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1 Introduction

This paper is devoted to the approximation of the eigenvalues of a regular Sturm-Liouville problem
(SLP) given by the equation

−y′′ + q(x)y = λy , x ∈ [0, π] , (1)

subject to general boundary conditions

a1y(0) − a2y
′(0) = 0 ,

b1y(π) − b2y
′(π) = 0 ,

(2)

where |a1| + |a2| 6= 0 and |b1| + |b2| 6= 0.
Many numerical techniques have been developed across the years to achieve this aim and among
them the so-called matrix methods constitute one of the most popular family of schemes. They
are based on the application of finite difference or finite element methods for reducing the SLP
(1)-(2) to a matrix eigenvalue problem. In particular, the first studies were conducted for SLPs
with Dirichlet boundary conditions

y(0) = y(π) = 0, (3)

by applying the three-point scheme and the Numerov method. It is known that the error in
the approximation of the kth eigenvalue provided by these two methods asymptotically behaves as
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O(k4h2) and O(k6h4), respectively, where h denotes the discretization stepsize. In order to improve
the accuracy of such approximations, the classical extrapolation technique may be conveniently
applied. Nevertheless, to this aim, the most commonly used technique is the asymptotic correction
which makes use of the error for q ≡ 0, known in closed form, as a “good” estimate of the error for
a generic potential q. This technique, described in more detail in the following section, has been
introduced by Paine, de Hoog and Anderssen in [11] for the three-point scheme and by Andrew
and Paine in [7] for the Numerov method. In view of its authors, it is sometimes also called the
“AAdHP correction”.
Subsequently, both the previously mentioned schemes have been also applied for the numerical
solution of SLPs with general boundary conditions. In this case, a suitable approximation of the
first order derivative of the eigenfunction, occurring in at least one extreme of the interval of inte-
gration, enters into the discrete problem. In addition, in [3] Anderssen and de Hoog studied the
effectiveness of the asymptotic correction in improving the accuracy of the numerical eigenvalues
provided by the three-point scheme. A similar approach has been conducted for the Numerov
method by Andrew in [5, 6].

Recently, in [1] a family of Boundary Value Methods (BVMs) has been introduced for the
approximation of the eigenvalues of SLPs with Dirichlet boundary conditions which has provided
positive results with respect to the corrected Numerov method. The aim of this paper is the
extension of such methods for the eigenvalue estimates of the SLP (1)-(2). The Forward and Back-
ward Differentiation Formulas, with the same order of accuracy of the applied BVM, are used for
discretizing y′(0) and y′(π), respectively. The resulting discrete problem is a generalized matrix
eigenvalue one and a compact formulation of it is given which includes all possible types of bound-
ary conditions. Moreover, the band structure of the involved matrices is preserved while the same
does not happen for the Numerov method if the SLP is subject to (2) with |a1a2|+ |b1b2| 6= 0 (see
[5] for further details).
An analysis of the error in the approximation of the kth eigenvalue provided by the proposed
schemes is reported showing that, for a BVM of order p, if q is “sufficiently” regular as we always
assume hereafter, its asymptotic behaviour is O(kp+1hp− 1

2 ) + O(kp+2hp), i.e. the same derived
in [1]. Consequently, the new methods turn out to be competitive with respect to the corrected
Numerov method at least for the lowest index eigenvalues. In addition, there is numerical evidence
that the asymptotic correction extends the string of eigenvalues for which such competitiveness
persists.

The paper is organized as follows: in Section 2 a survey of the two classical discretization
methods and of the corresponding asymptotic correction technique is reported; in Section 3 the
mentioned BVMs together with the discretization of the boundary conditions (2) are described;
Section 4 deals with the analysis of the error in the eigenvalue estimates provided by the new meth-
ods; Section 5 briefly discusses a version of the same schemes defined over an assigned nonuniform
mesh. Finally, in Section 6, some numerical results showing the possible advantages that may arise
from the use of the proposed methods are reported.

