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Abs t rac t .  Many numerical methods for the approximation of ordinary 
differential equations (ODEs) are obtained by using Linear Multistep 
Formulae (LMF). Such methods, however, in their usual implementa- 
tion suffer of heavy theoretical limitations, summarized by the two well 
known Dahlquist barriers. For this reason, Runge-Kutta schemes have 
become more popular than LMF, in the last twenty years. This situ- 
ation has recently changed, with the introduction of Boundary Value 
Methods (BVMs), which are methods still based on LMF. Their main 
feature consists in approximating a given continuous initial value prob- 
lem (IVP) by means of a discrete boundary value problem (BVP). Such 
use allows to avoid order barriers for stable methods. Moreover, BVMs 
provide several families of methods, which make them very flexible and 
computationMly efficient. In particular, we shall see that they allow a 
natural implementation of efficient mesh selection strategies. 

1 I n t r o d u c t i o n  

Usually, the solution of an initial value ODE problem, 

y' =/(t ,  y), t ~ [to, T], v(t0) = ~, (1) 
is obtained by using a k-step LMF, 

k k 

~ , ~ . + ~  = h ~ i / ~ + , .  (2) 
i = 0  i=O 

In the previous equation, y~ denotes, as usual, the discrete approximation of the 
solution y(t) at t = t,~ =_ to + nh,  h = (T  - t o ) / N ,  and fn =- f ( t n ,  Yn). Since 
(2) is a kth order difference equation, then k conditions need to be imposed 
to obtain the discrete solution. Usually, such conditions are obtained by fixing 
the first k values, Y0,. . . ,  Yk-1, of the discrete solution. Tha t  is, the continuous 
IVP (1) is approximated by means of a discrete IVP. This approach is very 
straightforward. However, it suffers of heavy theoretical limitations, summarized 
by the two Dahlquist barriers. 

It is possible to get rid of such limitations by suitably modifying the use of 
LMF. This is, in fact, the idea on which Boundary Value Methods rely. Early 
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references on such methods can be found in [4, 12]. However, only in the last 
three years such methods have been systematically studied, starting from [14]. 
In particular, a linear stability theory has been recently devised [6], which has 
made possible the derivation of several families of methods, each containing 
stable methods of arbitrarily high order. In this paper, a brief review on BVMs 
is presented, along with a mesh selection strategy which is very efficient for such 
methods. 

In Sect. 2 the main facts about BVMs will be recalled, and in Sect. 3 the 
principal families of methods are sketched. In Sect. 4 the block version of the 
methods is presented, along with the mesh selection strategy. Finally, in Sect. 5 
some numerical examples on difficult stiff problems are reported, showing the 
effectiveness of BVMs. 

2 B o u n d a r y  V a l u e  M e t h o d s  

Suppose, when approximating (1) by means of (2), to fix the first kl _< k 
values of the discrete solution, Y0 , . . . ,Y~- I ,  and the last k~ - k -  kl ones, 
YN-kz+I , . . . ,  YN. In this way, the discrete problem becomes 

k~ k2 ~-~i=-~ o~i+~yn+i = h)--~=_~ fli+k~ f,~+i, n = k l , . . . ,  N - k2, 
(3) 

YO, �9 �9 �9  Y k l - 1 ,  YN-k~+I, �9 �9 � 9  Y N ,  fixed. 

That  is, the continuous IVP (1) is approximated by means of a discrete BVP. 
This approach defines a BVM with (kl, k2)-boundary conditions. Observe that, 
for kl = k and, therefore, k2 = 0, problem (3) becomes an IVP, so that  BVMs 
contain as a proper subclass the usual initial value methods for ODEs based on 
LMF. 

In order to completely exploit all the advantages of this new approach, that 
is, to derive effective BVMs, we need to generalize the known notions of stability. 
This is done by introducing the following polynomials [6]. 

D e f i n i t i o n l .  Let p(z) be a polynomial of degree k, and let ]zl[ < . . .  < ]zk] be 
its roots. We say that p(z) is a 

- Sklk~-polynomial if [zkl[ < 1 < [zk~+l[; 
- Nk~k2-polynomial if [z~, [ < 1 < [zkl+l [, with simple zeros of unit modulus. 

Observe that for kl = k and k2 = 0, one obtains the usual Schur polynomials 
and von Neumann polynomials, respectively. 

Now, let us denote by p(z) and ~r(z) the two polynomials associated with the 
LMF (2), and, as usual, let 7r(z, q) = p(z)-qcr(z) denote the stability polynomial. 
The following definitions are then stated [6]. 

