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ABSTRACT 

The problem of characterizing multistep methods suitable to efficiently ap- 
proximate the solutions of linear Hamiltonian systems is discussed, showing that 
the appropriate methods should belong to the class of discrete Boundary Value 
Methods (BVMs). Three families of such methods are proposed. The presented 
methods have infmite regions of Absolute stability and can be of any order. In 
fact, for every odd k there are k-step methods of order up to 2k, which is the 
maximum order reachable by a k-step formula. (~ Elsevier Science Inc., 1997 

1. INTRODUCTION 

When finite arithmetic is used, appropriate methods based on discrete 
boundary value problems (BVPs) are able to control the growth of the 
errors much bet ter  than initial value methods (IVMs). The most famous 
example which supports this assertion is the so-called "Miller Algorithm" 
and its generalizations [1, 2]. Other examples can be found in standard 
books of Numerical Analysis [3, Example 1.3.4]. 

Boundary Value Methods (BVMs) are a class of methods for ODEs, 
based on linear multistep formulae, initially designed to take advantage 
of the above mentioned principle. Moreover, owing to their higher flexibil- 
ity with respect to LMFs used as IVMs, they are able to reproduce the 
qualitative behavior of larger classes of continuous problems. 

In this paper, we shall s tudy the applicability of BVMs to linear 
Hamiltonian systems. The question has already been studied by Eirola and 
Sanz-Serna [4] for LMFs used with only initial conditions. They  were able 
to give conditions on the coefficients of LMFs in order to maintain some 
important  properties of continuous Hamiltonian problems. The pessimistic 
conclusion of the authors was that  such conditions were not satisfied by 
methods with appropriate stability regions. It will be shown tha t  this 
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conclusion is no longer valid for BVMs, where there are a lot of methods 
(of any order and with infinite stability regions) satisfying the conditions 
given in [4]. 

The present approach, however, is different from the one used by the 
above-mentioned authors because we prefer to use a global one, which al- 
lows obtaining more general results. 

In Sections 2 and 3, we shall briefly recall the main facts about  lin- 
ear Hamiltonian systems and BVMs, respectively. In Section 4, we dis- 
cuss the application of BVMs to linear Hamiltonian problems. Finally, in 
Section 5, we describe three families of methods, and we present some 
numerical results. 

. HAMILTONIAN SYSTEMS 

In this paper  we shall restrict our analysis to linear Hamiltonian prob- 
lems, that  is, problems having the following form 

y' = Ly,  t E [to, T], 

y(to) = Yo E ]R 2m, (1) 

where, by denoting with Im the identity matr ix  of order m, 

(: L = J2mS, J2m = ® Ira, S = S T. 

The main features of the previous problem are 

1. when S is definite, the matrix L is diagonalizable and has all purely 
imaginary eigenvalues; 

2. for h > 0, Q(hL)  = e hJ2 'r~S is a symplectic matrix, that  is, 

Q ( h L ) T  J2mQ(hL)  = J2m; 

3. for every matr ix  C such that  L T c  q- C L  : O, the quadratic form 

V(t;  C) = y( t )T  Cy( t )  

is a constant of motion. In particular, for C - - S ,  one obtains the 
Hamiltonian function of the problem. 
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One wishes to construct methods such that  the previous Properties 2 and 3 
are preserved. Such methods are usually called symplectic methods. So far, 
they have been essentially derived by looking for symplectic approximations 
to the matrix Q(hL). Here, however, we shall follow a different approach. 
Before that,  we need to recall the definition of BVMs. 