2 Three-point scheme and Numerov’s method

The three-point scheme and the Numerov method are designed for the direct approximation of the
solution of a second order differential equation of special type

y′′ = f(x, y) , x ∈ [0, π] , (4)
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without recasting it as a system of two first order ODEs. In particular, by denoting with

x0 = 0, xi = x0 + ih, i = 1, . . . , N + 1, h =
π

N + 1
,

a uniform mesh over the time integration interval, with yn the numerical approximation of y(xn)
and with fn = f(xn, yn), the three-point scheme discretizes (4) as

yn−1 − 2yn + yn+1

h2
= fn, n = 1, 2, . . . , N, (5)

while the Numerov method is

yn−1 − 2yn + yn+1

h2
=

1

12
(fn−1 + 10fn + fn+1), n = 1, 2, . . . , N. (6)

As it is well known, the order of accuracy is p = 2 for the former method and p = 4 for the latter
one.
When applied to (1), both (5) and (6) can be written in matrix form as

Mhỹ
(h) ≡

(

−
1

h2
T̃ + B̃Q̃

)

ỹ(h) = λ(h)B̃ỹ(h) , (7)

where λ(h) represents the approximation of one of the exact eigenvalues, ỹ(h) = (y0, y1, . . . , yN+1)
T

and, by denoting with J the anti-identity matrix of size N, with e
(N)
1 the first unit vector in R

N

and by posing qi = q(xi) for each i, the matrices T̃ and Q̃ are given by

T̃ =
(

e
(N)
1 | T | Je

(N)
1

)

=















1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2 1















∈ R
N×(N+2) , (8)

Q̃ =





q0

Q

qN+1



 , Q = diag (q1, . . . , qN ) .

Finally, the matrix B̃ is defined as

B̃ = (β0 | B | Jβ0) ∈ R
N×(N+2) , β0 ∈ R

N ,

with β0 = 0, the zero vector in R
N , and B = I, the identity matrix, for the three-point scheme

while β0 = 1
12e

(N)
1 and B = I + 1

12T for the Numerov method.
Concerning the boundary conditions they are handled differently depending on whether they are
of Dirichlet type or not. In particular, for the condition imposed at x = 0 :

• if a2 = 0 (i.e. y(0) = 0) then in (7) the first entry in ỹ(h) and the first column in Mh and in
B̃ are simply deleted;

• if a2 6= 0 then one equation obtained by combining a sufficiently accurate approximation of
y′(0) with (5) or (6), used with n = 0, is added to (7) (see [3, 5] for further details).
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The boundary condition at x = π is handled similarly.
Altogether these two schemes replace the continuous problem with a matrix eigenvalue one. For
example, in the simplest case of the Dirichlet boundary conditions (3), this is given by

(

−
1

h2
T + BQ

)

y(h) = λ(h)By(h), (9)

with

y(h) = (y1, . . . , yN )T . (10)

More generally, independently of the type of boundary conditions, the three-point scheme (5)
generates a classical eigenvalue problem for a tridiagonal matrix [3].
The Numerov method (6), instead, provides a generalized eigenvalue problem with tridiagonal
coefficient matrices in the case of SLPs with natural boundary conditions, that is one among (3)
and

y′(0) = y′(π) = 0 , (11)

y(0) = y′(π) = 0 , (12)

y′(0) = y(π) = 0 , (13)

while a nonlinear dependence of λ(h) occurs in the discrete problem if the coefficients in (2) are
such that |a1a2|+ |b1b2| 6= 0, [4]. In the latter case, a further handling of the discrete problem with
the goal of removing the nonlinearity thus getting again a generalized eigenvalue problem has been
introduced by Andrew in [5]. It has to be noted, however, that the proposed technique has two
important side effects. The first one is constituted by the fact that the new discrete problem no
longer involves only banded matrices. The second effect is the production of spurious numerical
eigenvalues which the author suggests should not be difficult to identify since they are characterised
by a much greater magnitude than the true ones. A rigorous proof of this assertion, however, is
currently not available.
It is known that the two methods (5) and (6) give results with O(kp+2hp) error in the computed
estimate of the eigenvalues. In order to reduce the growth in the error with increasing k, the asymp-
totic correction technique is frequently applied successfully. This method involves the computation

