- 
mials while Sklk-polynomials reduce to Schur polynomials. Now we can give the following 
definitions for BVMs [9,10]. 

Definition 2. BVM (2) used with (kl, k2)-boundary conditions is said to be Oklk.-Slable , if the 
polynomial 

k 

= E - i z  i 
i=O 

is an Nk,k2-polynomial. It is said to be (k~, k2)-absolutely stable for a given q ~ C if the 
polynomial 

k 

~r(z, q )= ~., (ol i-qf l i )z  i (4) 
i=0 

is an Sk~kzpOlynomial. The region 

Dk,~ = (q e C: 7r(z, q ) i s  an Sk,k2-polynomial} 

is called the region of (kl, k2)-absolute stability of the method. Finally, the method is said to be 
Ak,~-stable if C-cDkjk2 , where C-  is the left half complex plane. 

The given definitions reduce to the well-known ones for IVMs when k I = k and k 2 = 0. This 
means that the class of the BVMs contains the IVMs as a subclass. 

For the moment  we shall neglect the problem of finding the unknown values in (3). This 
problem will be considered in Section 4. 

The advantage of the BVMs over the IVMs is that now there are no more barriers 
concerning the order of 0klk2-stable and Ak,/,2-stable methods. In fact there are 0k,k -stable and 
Aklk -stable methods of order up to 2k [1,10] for every odd value of k. 

3. Use of the BVMs for approximating continuous BVPs 

Since the BVMs consists in approximating a continuous initial value problem by means of a 
discrete boundary value one, they are natural candidates to approximate continuous boundary 
value problems, with some slight modification. For simplicity, we shall consider only two-point 
BVPs, but the generalization to multipoint BVPs is straightforward. 

Then, let us consider the scalar problem, 

r ' - - x r ,  bly(0) + b2rI r) =,7, 

whose solution is given by: 

(5) 

y(t)  = e  bl + b 2 e , T  " (6) 
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Unlike the case of IVPs, where one usually assumes ffl(h)< 0, here JR(A) may be either 
positive or negative. This because in a general well-conditioned BVP both increasing and 
decreasing modes must be present (dichotomy) [6,12]. 

Now, let us consider the approximation provided by a k-step LMM: 
k 

E (Oli--q~i)Yn+i =0 ,  n = O , . . . , N - k l -  1, (7) 
i = 0  

where, as usual, q = hA, and the stepsize is h = T / ( N  + k 2 - 1), k 1 + k 2 = k. The k conditions 
needed by the discrete scheme are now given by fixing the following k - I values of the discrete 
solution 

Y l , ' ' ' , Y k 1 - 1 ,  Y N , ' ' ' , Y N + k 2 - 1 ,  ( 8 )  

while the remaining condition is obtained by the continuous problem: 

bl Yo + b2YN+k2- 1 = r / .  (9) 

In analogy with the case of the methods for IVPs, we shall say that scheme (7) is used with 
(k l ,  k2)-boundary conditions. We shall study the solution of the discrete problem (7)-(9) under 
some assumptions on the roots of the characteristic polynomial associated with (7). 

Theorem 3. Let  z1,. . .  , z k be the roots o f  the stability polynomial (4) associated with the difference 
equation (7), which we shall assume ordered by increasing moduli: 

[Z1 I < " ' "  < I z k I. (10) 

Moreover, assume that 
(1) it holds that 

I z~,_l I < I Zk I [ < [ Z k l +  1 1, I zk , - i  I < 1 < I zk,+l 1; (11) 

(2) zk~ is the principal root o f  the method, whose order is p >_. 1; 
(3) the additional values in (8) are O(h p) approximations o f  the corresponding values 

y( t l ) , . . . ,  Y(tk _l), Y ( tN) , . . . ,  Y(tN+k2_ 1) o f  the continuous solution. 
It follows that, for  n = k l, . . . , N - 1, one has Yn = Y(tn) + O( h P)" 

Proof. Let us suppose the roo t s  {Zi} to be distinct, for simplicity. Then the discrete solution of 
(7) is given by 

n T n Yn = CklZk 1 + eTDnci + e f D f c f ,  

where 

O i =  , 

Zkl-1 

e i (1, T = . . . ,  1 ) k l _ l ,  

C i = ( C l , . . .  , c k l _ l )  T ,  

(12) 

Zkl+l 

D f  = 

e f=  (1 , . . . ,  1)T~, 

Cf = ( C k l + l  . . . . .  Ck) T. 