D e f i n i t i o n 2 .  A BVM with (kl, k2)-boundary conditions is 
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- Ok~k~-stable if the corresponding polynomial p(z) is a Nk~k~-polynomial; 
- -  (kl, k~)-absolutely stable, for a given q 6 C, if the polynomial 7r(z, q) is a 

Sk~ k~-polynomial. The region 

Dklk2 = {q 6 C : ~r(z, q) is a Sk~k2-polynomial} 

is said region of (kl, k2)-absolute stability; 
- Ak~k~-stable if C -  C_ Dklk2. 

Observe that  the previous definitions reduce to the usual stability notions, when 
k l = k a n d k 2 = O .  

The problem of finding the k - 1 additional values 

Y l , . . . , Y k l - l ~  YN-k2+I, . .  . ,YN, 

in (3) is easily solved by treating them as unknowns. This is done by introducing 
a set of k - 1 additional equations, independent of those provided by the main 
formula (3). Such equations are conveniently derived by a set of kl - 1 initial 
additional methods, 

f i  r 
~(J)* h z . , ~ i  j i ,  j = l ,  kl 1, (4) ~i vi = X - ~ ( J ) ~  . . . ,  - 

i=0 i=0 

and ks final ones, 

i 
7* 

i=0 i=0 

j = N -  k ~ + l , . . . , N .  (5) 

Such additional methods have to be chosen with the same order of the main 
formula (3), in order to have the same order for the whole composite method 
(3)-(5). As we shall see in the next section, for almost all BVMs the number 
r of steps of the additional methods is the same of the main formula, that  is 
r = k. Moreover, each BVM will be coupled with the most appropriate set of 
additional methods. 

3 F a m i l i e s  O f  B V M s  

In this section, we present the most important  families of BVMs. Of such families, 
one is here introduced for the first time. A common feature for all these families 
is that  all of them contain 0klk2-stable, Aklk~-stable methods of arbitrary high 
order. This, in turn, confirms that  there are no more order barriers for stable 
BVMs. 



8 ]  

3.1 Genera l i zed  B D F  

The Generalized Backward Differentiation Formulae (GBDF)  have the following 
form [6], for all k > 1, 

~B/2 

E a i + v y n + i = h f n ,  n = v , . . . , N - k + v ,  (6) 
i = - v  

where 

{ ~_~_.2, for even k, 
v 

2 '  for odd k. 

The coefficients {ai} are uniquely determined by imposing a O(h ~+1) truncation 
error. Such formulae are to be used with (v, k -  v)-boundary condition or, equiv- 
alently, they are conveniently coupled with the following set of initial additional 
methods, 

k 
(j). 

ai yi = h f j ,  
i = 0  

and final additional ones, 

j = 1 , . . . , v -  1, 

k 

E ~ ( J )  YN i = h f j ,  j = N - k + v + l ,  ,N .  k - i  . . . .  

i = 0  

The coefficients of the additional formulae are uniquely determined in order to 
have the same truncation error of the main formula (6). 

Observe that the formulae obtained for v = k are the usual BDF, which are 
0-unstable, for k > 7, while GBDF are 0v,k_v-stable, Av,k_~-stable, and with 
order of convergence k, for all k ~ 1. 

3.2 Genera l i zed  A d a m s  M e t h o d s  

The Generalized Adams Methods (GAMs)  are BVMs in the following form [10], 

]g~/s 

Y,, - Yn-1 = h E ~i+~,f,+i, 
i = - v  

where v is defined according to 

n = v, . . . , N - k T v. (7) 

for odd k, 

for even k, 
(8) 
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and the coefficients {/3i} are uniquely determined in order to have a method 
of order k + 1. For each k _> 1, they must be used with (v, k - ~,)-boundary 
conditions, and are 0v,k_~-stable, A~,k_v-stable methods. They are conveniently 
used with the following set of additional initial methods, 

and final ones, 

k 

yj - yj-1 = h ~_f~ [~(j ) r" i"i d~,  

i----0 

j = 1 , . . . , u -  1, 

k 

v--,~(j) fN i . . . ,  yj - Yj_l = h 2 .~pk_i j  _ ,  j = N - k + v + l, N. 
i----0 

The coefficients of the additional methods are uniquely determined by imposing 
each formula to have the same order, k + 1, of the main method (7). 

The formulae obtained in correspondence of odd values of k are also called 
Extended Trapezoidal Rules (ETRs)  [3], since the formula obtained for k = 1 is 
the trapezoidal rule. Such formulae belong to the class of symmetric schemes, 
that  we shall consider later. 