of the improved estimate λ̃
(h)
k for λk as

λ̃
(h)
k = λ

(h)
k + Λk − Λ

(h)
k ,

where Λk and Λ
(h)
k represent the kth exact and numerical eigenvalue for q ≡ 0, respectively. The

basic argument that has led to the development of this technique is the observation that for both

schemes the error λk−λ
(h)
k is essentially independent of the potential q. Moreover, for SLPs subject

to (3), (11)-(13) or to

y′(0) = Cy(0), y′(π) = Cy(π) , C 6= 0,

the error Λk − Λ
(h)
k is known in closed form so that the asymptotic correction can be applied at

negligible extra cost. For the remaining types of boundary conditions the eigenvalues Λk and Λ
(h)
k

are attainable as the limit of suitable numerical sequences [3, 5, 6]. When kh is “sufficiently”

small, the error presented in the corrected eigenvalues λ̃
(h)
k is shown to be O(h2) for the three-

point scheme independently of the values of a1, a2, b1, and b2 in (2), [3]. For the Numerov method,
instead, this error is O(k3h4); this is proved in [7] for SLPs with Dirichlet boundary conditions (3)
while, at least to the best of our knowledge, it is only conjectured on the basis of numerical results
for the other types of boundary conditions [4, 5].
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3 Boundary Value Methods

In [1] a family of BVMs has been introduced for the numerical approximation of the eigenvalues of
regular SLPs subject to the Dirichlet boundary condition (3). We recall that BVMs are composed
of Linear Multistep Formulas (LMF’s) combined in a suitable way, [8]. More precisely, a so-called
main formula is coupled with a set of additional ones. In particular, when applied to (4), the
(2ν)-step (ν ≥ 1) main formula of the BVMs considered in [1] reads

yn−1 − 2yn + yn+1

h2
=

2ν
∑

i=0

β
(ν,2ν)
i fn+i−ν , n = ν, ν + 1, . . . , N + 1 − ν. (14)

By setting ν = 1, the three-point scheme and the Numerov method are obtained with an appro-

priate choice of the coefficients β
(1,2)
i , so that such two methods represent particular instances of

(14).
When ν > 1 the main formula is used with the following two sets of additional ones

ys−1 − 2ys + ys+1

h2
=

2ν
∑

i=0

β
(s,2ν)
i fi , s = 1, 2, . . . , ν − 1, (15)

ym−1 − 2ym + ym+1

h2
=

2ν
∑

i=0

β
(s,2ν)
i fm−s+i, s = ν + 1, . . . , 2ν − 1, (16)

m = N + 1 + s − 2ν,

called the initial and the final methods, respectively.

For each s = 1, 2, . . . , 2ν − 1, the coefficients β
(s,2ν)
i are uniquely determined by imposing the sth

formula to have the highest attainable order of accuracy given by 2ν + 1. As proved in [1], the

so-obtained composite scheme (14)-(16) turns out to be symmetric, namely β
(s,2ν)
i = β

(2ν−s,2ν)
2ν−i ,

i = 0, 1, . . . , 2ν, s = 1, 2, . . . , ν. In particular, the main formula, which is the one corresponding to
s = ν, is a symmetric LMF and this implies that its order of accuracy is actually p = 2ν + 2 since
it must be even and not less than 2ν + 1 by construction. In the sequel, when speaking about the
order of the composite scheme (14)-(16) we will refer to the order p of its main formula. It has to
be noted that in this setting the case ν = 1 corresponds to the Numerov method and not to the
three-point scheme.

The described (2ν)-step BVM applied to (1) gives the system of equations (7) via the formal
substitution

B̃ → B̃(ν) =
(

β
(ν)
0 |B(ν)|Jβ

(ν)
0

)

(17)

where, by omitting for simplicity the second upper index for the coefficients β,

β
(ν)
0 =

(

β
(1)
0 , β

(2)
0 , . . . , β

(ν)
0 , 0, . . . , 0

)T

∈ R
N ,
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ν ην α0 α1 α2 α3 α4 α5 α6 α7

2 60 -12 -65 120 -60 20 -3
3 420 -60 -609 1260 -1050 700 -315 84 -10

Table 1: Coefficients of the (2ν + 2)-step Forward Differentiation Formula with ν = 2, 3.