Z k 
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The constants ck,, c i and cf are determined by imposing the conditions (8) and (9): 

I ck~ rip 
| C i = Yi ' 

Cf Yf 

where p = (b, + b2zN+k2-1) -1, 

Wk,- lDi  

Uk D g 

1 
G =  Wkl_lZk I , 

Wk2Z~ 1 

si=P(bllk_l +b2DN+k:-l)ei, 

I 1 ... 1 
Z 1 •. .  Zkl_ 1 

Z~ L1 . . .  Z~l-_l 1 

uj  = 

wj = (1, Z k , , . . . , Z J k ~ l )  T , 

1 

Zkt+l 
V j =  • 

| z J - I  kl+l 

s: I 
Vkl- lDf]  , 

Vk2D;' ) 
b DN+k2-1]e sf=ptbl,k~+ 2 f ) f, 

. . .  1 

• .. Z k 

•. .  ZJk -1 

Yi = (Yl . . . . .  Ykl-1) T, Yf= ( Y N , ' ' ' ,  YN+k2-1) T" 

We observe that all the leading principal submatrices of  the matrix 6~ can be proved to be 
nonsingular, under the assumptions (11) (the long proof of this result can be found in [10]). 

^ 

Therefore, we can consider the following block LU factorization of G, 

11 I G =  Wkl- lZkl  Ikt-I 
wk z ~ H 1% 

1 sT sTI 

where Ik_ 1 and Ik2 a r e  the identity matrices of size k I - 1 and k 2 ,  respectively, 
T 

n 1 = Uk l_ lD  i --Zk]Wkl-1 sT, n 2 = V k _ l O f - - Z k ] W k l _ l S f ,  

N T -1 IN), H =  (Uk2DiN-- ZklWk2$i )B1 ~~O(]Zkl 

C = Vk2O ~ N T _ H B  2 ( V  k N T O(IZkl//Zk,+l - -  ZklWk2Sf 2 

then one obtains: 

1 +ZklSTBllWk]_l -]-uTC-lv 

Bll(B2C-lv - -  ZkWk _l ) 
_C-~v 

u T c -  1H _ $TB11 _ u T c -  1 

n l a (  Ik _1 -Jr- n 2 f -  l n  ) - n l l n 2  C-1  

_ C - 1 H  C - I  
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where 

U T = S T -- $ T B j - 1 8 2 ,  

It follows that 
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!,1 = Z~lWk2 -- ZklHWkl_ 1" 

C k , :  (1 q - Z k l S T B l l W k , _ l - ' ] - u T C - 1 1 ) ) ' Q p - [ - ( u T C - 1 H - - $ T B l l ) y i - - ( u T C - 1 ) y f  

Tip -[- ( u T C  - 1 n -  s T 8 1  i ) (  Y i -  ~PZkIWk I - 1) --  u T c - l ( y f _  TlpZ~Wk2), 

= B 1 1 ( ( I k l _ l  q- B 2 C - 1 H ) ( Y i - - r l P Z k l W k l _ l ) - B 2 C - l ( y f - l " l p z ~ w k 2 ) ) ,  

ef  = c - l ( y f -  p"tlp -HYi) 

: C - I (  ( Yf -- T]OZ~Wk2) -- H (  Yi -- T]OZkIWk,-I) ). 

Now, if z,,  is the root which approximates the exponential, and the discrete scheme has order 
p/> 1, then it follows that zk, = e q + O(h p+I) and, therefore, one obtains 

(Yi--rlPZk,Wk,_l)=O(hP), (Yf-rlPZff~wk2)=O(hP), 

provided that Yi and yf are at least O(h p) accurate. From these relations and the relations (6) 
and (12) finally it follows that 

Yn = TlPZ~ l -1- O(hp) = Y ( t n )  "[- O( hP), 

that is, the discrete solution approximates the continuous solution with a global error O(hP). 
[] 

We can conclude that a BVM with (kl, k2)-boundary conditions can be used to approximate 
the solution of the BVP (5), provided that the root z,, of the characteristic polynomial 
associated with the difference equation is the one which approximates the exponential. For this 
reason it is obvious that the natural candidates to approximate continuous BVPs are the BVMs 
having Dk,,2 = C-.  There are many such methods; in particular, we consider the class of the 
extended trapezoidal rules (ETRs) [3,10] and the top order methods (TOMs) [1,10]. Let us briefly 
recall these methods. 