3. BOUNDARY VALUE METHODS 

Let a uniform mesh be defined on the integration interval [to, T]. The 
class of methods known as BVMs can be defined in different ways. The 
simplest one is to start with a k-step LMF and release the request to assign 
all the k conditions required by the discrete problem at the initial points 
of the mesh. One takes the freedom to impose some of them, say kl ~ 1, at 
the initial points and the remaining k2 :-- k - kl at the final ones. In other 
words, the continuous initial value problem (1) is approximated by means of 
a discrete boundary value problem with (kl, k2)-boundary conditions. The 
obtained discrete problems define the class of Boundary Value Methods. 
The usual concepts of stability (0-stability, Absolute stability, A-stability, 
etc.) are adequately generalized to such methods with the only difference 
that,  this time, such concepts will depend on the couple (kl,k2). One 
then speaks, for example, about 0klk2-stability, (kl, k2)-Absolute stability 
regions, Aklk2-stability, which reduce to the usual notions, when kl = k 
and k2 = 0 [5]. In this way, the flexibility and potentiality of LMFs dra- 
matically increase. For example, by choosing the most appropriate couple 
(kl, k2) of boundary conditions, one obtains 0klk2-stable and Ak~k2-stable 
methods of arbitrary high order, including, for each odd value of k, the 
highest order 2k. 

An excellent example of the mentioned flexibility is the case of linear 
Hamiltonian problems. Suppose, for simplicity, that  the matrix S of prob- 
lem (1) is definite, so that  the eigenvalues of L are purely imaginary. If 
one asks that,  for all values of the stepsize h, the discrete solution has 
the same qualitative behavior of the continuous one, then one concludes 
that  the boundary of the Absolute stability region must coincide with the 
imaginary axis. In this case, in fact, both the continuous and the discrete 
solutions are marginally stable. 

It is well known that,  apart from the trapezoidal rule, there are no LMFs 
which, when used with only initial conditions, have such property. The 
situation changes for BVMs. In Section 5 three families of such methods 
will be presented, all of them satisfying the above requirement. 

The actual implementation of these methods proceeds by considering 
that  a k-step linear multistep formula applied to problem (1) gives the 
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discrete equation 

If the partition to < 
unknowns are 

k 

~--~(a,I2m - h/3,L)y,~+, = O. (2) 
i = 0  

t 1 < . . .  < i N + k 2 _  1 ~ T i s  considered, then the 

Y o ,  Y l ,  • • • ,  Y N + k 2 - 1 ,  

while (2) can be used only for n -- 0 , . . . ,  N - kl - 1, thus providing N - kl 
equations• The continuous problem provides the initial value Yo, thus re- 
ducing the number of the unknowns to N + k2 - 1. Suppose that  the given 
formula has to be used with (kl, k2)-boundary conditions• Instead of pro- 
viding the kl - 1 additional initial values, we introduce kl - 1 additional 
initial equations (of course independent of (2)). These are obtained by using 
a set of suitable methods (additional initial methods). Similarly, instead of 
fixing the k2 final additional values, we introduce k2 additional final equa- 
tions (additional final methods)• Suppose that  all the additional methods 
have r steps• Then we have the following set of equations• 

Y0 given } continuous problem, 

I i ( y 0 , . . . ,  yr) = 0 

• / additional initial methods, 

Ikl - l (Y0, . - .  ,Yr) = 0 

Ml(Y0, . . . ,yk)  = 0 ) 

• / main method, 

M N - k l  ( Y N - k l  , . . . , Y N  + k 2 - 1 )  = 0 

F I  ( Y N + k 2 - 1 - r ,  . . . , Y Y  + k 2 - 1 )  = 0 

• / additional final methods• 

F k 2  ( Y N + k 2 - 1 - r , ' ' ' ,  YN+k2-1) = 0 

One then obtains a set of N + k2 equations in the same number of un- 
knowns. The overall process can be considered as a composite initial value 
method• Moreover, if one replaces the initial value Y0 with a more general 
condition 

P(Y0, Yl  . . . .  , Y N + k 2 - 1 )  = O, 

the same procedure can also be used for solving continuous BVPs [6]. 
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Written in this way, a BVM no longer requires the final additional values, 
thus removing one of the main objection against these methods. Moreover, 
to a certain extent, a BVM may also be regarded as a generalization of a 
Runge-Kutta  scheme, by assimilating the additional relations (both initial 
and final) to the stages of a Runge-Kutta method• 

4. APPLICATION OF BVMs TO LINEAR 
HAMILTONIAN SYSTEMS 

We now consider the application of BVMs to problem (1), by recasting 
the discrete problem in matrix form. Let us define the matrices 

A = 

B = 

¢ ~ 0  ~ 1  " • "  ~ k  

" ' '  " ' '  " ' '  O 

O , . .  " . .  " . .  