3.3 E x t e n d e d  T r a p e z o i d a l  Ru le s  Of  Second  K i n d  (ETR2s )  

Let us consider the methods having the following general form, 

kDV 

E ai+vy,+i = h(/3f~ + (1 - /3 ) fn -1 ) ,  n = v , . . . ,  N - k + ~,, (9) 
i = - - v  

where ~, is chosen according to (8), and the coefficients {ai)  and ~ are uniquely 
determined by imposing a O(h k+2) truncation error. The formulae obtained for 
k even will be called unsymmetric ET!~2s, while those obtained for k odd have 
been called ETR2s [5, 8]. 

In particular, in the latter case one obtains fl = 1 - / 3  = �89 and the corre- 
sponding formulae belong to the class of symmetric schemes. 

All (unsymmetric) ETR2s are 0~,k_v-stable, A~,k_~-stable formulae, and 
must be used with (v, k - ~,)-boundary conditions. The following set of addi- 
tional initial methods, 

k 

E a(j)''i v , = h ( ~ ( J ) f j + ( 1 - ~ ( J ) ) f j - 1 ) ,  j = l , . . . , v - 1 ,  
i = 0  

and final ones, 

k 

~ a  (j) yN , h(fl(J)fj + ( 1 - / 3 ( J ) ) f j - 1 ) ,  k - i  -- 
i = 0  

j = N - k + v + l , . . . , N ,  
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is conveniently associated with the main formula (9). The coefficients {a~ j) } and 
flU) of each additional method are uniquely determined by imposing the same 
order, k + 1, of the main formula. 

3.4 S y m m e t r i c  S c h e m e s  

We have collected as symmetric schemes [5, 8], BVMs having the following gen- 
eral properties, 

- they have an odd number of steps, k = 2 v -  1, and must be used with 
(u, v - 1)-boundary conditions (i.e., they require u - 1 initial and u - 1 final 
additional methods); 

- the corresponding polynomials p(z) have skew-symmetric coefficients. That  
is, zkp(z -a) = -p(z ) ;  

- the corresponding polynomials ~r(z) have symmetric coefficients. That  is, 
- 1 )  = 

- D~,,v-1 =- C - .  

Such schemes are conveniently used for either approximating continuous BVPs 
[7], or I-Iamiltonian problems [5, 8]. 

Both ETRs and ETR2s are symmetric schemes. Another important family 
of BVMs fits this class, namely Top Order Methods (TOMs) [1]. Such method 
have the following general form, 

v - - i  v - i  

- = h + 
i = 0  i = 0  

n = v , . . . , N -  v +  1, 

(10) 

where the coefficients {a/} and {/3i} are determined in order to have the maxi- 
mum possible order for a k-step formula, that is p = 2k. They can be conveniently 
used with the following initial 

2k--1 

i=O 

and final additional methods, 

j = 1 , . . . , v -  1, 

2 k - - I  

~(~) fN ~, Yj - Yj-I = h ~ ~2k-l-i,. - 

i = 0  

j = N - u + 2 , . . . , N .  

The unknown coefficients {/3~ j)} of the additional methods are uniquely deter- 
mined by imposing that they have the same order p -- 2k of the main formula 
(10). 
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4 B l o c k  B V M s  A n d  M e s h  S e l e c t i o n  

The arguments presented in the last section allow to consider a BVM, together 
with its corresponding additional methods, as a composite method. Having fixed 
a suitable N, such method allows to pass from the approximation at t = to to 
the one at t = tN. It is then possible to discretize the interval [to, T] by using 
two different meshes: a coarser one containing the p + 1 points 

7"i=7"i_l+~ti, i = l , . . . , p ,  7"o =_ to, 7"v =_ T, 

and a finer one, which discretizes each subinterval [r~-l, 7"i], i = 1 , . . . , p ,  with a 
constant finer stepsize hi = t t i /N.  

In more detail, by using the initial condition Y0 = r/provided by the contin- 
uous problem (1), we can apply the (composite) BVM over the first subinterval 
[7"0, 7"1], with constant finer stepsize hi = h l / N .  The discrete approximation of 
the solution at the points 

t j = v o + j h l ,  j = 1 , . . . , N ,  

is then obtained. One then uses the approximated value at tN ~ 7"1 for computing 
the discrete approximation over the second subinterval [7"t, 7"2], by using the same 
BVM with finer stepsize h2 = h2/N.  

It is evident that  the process can be iterated p - 2  more times, thus providing 
a discrete approximation over the entire interval [to, T]. 