ETRs are methods with k = 2v - 1 steps having the form: 

Yn-Yn-1 =h E fli+,fn+i, n = v , . . . , N -  1. (13) 
i ~ - - 1 ~  

The coefficients are determined so that the scheme has order k + 1. Its use is with (v, v - 1)- 
boundary conditions. The TOM with the same number  of steps, 

v--1 v--1 

E ai+vY,+i =h Y'~ fli+,f,+i, n = v , . . . , N - l ,  (14) 
i= - v  i= - v  

has order 2k. This method must also be used with (v, v - D-boundary conditions. 
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4. Implementation of the methods and numerical examples 

In this section we shall study the implementation of the above-mentioned BVMs. In fact, if 
the formula (13) or (14) is used with (v, v - 1)-boundary conditions and a stepsize h = (b - a ) /  
( N  + v -  2) to approximate the BVP 

y ' = f ( t , y ) ,  t ~ [ a , b ] ,  g ( y ( a ) , y ( b ) ) = r l ,  (15) 

then the following values of the discrete solution, 

Yl . . . . .  Yv-1, Y N , ' " ,  YN+,-2, (16) 

must be imposed along with the boundary condition 

g(yO,YN+,_2)=rl. (17) 

Moreover,  in order  to have a solution with accuracy O(hP), if p is the order  of the used method 
(main method),  the approximations (16) need to be at least O(h p) accurate. If these values are 
known, then scheme (13) or (14), used for n = v . . . . .  N - 1, along with the boundary condition 
(17), provides a set of N -  v + 1 equations in the N -  u + 1 unknowns 

Yo, Y~, ' ' ' ,  YN-I, 

SO that the problem can be solved. However, since the 2 v -  2 values (16) are usually not 
available, we must treat them as unknowns, by adding a set of 2v - 2 equations independent  of 
the previously considered ones. This is done by considering a set of  additional methods, whose 
order  must be at least p - 1, that is with an O(h p) truncation error, if p is the order  of the 
chosen main method.  

4.1. Use of the ETRs 

If one use scheme (13) for n - v , . . . ,  N - 1, the following u - 1 equations: 

2 v - 2  

Yr--Yr-1 =h E fli,rfi, r---- 1 , . . . , v - -  1, (18) 
i=0 

are used to implicitly impose the first v - 1 values in (16). In order  to preserve the global order  
k + 1 of the main method,  the coefficients {Bi,r} are chosen by requiring those equations to 
have a truncation error O(hk+l).  The final v -  1 values are implicitly imposed by using the 
following additional equations: 

N + v - 2  

Yr-Yr-1 =h Y'~ fli-U+v-l,rfi, r = N  . . . .  , N + v - 2 ,  (19) 
i = N - u + l  

where the coefficients {/3i, r} are chosen again by imposing the truncation error of each equation 
to be O(hk+l). 

Example 1. The trapezoidal rule, which is the simplest ETR,  does not need additional 
equations, since it requires only the boundary condition. 



86 L. Brugnano, D. Trigiante /Applied Numerical Mathematics 18 (1995) 79-94 

The  E T R  of order  4, 
1 

Yn -Yn -1  = 7 i h ( - f n - 2  + 13fn-1 + 13fn - - f n + l ) ,  gt = 2 , . . . ,  N -  1, 

requires the two addit ional equations: 

Y l - Y 0  = ~ h ( 5 f 0  + 8 f l - f 2 ) ,  

_ 1  h YN--YN-1- - i~  ( - - fN-2 + 8 f N - 1  + 5fN). 

They are obta ined f rom the reverse Adams  formula [2,10] and the A d a m s - M o u l t o n  formula of 
order  3, respectively. 

The  E T R  of order  6, 

1 
Yn--Yn-1--  1 4 4 0 h ( l l f n - 3 - 9 3 f n - 2 + 8 0 2 f n - 1  + 8 0 2 f n - 9 3 f , + 1  + l l fn+2) ,  

n = 3  . . . .  , N - I ,  

requires the four addit ional equations: 