B(ν) =

















































β
(1)
1 · · · β

(1)
ν · · · β

(1)
2ν−1 β

(1)
2ν

...
...

...
...

β
(ν−1)
1 · · · β

(ν−1)
ν · · · β

(ν−1)
2ν−1 β

(ν−1)
2ν

β
(ν)
1 · · · β

(ν)
ν · · · β

(ν)
1 β

(ν)
0

β
(ν)
0 β

(ν)
1 · · · β

(ν)
ν · · · β

(ν)
1 β

(ν)
0

. . .
. . .

. . .
. . .

. . .

β
(ν)
0 β

(ν)
1 · · · β

(ν)
ν · · · β

(ν)
1 β

(ν)
0

β
(ν)
0 β

(ν)
1 · · · β

(ν)
ν · · · β

(ν)
1

β
(ν−1)
2ν β

(ν−1)
2ν−1 · · · β

(ν−1)
ν · · · β

(ν−1)
1

...
...

...
...

β
(1)
2ν β

(1)
2ν−1 · · · β

(1)
ν · · · β

(1)
1

















































N×N

. (18)

Let us now discuss the discretization of the boundary conditions (2) we have considered. The
first one of them is approximated by applying the (2ν + 2)-step Forward Differentiation Formula
(FDF) given by

2ν+2
∑

i=0

αiy(xi) = hy′(0) + τL (19)

where {αi}
2ν+2
i=0 are the coefficients of the formula uniquely determined by imposing the associated

local truncation error τL to be O(h2ν+3). As examples, in Table 1 the coefficients of the FDF with
ν = 2, 3, multiplied by the corresponding factor ην , have been reported.
From the previous equation, by neglecting τL, the following approximation of the first boundary
condition is therefore obtained

a2

2ν+2
∑

i=0

αiyi = ha1y0 . (20)

Clearly, this can be equivalently written as

y0 =
a2

ha1 − a2α0

2ν+2
∑

i=1

αiyi = γLαT y(h), (21)

where y(h) is given in (10),

γL =
a2

ha1 − a2α0
and α = (α1, α2, . . . , α2ν+2, 0, . . . , 0)

T
∈ R

N . (22)

The boundary condition at the right endpoint is discretized similarly by using the (2ν + 2)-step
Backward Differentiation Formula (BDF) of order 2ν + 2 thus getting

b2

2ν+2
∑

i=0

α̂iyN−1−2ν+i = hb1yN+1 . (23)

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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The coefficients of the FDF and the BDF with the same stepnumber satisfy αj = −α̂2ν+2−j ,
j = 0, 1, . . . , 2ν + 2. In vector notation, (23) therefore becomes

yN+1 = −γR(αT J)y(h) (24)

where, we recall, J denotes the anti-identity matrix of size N and

γR =
b2

hb1 + b2α0
. (25)

Now, combining (7), (17) with (21) and (24), after some computation one obtains

My(h) = λ(h)Sy(h), (26)

where

M = −
1

h2
T + B(ν)Q + γL

(

−
1

h2
e
(N)
1 + q0β

(ν)
0

)

αT − γRJ

(

−
1

h2
e
(N)
1 + qN+1β

(ν)
0

)

αT J (27)

and
S = B(ν) + γLβ

(ν)
0 αT − γRJβ

(ν)
0 αT J. (28)

The equation (26) is the generalized eigenvalue problem that the considered BVM generates when
applied for the approximation of the eigenvalues of the SLP (1)-(2). We want to emphasize the fact
that every regular SLP subject to any possible type of boundary conditions leads to the discrete
problem (26). In particular, for the latter conditions, it is sufficient to change the values of the
coefficients γL and γR in (27) and (28) according to the assigned values of a1, a2, b1, and b2 in (2).
For example, in the case of the Dirichlet boundary condition (3) it turns out that γL = γR = 0 so
that (26) reduces to (9), again via the formal substitution (17).