The resulting procedure defines the block version of BVMs [8], which has two 
important practical implications: 

1. the stepsize variation becomes very simple, since inside each block the used 
stepsize is constant, while one may vary the stepsize in the coarser mesh; 

2. it allows a very efficient parallel implementation of such methods [2]. 

In [9] a novel mesh selection strategy, which is very effective for the approx- 
imation of continuous BVPs, has been introduced. We here present a different 
mesh selection strategy, which is very efficient for the approximation of con- 
tinuous IVP. Essentially, it is based on deferred correction [15, 19, 20], which 
assumes, for BVMs, a very natural implementation. For simplicity, we assume 
that  a single block implementation of BVMs is used for approximating the con- 
tinuous problem (1), which will be assumed to be scalar. Then, let us denote 
by 

Fp(y) = 0 (11) 

the discrete problem obtained by applying a BVM of order p, where y = 
(Yo, . . . ,  YN) T is the discrete solution. It is not difficult to verify that 
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where f (y)  = (f(to, yo),..., f ( tg,  yg)) T, h is the used stepsize, and Ap, Bb are 
(N + 1) • (N + 1) matrices, whose rows contain the coefficients of the considered 
method, 

A p  

= 

1 0 

: 

. . .  

Oe 0 . . .  Ol k 

"~ 

0 0 

: 

~k , -1 )  f4(k,- 11 
�9 " " ~ " k  

� 9  

~  

. . . . . .  

o~ o . . .  o~  k 

o~toN- k2+1) (N-k2+1) 
~ k  

. . . . . .  

~(N-k2+l) 
,'k 

(N+I)x(N+I) 

(N+I)x(N+I) 

In the above expression, we have assumed the main formula, and the corre- 
sponding additional methods, to have the same number, k, of steps�9 Moreover, 
we shall also assume that the matrix Bp has unit row sums. In the following, 
this assumption will hold for all the considered methods�9 

Let now ~r = (y(to),..., y(tN)) T be the restriction of the continuous solution 
to the mesh. Then, since all the formulae defining the BVM have the same order 
p, it will be 

= - 

Vl 
, n = O ( h P + l ) ,  i - l , . . . , N � 9  (12) 
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From the previous equation, one readily obtains the following first order approx- 
imation, 

- y ~ M71~ p, (13) 

where Mp is the Jacobian matrix of Fp evaluated at ~r, 

Mp = Ap - hBpJy(~r), 

and, by denoting with fy the Jacobian of f( t ,  y), 

( y~ (So, y(to)) ) 
J 1 ( ~ )  = . .  �9 

f~(tN, y(tN)) 
Let now put the discrete solution y inside the discrete problem obtained by using 
a different method, of order q > p, over the same mesh. It will be 

Fq(y) = - u ,  (14) 

where, in general, the vector u will not be the zero vector. The following result 
then holds true. 

T h e o r e m 3 .  Provided that the continuous solution is suitably smooth, one has 
(see (12) and (14)) u = ~p + O(hP+2). 

Proof. Since the method defining Fq has order q, it will be 

F~(~)  = ~ =_ O(h~+~).  

From (13) one then obtains 

Fq(y) ~ Fq(y - Mp-lTp) ~ Fq(#) - MqM~lvp = Tq - MqM~lrp ,  

where Mq = Aq -hBqJy (~ )  denotes the Jacobian matrix of Fq evaluated at Y. 
Since in the above approximations the neglected terms are O(h2P), the thesis 
then follows by proving that  

Mqv = rp + O(hP+2), v -- M~l"rp. 

The entries of ~'p are O(h p+I) and, consequently, those of the vector v will be 
O(hP). That  is, 

c(t.~ / 
v = h P c  - -  h p . , 

where c(t) is a suitably smooth function, under the made hypothesis on y(t). 
Since the first entry of rp is zero (see (12)), then c(to) = 0. Moreover, the 
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function c(t) is not uniquely defined, so that  we may assume c'(to) = 0 as well. 
From the previous equations, one then obtains 

~'p = M p v  = hP(Apc - hBpJI(~f)c)  = hP(Apc - hBpc ' )  + hP+l Bp(c  ' - J l (~)c) ,  

where the vector c' = ( c ' ( t o ) , . . . ,  c ' ( tN))  T. Because of the following trivial equal- 
ities, 

Apc - hBpc '  = O(W+I ) ,  Bp(c '  - J / (~ )c )  = (c' - J$(~)c) + O(h) ,  

one concludes that rp = hP+l(c' - J!  (~)c) + O(hP+2). Consequently, by means 
of similar arguments, one finally obtains 

Mqv  = hP(Aqc - h B q J y ( ~ ) c  ) = W ( A q c  - hBqc') + W+l  Bq(c ' - J / (~ )c )  

= O(h  p+q+l) + hp+l(c ' - J l  (~,)c) + O(h p+u) = Tp + O(hP+2). 