1 
Y l -  Yo = - ~ h ( 2 5 1 f 0  + 6 4 6 f l -  264f2 + 1 0 6 f 3 -  19f4), 

1 
Y2 -Y~ = 7 - - ~ h ( -  19f0 + 346f~ + 456f2 - 74f3 + l l f 4  ), 

1 
YN --YN-~ -- 7 2 0 h ( l l f N - 3  -- 74fN-2 + 456fN-1 + 3 4 6 f N -  19fN+l), 

1 
YN+I --YN = - ~ h ( -  19fN_ 3 + 106fN_ 2 -- 264fN_ 1 + 646f  N + 251fN+ 1). 

4.2. Use o f  the TOMs 

If one uses scheme (14) for n + u , . . . ,  N -  1, then  there are essentially two ways of choosing 
the addit ional methods  to impose the addit ional k -  1 = 2 u -  2 condit ions needed  by the 
discrete problem. The  first way is the use of different  methods  of order  at least 2k  - 1 (to 
preserve the order  2k  of the main method)  to derive each equation,  as it has been done  for the 
ETRs.  Alternatively one may consider a fixed me thod  of order  2k  - 1 used on different  grid 
points. Each way has it own advantages and drawbacks. Let  us examine the two cases. 

In the first case, one may use the following Adams- type methods  
2 k - 2  

Yr--Yr-a =h  Y'~ [~i.rfi, r =  1 , . . . , v -  1, (20) 
i = 0  

to obtain the initial addit ional equat ions and 
2 k - 2  

Yr- -Yr -1 - -h  Y'~ [~i.rfN+u-2-i, r = N  . . . . .  N +  u -  2, (21) 
i = 0  
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to obtain the final additional ones. For every value of r, the coefficients {~i,r } are chosen in 
order for the formula to have order 2k - 1. 

In the second case, one fixes two methods of order 2k - 1 which are used on different grid 
points, one to obtain the initial additional equations, the other for the final ones. A good 
candidate is obtained by deriving a method of order 2k - 1 having the same number k of steps 
of the used TOM. 

An advantage of the latter approach over the former one is its compactness, due to the fact 
that the used additional method has the smallest number of steps. On the other hand, in 
general the last approach produces much more ill-conditioned linear systems, when solving the 
complete set of equations, with respect to those produced by using the first approach. This last 
feature is more evident for v > 2. 

Example 2. The TOM of order 2, that is the trapezoidal rule, does not require additional 
equations, as we have already seen in the previous example. 

The TOM of order 6, 

' +f~+f~ +{fn-2), n=2 , .  N - l ,  11 __ m l y  = h(~fn+l 1 • ~Yn+l +Yn --Yn-1 27 n - 2  " ,  

requires two addition equations. They are conveniently obtained by using the second of the 
previously mentioned possibilities: 

25 y 3 _ ,3 = h ( t f 3  + 3f2 +fl  + ~fo),  los 3 + Y 2  - -  ~Yl ~Yo 5 
3 3 1 

~TYN + ~YN-I --YN-2-- (--~sYN-3=h(~fN + fN-1 + ZfN-2 + ~fN_3), 

obtained by two methods of order 5. 
The TOM of order 10 

137 13 2 2 13 137 
+ -~Yn+l + ~Yn -3Yn-1 -  -~Yn-2  3 0 0 0  Y n - 3  3000 yn + 2 

( i ' 1 1 ) 
= h  "~L+2+ '~-L+I" I -L+L_I -k - '~ -L_2-+- - i -0~L_3  , N = 3  . . . . .  N - l ,  (22) 

needs four additional equations that can be obtained by using four additional Adams-type 
methods of order 9 like (20) and (21): 

33953 156437 645607 1573169 

Y,-Y0 = h  - 3628800f8 + ~ f 7 -  1814400]'6 + ~ f 5  

31457 2797679 2302297 2233547 1070017 

22680f4 + 1814400f3- 1814400f2 + 1814400fl + ~ f 0 1 ,  (23) 

7297 34453 147143 377521 

Y2 -Yl  = h 3628800f 8 - 1814400f 7 + 1814400f 6 1814400f5 

8233 876271 1622393 687797 33953 

+ ~ f 4 -  1814400f3 + 1814400f2 + 1814400f l -  3628800f01, (24) 
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7297 
YN --YN-1 = h 3628800fN_ 7 

34453 

1814400fN-6 + 

377521 8233 
1814400fN-4 +2~--~fN-3 
1622393 

1814400fN-1 + 

33953 

3628800fN-7 + 

1573169 31457 

1814400 fN-4 22680 fN-3 + 

YN+I -YN =h( 

147143 

1814400 fN-5 

876271 
1814400 fN-2 

687797 33953 ) 
+ 1814400f N - 3628800fN+,,  (25) 