~ 0  ~ 1  ' ' "  

I flo fll & 
• o • 

"•  "•  "-  0 

• . • 
° o • o 

. o  * .  " . .  

flo A "'• 

ak j (N-k~) x (N+k2) 

& ',N- kl ) x (N+k2) 

(3) 

made up with the coefficients of the main method. Then, we define the 
following augmented matrices 

~=((AIAO)  I 

\ ( 0  AF ) ](N+k2_I)×(N+k2 ) 

(BIB O) I B= 
(0  BF ) ](Nq-k2-1)×(Nq-k2) 

(4) 
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where 

(o' ) 
A I  = : 

a (k l -1 )  
o 

a(o N) 

A F -= 
a(N+k2-1) 

o 

BF = : 
~0(N+k2-1) 

and o~I j), ~}J), i = 

/ • , B I =  " " , 

O l  r . . .  

) 
_(N+k~-l) 

" ' '  {)L~- 

. . .  

(5) 

0 , 1 , • . . , r ,  are the coefficients of the initial (j = 
1 , . . . ,  kl - 1) and final (j = N, N + 1 , . . . ,  N + k2 - 1) additional methods• 
Finally, let 

Y = ( Y o , . . . ,  Yg+k2-1)  T (6) 

be the block vector which contains the discrete solution. Then, it is not 
difficult to see that  this vector satisfies the equation 

M y  := ( A  ® I2m - h B  Q J 2 m S ) y  = O. (7) 

This means that  y belongs to the null space of M, which has dimension 
1. (2m), thus reflecting the fact that  there is only one more condition to 
be imposed, which, of course, is the one provided by the initial condition 
Y0. In this case, in fact, the discrete solution (6) is obtained by solving the 
linear system 

Therefore, in the following we assume the matrix M to be nonsingular. 
In order to choose the most appropriate main and additional methods 

for problem (1), suppose changing the independent variable by posing 7- = 
to + t g + k 2 - 1  -- t, where t N + k ~ - I  = T is the end of the integration interval. 
This changes problem (1) into 

dy 
- J 2 m S y ,  (9) 

dT 
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and reverses the interval of integration; Equation (9) is still Hamiltonian 
and then the same numerical method would be appropriate to it. This is 
nothing but the time isotropy (or time reversal symmetry) of Hamiltonian 
systems. We shall use this property for choosing the numerical methods. In 
fact, by reversing the boundary conditions, they should provide the same 
discrete solution in the reverse order. Thus, let us define the permutation 
matrix 

and the vector 

P~ = 1)8×8 (10) 

z=(PN+k2®I2m)Y =- (yg+k2- t , . . . , y l ,yo)  T. 

At this point, we require that  

PN+k~-IAPN+k~ = - A ,  PN+k~-IBPN+k~ = B. (ii) 

Then, multiplication on the left of Equation (7) by PN+k2-1 ® I2m gives 

0 : (PN+k2-1 ® f2m)( -~ ® •2m -- h/~ ® J2mS)y 

= (PN+k2--1APN+k~ ® I2m -- hPy+k2-1BPg+k2 ® J2mS) 

x (PN+k~ ® I2m)y 

= - ( A ®  I2m - h/~ @ (-J2,nS))z,  

that  is, the vector z is obtainable by direct application of the method to 
problem (9). We observe that  the requirement 

PN+k2-1APN+k~ = A, PN+k~-IBPN+k~ = - B ,  

would produce the same effect. However, it is not compatible with the 
consistency conditions for the methods. 