4 Convergence analysis for the eigenvalue estimates

As usual, the analysis of the error in the eigenvalue approximations is based on the study of the
local truncation error associated with the formula used. This is given by

τ k = Myk − λkSyk,

where λk is the exact eigenvalue of index k while the entries of yk are the projections of the
corresponding eigenfunction, normalized to be of unit uniform norm, over the internal mesh points.
By considering the derivation of the generalized eigenvalue problem (26), one can verify that

τ k = τ̃ k + γL

(

−
1

h2
e
(N)
1 + (q(0) − λk)β

(ν)
0

)

τk,L + γRJ

(

−
1

h2
e
(N)
1 + (q(π) − λk)β

(ν)
0

)

τk,R

where, see (19), τk,L is the local truncation error corresponding to the FDF that is used, τk,R is
the same for the BDF that is used, while τ̃ k is the one corresponding to the composite scheme
(14)-(16). In particular, from the theory of LMFs follows that

τk,L = θLhp+1y
(p+1)
k (ζL), τk,R = θRhp+1y

(p+1)
k (ζR),

and that the entries of τ̃ k are given by

(τ̃ k)j =







θν hpy
(p+2)
k (ζj), j = ν, ν + 1, . . . , N + 1 − ν,

θj hp−1y
(p+1)
k (ζj), otherwise,

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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where the θ-s are the principal error coefficients of the corresponding formula. As a consequence,
if kh is “sufficiently” small and ν > 1, the leading term in the entries of τ k has the following
asymptotic behaviour [9]

(τ k)j =

{

O(hpkp+2) j = ν, . . . , N − ν,

O(hp−1kp+1), otherwise.
(29)

The aim of the following result is to establish a relation between τ k and the error in the
approximation of the kth eigenvalue. In the formulation of it we have assumed that S is invertible
and this hypothesis will be maintained also in the sequel.

Theorem 4.1 Let us assume that the matrix Z = S−1 M is diagonalizable and let Vh be the
corresponding matrix of eigenvectors normalized to be of unit length. Let λk, yk and τ k be as
above. Then

∣

∣

∣λk − λ
(h)
k

∣

∣

∣ = inf
µ∈σ(Z)

|λk − µ| ≤
cond(Vh)

∥

∥S−1
∥

∥ ‖τ k‖

‖yk‖
, (30)

where σ(Z) denotes the spectrum of Z and cond(Vh) is the condition number of Vh.

Proof. Similar to the one given for [2, Theorem 2.7] since the matrix S does not depend on the
potential q. ¤

We observe that the assumption made on Z in the previous theorem seems to be reasonable since
the SLP has simple eigenvalues and Z is a consistent discretization of the continuous problem.
The immediate consequence of (30) is the fact that in the case where cond(Vh) and

∥

∥S−1
∥

∥ are
bounded independently of N , the error in the estimate of the kth eigenvalue does have the same
asymptotic behaviour as τ k. For the schemes proposed here, it is not simple to derive theoretical
results concerning the conditioning of Vh. Nevertheless, we conjecture the existence of an upper
bound for cond(Vh) by virtue of the results of several numerical experiments we have carried out
using the Euclidean norm. As an example, in Figure 1 we report the condition number of Vh for
the 6-step BVM of order p = 8 applied to the SLPs defined by equation (1) with q(x) = (0.1+x)−2

and boundary conditions of different types.
In order to study the behaviour of ‖S−1‖2 with respect to N, some remarks about the structure

of S are necessary. As proved in [1], the matrix B(ν) in (18) can be decomposed as

B(ν) = pν(T ) + E
(ν)
0 , pν(T ) = I +

ν
∑

j=1

ωjT
j , (31)

where T is defined in (8) and ωj is the principal coefficient of the local truncation error for the