156437 645607 

1814400 fu-6 1814400 fu-5 

2797679 2302297 

+ 1814400fN-2 1814400 fu-1 
2233547 1070017 

+ 1814400fN+ 3628800fN+1). (26) 

Alternatively, one can use only two methods of order 9, but on different grid points: 

49 29 13 1 85 533 
+ + - ~ Y r + 2 - -  Yr+l 48000 yr+5 1 - ~  yr+4 4--~ y~+3 - 3456 216000 y~ 

( 1 1 5 1 7 1 ) 
= h  4 - - - ~ f ~ + 5 + l - ~ - f r + 4 + l - - ~ f ~ + 3 + ~ - f ~ + 2 + 5 ~ f r + l + l - - - ~ f r  , r = 0 , 1 ,  

and 

(27) 

533 85 1 13 29 49 
216--0--~Y~ + -~-~Yr-1 + -~Yr-2 432 Yr-3 1728 Yr-4 48000 Yr-5 

( 1 7 1 5 1 1 ) 
= h  1--8--~f r + 5-~f~_ 1 + ~--~-fr-2 + 1--~L-3 + 1"~L-4  "l- 4 - - - - ~ L _ 5  , (281 

r = N , N + I .  
It is evident that the second way is more compact than the first one. However, as said before, 
the linear systems obtained when solving Eqs. (22), (17), (23)-(26) are generally much more 
better conditioned than those resulting from the solution of Eqs. (22), (17), (27)-(28). 

4.3. Numerical examples 

In the following some numerical examples are provided. They are obtained by approximating 
continuous BVPs with the ETR of order 4 and the TOM of order 6 examined in Examples 1 
and 2. 

Example 3. Consider the problem [6] 

u " - 4 u = 1 6 t + 1 2 t  2 - 4 t  4, 0 < t < l ,  

u(0) = u'(a) = 0, 

(29) 
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t 

Fig. 1. Solution of problem (29). 

Table 1 
Maximum errors for various stepsizes (problem (29)) 

h ETR of order 4 TOM of order 6 

IIe II = rate IIe [I 

0.25 2.628e-3 - -  1.776e-15 
0.125 1.955e -4 3.75 1.776e- 15 
0.0625 1.359e-5 3.85 1.332e-15 
0.03125 8.989e-7 3.92 2.664e-15 
0.015625 5.785e-8 3.96 6.661e-15 

whose  solut ion u( t )  = t 4 - 4t  is p lo t ted  in Fig. 1. In Table  1 the max imum errors are r epor ted  
for various stepsizes, by using the above m e n t i o n e d  methods .  

In the case of  the T O M  of o rde r  6, the errors are of  the o rder  of  the mach ine  precision and,  
therefore ,  they  are essential ly due  to round-o f f  errors more  than  to the t runca t ion  errors.  For  
this reason,  in this case it is not  possible to compute  the ra te  of  convergence.  

Example  4. Cons ider  the p rob lem [6] 

( t 3 u " ) " = l ,  1 < t < 2 ,  

u(1) = u"(1) = u(2) = u"(2) = 0, (30) 

whose  solut ion u( t )  = 1(10 log(2) - 3)(1 - t) + 2(t  -1 + (3 + t ) log(t)  - t) is p lo t ted  in Fig. 2. In 
Table  2 the max imum errors are r epor t ed  for various stepsizes. 

Example  5. Cons ider  the  singular  pe r tu rba t ion  prob lem [4] 

e u " + t u ' = - e r r  2 c o s ( r r t ) - r r t  s in ( r r t ) ,  - l < t < l ,  

u ( - 1 )  = - 2 ,  u(1) = 0, 
(31) 
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x10"3 
4.5c 

4' 
3.5 ~- / \ 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

t 

Fig. 2. Solution of problem (30). 

Table 2 
Maximum errors for various stepsizes (problem (30)) 

h ETR of order 4 TOM of order 6 

I le l l~  rate II e II rate 

0.25 1.092e-04 
0.125 1.004e-05 
0.0625 1.290e-06 
0.03125 1.133e-07 
0.015625 8.387e-09 
0.0078125 5.705e-10 
0.00390625 3.720e-ll 

B 

3.44 
2.96 
3.51 
3.76 
3.88 
3.94 

2.014e-04 
2.014e-06 
5.917e-08 
1.392e-09 
2.710e-ll 
4.740e-13 
7.957e-15 

6.64 
5.09 
5.41 
5.68 
5.84 
5.90 

I '[ . . . .  