Let us examine in more details the requirement (11). First of all, from 
(4) and (5), it follows that  

kl - 1 - k 2 - v ,  (12) 
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tha t  is, the number of steps k = kl + k2 - 2v + 1 of the main method 
must be odd. Moreover, it is easy to verify tha t  the coefficients of the main 
method must  satisfy the following relation 

a~ = -~ k -~ ,  /3~ = ~k-~, i = 0, 1 , . . . ,  k. (13) 

Similarly, for the coefficients of the additional methods, one must have 

c~(j) - ( N T v - J )  I~ (j) ---- l~ ( N + v - j )  i = 0, . .  ,r, j = 1,. ,v. (14) 
i ~ - - t ~ r - - i  ' r - i  ' - r - - i  ' " " "  

We shall call symme t r i c  schemes the BVMs which satisfy (11) and, there- 
fore, (12)-(14). We observe that  the popular mid-point method, 

Yn+2 - Y,~ = 2h fn+l ,  

does not fit in this class, either when used as IVM or as BVM [7]. In fact, 
in the former case, one has kl - 1 = 1, k2 = 0, and kl - 1 = 0 and k2 -- 1 
in the latter one. 

The symmetry  conditions (11) are important ,  not only because they 
permit  the efficient design of the methods, but also because they allow 
the derivation of the conservation laws for the discrete system, as we are 
going to see. Before that ,  we need to state some preliminary results and 
notations. 

Let Q0 and Q1 be the permutat ion matrices of dimension (N + v) 2 and 
(N + v - 1) 2 such that  

(1 / 
2 

Q~ 

(N + v - i)2 

1 

( N + v - i ) + l  

2 ( N + v - i ) + l  

2 

( N + v - i ) + 2  

( N  + v - i) 

(N + v - i)2 

Furthermore, by considering the partitioning, 

we define 

, i = 0 , 1 .  

= (A1 a2), B = (/~1 b2), a2, b2 E ]R N+~- l ,  (15) 

n = ® + ® (16) 
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Consider now the following system of linear equations 

(.~T ®/~T +/~T ® .~T)g = h, (17) 

where the unknown vector g E IR (N+~-1)2, and h E ]R (N+u)2 is such that  

(PN+u ® PN+u)h = - h ,  

Then, the following result holds true. 

LEMMA 4.1. Suppose that 

Q0h = h. (18) 

i) the condition (11) (i.e., (13) and (14)) is satisfied; 
ii) the square matrix R defined in (16) is nonsingular. 

Then, there exists a unique solution vector g of (17)-(18), which also sat- 
isfies the relations 

(PN+u-1 ® PN+v-1)g = g, Olg  = g. (19) 

PROOF. By partitioning the two matrices .4 and/3  as in (15), it follows 
that  the coefficient matrix of Equation (17) has full column rank. In fact, 
one has 

= \ a  T ®\bT2 ] + \ b T J ® i t a  T 

w AT 
a T ® I t b r J 

(20) 

Then, from hypothesis ii), the equations corresponding to the matrix R 
are independent. We shall prove later that  the remaining equations are 
redundant, so that  there exists a unique solution vector g of problem (17)- 
(18). Before that,  we show that  if a solution exists, it will satisfy (19). In 
fact, from (11)-(12), one has that  

- h  = (PN+u ® PN+u)h 
= (PN+u ® PN+v)(A T ® ~ T  + ~ T  ® ~T)g 

= _ ( ~ r  ® h r  + h r  ® ~r)(pN+~_I ® PN+~-l)g; 
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that  is, g is a solution of (17) iff (PN+~-I ® Pg+~- l )g  is also a solution. 
The first equality in (19) then follows from the fact that  the coefficient 
matrix (20) has full column rank. Similarly, the second equality follows by 
considering that  

h = Q0h 
= Q0(.~T ®/~T +/~T ® ~T)Q1Qlg 

= (/}T ® .~r + ~T ® ~r )Q l g "  

Finally, let us show that  the equations in (17) not corresponding to the 
matrix R are redundant. For brevity, we shall only prove the redundancy 
of the last equation in (17), because similar arguments can be used for the 
remaining ones. Let us denote by a T and b T the first rows of the matrices 
j~T and/~T, respectively. From (11), it follows that  

aT2 =--aTpN+u_i  , bT=bTPN+u_I .  