[] 

From the previous result and equations (11), (13), (14), the following estimate 
then easily follows, 

~r - y ~ M ~ l ( F p ( y )  - Fq(y)). (15) 

We observe that,  when computing (15), the matrix Mp has already been factored 
for solving (11). 

When the methods defining Fp and Fq are both GBDF, then Bp = Bq and, 
therefore, ~-p ~ Fp(y) - Fq(y) - (Ap - Aq)y .  As consequence, the estimate of 
the local error does not explicitly depend on f .  As observed in [13, page 134], 
this feature makes the estimate suitable for approximating stiff problems. 

Finally, we observe that,  having fixed a tolerance for the error, the estimate 
(15), together with the usual extrapolation procedure, can be easily used for 
determining the appropriate stepsize. 

5 N u m e r i c a l  E x a m p l e s  

We here report a few numerical examples on severe stiff test problems taken 
from the literature. For comparisons, we also report the performance of LSODE 
[16] (one of the most popular ODE solvers) and of the Matlab stiff ODE solver 
ODE23S [18] on the same problems. 

We first consider the Robertson's problem, 

y~ = - .04yl  + 104y2y3, yl(0) = 1, 
= . 0 4 y l  - 1 0 % y 3  - 3.107y , y (0) = 0,  

y~ = 3. 107y22, y3(0) = 0. 
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We use the fifth-order GBDF with tolerance 10 -7 for the error. The estimate 
of the error is obtained from (15) by considering the GBDF of order seven. The 
interval [0, 2.102~ is covered with 540 steps, and stepsizes which monotonically 
increase from 10 -4 up to 5.2.1019. LSODE, with parameters m f  -- 21 and 
atol -= rtol = 10 -7, requires 637 steps to cover the same interval. On the other 
hand, ODE23S, with parameters atol = rtol = 10 -7 and analytic Jacobian, fails 
to cover the whole integration interval. 

Let us now consider the following problem due to Curtis [17, page 409], 

y ' = A ~ ( t ) y + f ( t ) ,  tE[0,10~r], y ( 0 ) =  ( ~ ) ,  

where ~, = 103, and 

/' - s i . (t)  /' cos(t) ) 
f ( t )  = \ cos( t ) /  - A " ( t )  \ s in ( t )  ' 

- ~ { cos(~'t) sin(vt)'~ 
Av(t)  = Mv(t)  1001 O / M T ( t ) ,  M~(t) = \ - s i n ( ~ t )  cos(~t) /  

- 1  

The solution of the problem is given by y(t) = (cos(t) sin(t)) T, independently 
of the value of the parameter v, but the problem is very stiff, despite the fact 
that  the solution is smooth. However, the latter feature suggests that  stable high 
order methods should perform well. For this reason, we consider the GBDF of 
order twenty on this problem. The stepsize is changed by using the estimate of 
the global errors obtained by means of the GBDF of order twenty two. Having 
fixed a tolerance 10 -5 for the error, the integration interval is covered with 
56 mesh points, stepsizes ranging from 0.5 to 0.64, and a maximum absolute 
error 2.7.10 -6. To get an idea of the performance, consider that  LSODE, with 
parameters m f  = 21 and atol = rtol = 10 -5, needs 2356 steps to cover the 
integration interval, with a maximum error 1.7. 10 -4. By using the default 
parameters rtol = 10 -3 and atol = 10 -6, ODE23S requires more than 12000 
steps to cover the integration interval, with a maximum error 2.4.10 -3. 

Finally, we consider the Van der PoPs equations, 

yl = y2,  1(0) = 2, 
Y~ = -Yl + #y2(1 - y~), y2(0) = 0, 

with the parameter tt = 103. Such equations have an attractive limit cycle, which 
is readily reached from the chosen starting point. We integrate up to T = 2.103, 
so that  a whole limit cycle is covered. By using the fifth-order GBDF, coupled 
with the GBDF of order seven for the error estimate, and a tolerance 10 -7 
for the error, the integration interval is covered with 1930 steps. The selected 
stepsizes range from 7.5- 10 -6, where the solution has the most rapid variations, 
to 3 .5 .10  I, where it is very smooth. By using the parameters m f  = 21 and 
atol = rtol = 10 -7, LSODE requires 1328 steps to cover the integration interval, 
while 5081 steps are required by ODE23S with parameters atol = rtol = 10 - r .  
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