1.5! i 1 i i 

0.5 i 
i 

o I / J  

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

t 

Fig. 3. Solution of problem (31). 
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Table 3 
Maximum errors for various step sizes (problem (31)) 
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h ETR of order  4 T O M  of order  6 

II e II ~ rate II e II 
0.01 1.860e-2 - -  2.980e-3 - -  
0.05 1.515e-3 3.62 5.729e-5 5.70 
0.00250 1.080e-4 3.81 7.382e-7 6.28 
0.00125 6.839e - 6 3.98 1.114e-8 6.05 

where e = 10 - 4 ,  whose solution u(t)= c o s ( w t ) +  err(t~ 2v2v2v2¢~-e ) /er f (1/2f~-e  ) is plot ted in Fig. 3. 
In Table 3 the maximum errors are repor ted  for various stepsizes. 

Example  6. Consider  the nonl inear  problem due to Troesch [14] 

u " = A s i n h ( h u ) ,  O < t < l ,  
u(O) = O, u(1) = 1. (32) 

The  solution is plot ted in Fig. 4, for A = 5. A straight implementa t ion  of the Newton method ,  
starting f rom a zero initial approximation,  has been used for both the two methods.  In Table 4 
the maximum errors are repor ted  for various stepsizes. 

Problem (31) is significant, since (see Fig. 3) the solution has a layer at t = 0. In this case, 
one cannot  expect a uni form mesh to be the best choice. In fact, in Fig. 5 it is plot ted the 
absolute error  for the E T R  of order  4 (but similar considerat ions hold true for the T O M  of 
order  6). As one may expect, the larger errors are near  the layer, where  a smaller stepsize 
should be used. However,  if one uses the error equidistr ibution technique described in [6] the 
original mesh is sensibly improved (see also [10]). In fact, after one equidistr ibution over the 
original uniform mesh with h = 0.01, one obtains the mesh shown in Fig. 6. In the figure it is 

i / 0°ii 
07~ 
o6~ 

°.'k / 
! 

0.4 t ' /  , / 
I / 

o.3 ~ / 
i / 

o.2~ J 

01 
0 O. 1 0.2 0.3 0 4 0.5 0.6 0.7 0.8 0.9 

t 

Fig. 4. Solution of problem (32), A = 5. 
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Table 4 
Maximum errors for various stepsizes (problem (32)) 

h ETR of order 4 TOM of order 6 

II e II = rate II e I1- rate 

0 . 1  1 . 8 0 5 1 e - 1  - -  9 . 0 8 8 4 e - 2  

0.05 3.2913e-2 2.46 1.4653e-2 
0.025 5.3195e-3 2.63 1.7345e-3 
0.0125 6.8539e-4 2.96 1.313 l e -4  
0.00625 6.9570e-5 3.30 6.1618e-6 
0.003125 5.8186e-6 3.58 1.9127e-7 
0.0015625 4.2736e-7 3.77 4.4208e-9 

2.63 
3.08 
3.72 
4.41 
5.01 
5.44 
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i0.15 ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: ::::: :::::::::::.:: :: :: ::::::::::::::::::::::::::::::::::: :: :::: :::: :::: :::: :::: :::::t:: :::x ~x x:::::::t::: :::::::x::: 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

t 

Fig. 5. Error with the ETR of order 4 on problem (31), initial uniform mesh. 
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Fig. 6. Error with the ETR of order 4 on problem (31), equidistributed mesh. 
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0 0.2 0.4 0.6 0.8 1 

Fig. 7. Computed solution of problem (32), A = 20, equidistributed mesh. 

also shown that the absolute error is now almost uniform (and much smaller), even if the 
number of the mesh points is the same as in Fig. 5. 

This mesh selection technique turns out to be also useful in the nonlinear case. For example, 
consider the fourth-order ETR applied to solve problem (32) with A -- 20. If a uniform mesh is 
used, then the intermediate approximations provided by the Newton method highly oscillate 
near t = 1 and the method fails to converge. However, if an error equidistribution is made at 
every intermediate approximation, the Newton method converges smoothly. In Fig. 7 the 
computed solution is plotted along with the final mesh, which contains 200 points. 

5. Conclusions 

In this paper we have shown how two important classes of BVMs can be used to approximate 
continuous BVPs. Since these methods can also be used to approximate continuous IVPs, it 
follows that it is possible to use them both for approximating initial and boundary value 
problems. In fact the same programs used to carry out the numerical tests can also be used to 
approximate continuous IVPs. 
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