As a consequence, if ei is the ith vector of the canonical base in IR N+',  
one has 

(a T ® b T + b T ® aT)g = (eT+u ® eT+v)(/~T ® ~T + ~T @ ~T)g 

= (eT+u ®eT+u)h  

= --(e T ® eT)h, (21) 

where the last equality follows from (18). The thesis is then completed by 
observing that from (19), 

(a T ®b T + b  T NaT)g  = (a T Nb  T +b  T ®aT)(pN+~,-1 @ PN+u-1)g 

= - ( a  T ® b T + bT1 ® aT)g, 

which shows that  the first and the last equation in (17) are equivalent. • 

We are in the position to state the following main result. 

THEOREM 4.1. Suppose that 

i) the hypotheses of Lemma 4.1 are satisfied; 
ii) C is a matrix such that CL + L T c  -= O. 

Then, if y is any solution of system (7), for all i, j = 0 , . . . ,  N + ~, - 1, one 
has, 

T T y~ Cyj + yT Cy~ T C = YN+~-I-i  YN+~,-1-j -F yN+u_l_jCyN+~_l_i.  (22) 



Linear Hamiltonian Systems 59 

PROOF• Let G be any symmetric matrix of dimension N + v - 1, such 
that  

PN+~-IGPN+~-I = G, 

that  is, G is also centrosymmetric. Multiplication on the left of (7) by 
yT(BTG ® C) gives 

yT (BT GA ® C - hBT GB ® CL)y = O. 

Similarly, multiplication on the left by yT(BTG ® C T) gives 

yT(BTGA @ C T --  hBTGB @ CT L)y = O. 

By adding the transpose of the latter expression to the former one, from 
the hypothesis ii) it follows that  

0 = yT((BTGA + ATGB) ® C - hBTGB ® (CL + LTC))y 

= yT( (BTGA+ ATGB) ® C)y 

- yT(H C ® C)y. (23) 

From (11), the symmetric matrix 

H c  = + ArG  (24) 

is such that  

~T PN+~HGPN+~ = PN+~B P N + v - I P N + v - I G P N + v - I P N + v - I A P N + v  

"~T + PN+vA PN+~-IPN+~-IGPN+~-IPN+~-IBPN+~ 
= 

= -HG. 

Then, by writing such matrix as 

Hc = 

2h00 h01 "'" ho,N+v- 1 I 

hlo 2hll ". 

"" "'" hN+v-2,N+v-1 I 
\ hN+v-l,O "'" hN+v-l,N+v-2 2hN+~-I N + v - 1 ]  

it follows that  for all i, j = 0, . . .  , N + v - 1, 

hq = hji = --hN+v-l-i ,N+v-l-j  = --hN+v-l-j,N+v-l-i• (25) 
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As a consequence, (23) reduces to 

N + v - 1  N+u-l--i 

E = o, (26) 
i=o j=i 

where 

T ~iJ = Yi Cyj  + yT Cyi -- T YN+v- 1-iCyN+v- 1-j -- yT+v- 1-j CyN+v- l- i .  

It remains to be seen that  (26) implies that  ~ij = 0 for all values of i and j .  
This follows from the fact that  the matrix H c  satisfying (25) can be chosen 
arbitrarily, so that  (26) must hold true for every choice of the scalars (h¢j}. 
To prove this part, we remember that,  given an m x n matrix X,  vec(X) 
is the mn vector made up with the entries of its columns [8] 

I X . 1  

X.2 ] 
v e c ( X )  = . . 

\ x ,n ]  

By posing 

g = vec(G), h = vec(Hc) ,  

one has that  (24) can be posed in the tensor form (17). Moreover, due 
to (25), the vector h satisfies (18). Because the hypotheses of Lemma 4.1 
are fulfilled, it follows that  for every vector h satisfying (18) there exists 
a vector g satisfying (17) and (19). This means that  every matrix H c  
satisfying (25) can be obtained from (24), by using a suitable symmetric 
and centrosymmetric matrix G. • 

The discrete conservation property corresponding to Property 3 seen in 
Section 2, can now be easily derived, as shown by the next corollary. 

COROLLARY 4.1. The constants of motion of problem (1) are exactly 
preserved in the last point of the discrete solution. 

PROOF. Let C be any matrix such that  CL + L T c  = O. The result of 
Theorem 4.1 then applies, so that  for i = j = 0, from (22), one obtains 

yTCy ° T C YN+v-1 YN+v-1. • 
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REMARK 4.1. When C = S, one obtains the conservation for the 
Hamiltonian function. Moreover, from (22) and j = i, one obtains tha t  

yT C y  i T C .. "~ Y N + u - l - i  Y N + , - I - i ,  i = 0,. , N  + v - 1, (27) 

tha t  is, the approximations of the constants of motion assume symmetr ic  
values in the interval of integration [to, T]. 

In Proper ty  2 reported in Section 2, it was remarked tha t  for each h, the 
map  Q(hL)  is symplectic for the continuous flow. A similar result holds for 
the discrete map associated with the method described by Equation (8). 
In fact, by considering the block vector 

.  1(i2m)( 0) 
0 ¢n .-1 

q)i E ]R 2m x 2m, i = O , . . . , N + v - 1 ,  

one easily verifies tha t  its i th block entry defines the map Yi = ¢iYo. More- 
over, the block vector @ satisfies Equation (7), so that  from Theorem 4.1, 
by taking C = J2m, one obtains that ,  for all i , j  = 0 , . . .  , N +  v - 1, 

T j  T j,  

T j ,  
- '}-¢Nwg-I- j  2mON+u- l - i .  (28) 

As a consequence, we obtain the discrete analog of Proper ty  2 seen in 
Section 2. 

COROLLARY 4.2. The map YN+u-1 ----- qbN+v-lYO is symplectic. 

PROOF. By recalling tha t  ¢0 = I2m, for i = j = 0 (28) gives 

T 
•N+u-1 2meN+u-1 ---- J2m. 

In addition to the previous result, it is possible to show tha t  if the 
method has order p, then for i -- 1 , . . . ,  N + v - 2 

¢i ---- Zi  + O(hP"/min(i 'N+v-l- i)) ,  

where Z is a symplectic matr ix  and 0 < ~/< 1 [9]. 
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5. BLOCK SYMMETRIC SCHEMES 

We now present three families of symmetric schemes. All of them can 
be regarded as generalizations of the basic trapezoidal rule. In fact, the 
boundary of the corresponding (u + 1, v)-Absolute stability regions (see 
(12)) coincides with the imaginary axis, and, for each family, the simplest 
formula, obtained for u = 0, is the trapezoidal rule. Moreover, all these 
methods satisfy the hypotheses of Lemma 4.1. 

It has been proved in the last section that symmetric BVMs (i.e., sat- 
isfying (11)) preserve the constants of motion of the continuous problem 
at the points to and tu, where, for brevity, # denotes the index of the last 
point of the block. To take advantage of this fact, we divide the interval of 
integration [to, T] in a certain number g of subintervals: 

[to,tu], [ t u , t 2 u ] , . . . ,  [ t (~- l )u ,T] .  

Then we apply the same symmetric scheme on each of these subintervals, 
so that  the final point of each block will be the initial one for the subse- 
quent. This permits having the exact values of the constants of motion at 
t0, t~ , . . .  ,t(~_l)t~ ,T.  

This approach, which turns out to be more appropriate for linear Hamil- 
tonian systems, allows a very efficient parallel implementation of these 
methods [10]. Concerning the order of the additional methods, we take 
them of the same order of the main method, even if, in general, they can 
be taken one order smaller [6, 9]. 

In the following, k = 2v + 1 is the number of steps of the schemes. 

5.1. E x t e n d e d  trapezoidal  rules  
The Extended Trapezoidal Rules (ETRs) [11] have the following form 

V 

Yn - Y,~-I = h ~ - ~ / 3 i ( f n - ~ - l + i  + f n + ~ - i ) ,  n = ~ + l , . . . , N - 1 .  
i = 0  

The coefficients {j3i} are determined by imposing that  the method has 
the highest possible order, that  is, p -- k + 1 -- 2(v + 1). The additional 
equations are given by 

k 

Yr -- Yr-1 = h ~-~t3i , r f i ,  
i=0 

k 

Y N + v - r  -- Y N + v - r - 1  = h ~ ~ i , r f N + u - l - i ,  
i = 0  

r = I,...,~', 
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where the coefficients {/~i,r} are determined by imposing that  the corre- 
sponding formula has order k + 1. These coefficients obviously satisfy (14). 

EXAMPLE 5.1. For v = 1, we get the fourth order E T R  

Yn - Y n - 1  = ~4(-fn+l  + 13fn + 13fn-1 - fn-2) ,  n = 2 , . . . ,  N - 1. 

It can be conveniently used with the following two additional equations 

Yl - Y0 = h ( f 3  - 5f2 + 19f1 + 9f0), 

and 

Y N  - -  Y N - 1  = -~7(9fN + 1 9 f g - ]  -- 5 f y - 2  + fN-3) .  Lz~ 

5.2. Extended trapezoidal rules of second kind 
ETRs can be regarded as generalizations of the basic trapezoidal rule 

which preserve the structure of the first characteristic polynomial p(z). 
Similarly, we may obtain another family of methods which preserve the 
structure of the second characteristic polynomial, a(z),  of the same basic 
scheme. The following methods, which we call Extended Trapezoidal Rules 
of second kind (ETR2s), are then obtained [9, 12] 

h 
~O~i(Yn--v--l+i -- Yn+v--i) ---- ~ ( f n  + A - - l ) ,  
i=0 

n = v + l , . . . , N - 1 .  

As in the case of ETRs, the coefficients {ai} are determined by imposing 
that  the considered formula has the highest possible order, that  is, p = 
k + 1 = 2(v + 1). The following additional equations can be used for the 
additional conditions 

k 

Z a~,rYi = h(~rf~ + (1 - ~ ) f r - 1 ) ,  
i=O 

r = 1 , . . . , v ,  
k 

--Cq,rYN+v-l- i  = h ( ~ r Y N + v - l - r  + (1 - ~ ) f N + ~ - r ) ,  
i=0 

where the coefficients {c~i,r} are determined by imposing the corresponding 
formula to have order k + 1. 

EXAMPLE 5.2. For v = 1, we obtain the following fourth order ETR2 

~2(Yn+l + 9y,~ - 9 y , ~ - i -  Yn-2) = h ( f n  + fn -1 ) ,  n = 2 , . . .  , N -  1. 
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In this case, the two required additional equations are given by 

1 ( - y 3  + 9y2 + 9yl - 17y0) = h ( 3 f l  -~- f0) ,  

1 ( 1 7 y N  -- 9yN -1 - -  9yN-2 + Y N - 3 ) =  h ( fN + 3fN-1 , ) .  

5.3. Top order methods 
The last family of methods we consider is that  of Top Order Methods 

(TOMs). The name of these methods [12, 13] derives from the fact tha t  the 
coefficients of the generic k-step (k = 2v + 1) method 

V 

E ~i (Yn-u- l+i  - Yn+u-i) 
i=O 

12 

= h E / 3 ~ ( f n - ~ - l + i  + fn+~-i) ,  
i=O 

n = u +  l , . . . , N - 1 ,  

are determined so tha t  the order p = 2k - 4v + 2 is obtained, which is the 
maximum order reachable by a k-step LMF. 

Appropriate  additional equations for these formulae can be chosen, for 
example, as follows 

Y N + u - r  

2k-1 

Y~ - Y~-x = h E fli,~fi, 
i=O 

2k-1 

-- YN+u-r-1 = h E ~i,rfN+u-l-i, 
i=O 

r = 1 , . . . , u ,  

where the coefficients {fli,r} are determined so tha t  each formula has 
order 2k. 

EXAMPLE 5.3. For v = 1, we obtain the sixth-order T O M  

~1~ (11yn+1  "4- 27yn -- 27yn--1 -- 1 1 y n - 2 )  ---- h ( f n+ l  "~- Urn "~- Urn-1 ~- f n - 2 ) ,  
or) 

which can be used with the following two additional equations, 

h 
Yl - Yo = 1- -~(27f5  - 173f4 + 482f3 - 798f2 + 1427fl + 475fo), 
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and 

h 
YN -- Y N - 1  = 1-~(475fN + 1 4 2 7 f N - 1  --  798fN_2 

÷ 4 8 2 f N - 3  --  1 7 3 f N - 4  ÷ 27fg-~). 

We conclude this section with a simple numerical example, caxried out 
by using the fourth-order ETR described in Example 5.1. 

Consider the equation of the harmonic oscillator 

The Hamiltonian function of problem (29) is 

v ( t )  = 9yl(t)  2 + y2(t) ~. 

In Figure 1, we report the obtained discrete solution with the fourth order 
ETR, used with five blocks and stepsize h = 1, and the corresponding 
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0 5 10 15 210 2=5 3~0 3=5 40 415 50 
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! i i 

4-  4-  

++4-++-b++4-  + 4 - + + + + + + +  + + + + + + 4 - + +  4-4-4-+4-+4-+4- 4-++4-+4-4-++ 
I I I I 

o ~ , o  ;~ 2'0 ~'~ 3'0 ~'~ ,o ~ ~o 
t 

FIG. 1. Discrete  solut ion for p rob lem (29) and  values  of t he  Hami l ton i an  func t ion  (30) 
for t he  c o m p u t e d  solut ion,  h = 1. 
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values of 

2 (30) Vn = 9y12,n + Y2,n 

for the computed discrete solution. The predicted symmetry (27) inside 
each block is evident, as well as that the value V0 is exactly maintained at 
the points t -- 0, 10 , . . . ,  50, even if the obtained discrete solution provides 
a very poor approximation of the continuous one because of the large value 
of the stepsize used. 

In Figure 2, we report the results on the same problem, but when a 
stepsize h -- 0.25 is used. Again, the fourth order ETR has been used with 
five blocks. Now the solution is much better with respect to the previous 
case. This is reflected in the fact that  all the values of the Hamiltonian 
function are much closer to the expected value V = 9, which is exactly 
preserved at the points t = 0, 10 , . . . ,  50. Also, in this case, the predicted 
symmetry (27) inside each block is evident. Finally, in Figure 3, we report 
the results obtained with stepsize h -- 0.125. 

4 , , , | i 
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- 2  
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-40 5 1~ ,'s 2'0 2'5 ~0 35 40 4~ so 
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4. + 4- + 

8.95 
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FIG. 2. Discrete solution for problem (29) and values of the Hamiltonian function (30) 
for the computed solution, h ---- 0.25. 
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FIG. 3. Discrete solution for problem (29) and values of the Hamiltonian function (30) 
for the computed solution, h = 0.125. 
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