(2j)-step main formula. The nonzero entries of the remainder matrix E
(ν)
0 do not depend on N

and are localized in the two submatrices of size (ν − 1) × (2ν) positioned in its upper-left and
lower-right corners, respectively. Thus, see (28),

S = pν(T ) + E
(ν)
0 + γLβ

(ν)
0 αT − γRJβ

(ν)
0 αT J ≡ pν(T ) + Eν ,

where Eν has a structure similar to that of E
(ν)
0 with the difference that the two blocks not equal to

zero have at most size ν× (2ν +2) and its entries depend on N (i.e., on h) when |a1a2|+ |b1b2| 6= 0
due to the presence of the parameters γL and/or γR, see (22) and (25).
However, we observe that

γ̄L ≡ lim
h→0

γL =

{

− 1
α0

if a2 6= 0

0 otherwise
, γ̄R ≡ lim

h→0
γR =

{

1
α0

if b2 6= 0

0 otherwise
.

c© 2009 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Figure 1: Cond(Vh) for some boundary conditions and q(x) = (0.1 + x)−2.

Therefore, by denoting with

Ēν = E
(ν)
0 + γ̄Lβ

(ν)
0 αT − γ̄RJβ

(ν)
0 αT J, (32)

we can write

Eν = Ēν + ∆Eν(h) , with lim
h→0

‖∆Eν(h)‖ = 0 ,

S = pν(T ) + Ēν + ∆Eν(h) ≡ S̄ + ∆Eν(h) . (33)

The matrix Ēν has the same structure of Eν but its entries no longer depend on h. By considering

that S−1 =
(

I + S̄−1∆Eν(h)
)−1

S̄−1, one deduces that a sufficient condition for ‖S−1‖2 to be
bounded with respect to N is that the same holds true for ‖S̄−1‖2. The following result, similar
to [1, Lemma 4.3], is stated here for proving that the latter property is verified at least for the
(2ν)-step BVM with ν ≤ 4.

Lemma 4.2 Let T be the tridiagonal matrix given in (8), S̄ the coefficient matrix defined in (33)
for the (2ν)-step BVM and pν(T ) as in (31). Moreover, let

Fν = pν(T )(Ēν)T + Ēνpν(T ) + Ēν(Ēν)T ,

see (32), and

µ̂ν = min
ζ∈[−4,0]

p2
ν(ζ).

Then, by denoting with µ1(C) the minimum eigenvalue of a generic square matrix C, one has that
if N ≥ 6ν + 4
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(i) µ1(Fν) is independent of N ;

(ii) µ̂ν ≤ µ1(p
2
ν(T )) for each N ;

(iii) if µ̂ν + µ1(Fν) > 0 then ‖S̄−1‖2 ≤ (µ̂ν + µ1(Fν))
−

1

2 ≡ δν .

The numerical computed values of µ1(Fν) and δν for SLPs subject to the Dirichlet boundary
conditions (3) have already been reported in [1, Table 2]. For the remaining types of boundary
conditions (11)-(13), by direct inspection we find that the values of µ1(Fν) coincide and at least for
ν = 1, 2, 3, 4 they satisfy the hypothesis in the third statement of the previous lemma. In Table 2
such values of µ1(Fν) and the relative bound δν for ‖S̄−1‖2 have been listed.

ν µ̂ν µ1(Fν) δν

1 0.4444 −0.0251 1.5444
2 0.3600 −0.0918 1.9310
3 0.3217 −0.2107 3.0015
4 0.2990 −0.2933 13.2320

Table 2: Values of µ̂ν , µ1(Fν) and δν for ν = 1, 2, 3, 4.

The following theorem completes the convergence analysis for the BVMs described in the pre-
vious section applied for approximating the eigenvalues of the SLP (1)-(2). By virtue of (29), its
proof is analogous to that given for [1, Theorem 4.4].

Theorem 4.3 Let λk be the kth exact eigenvalue of the SLP (1)-(2) and λ
(h)
k be the corresponding

numerical eigenvalue provided by the (2ν)-step BVM (14)-(16), eventually coupled with (20) and/or
(23). Moreover, let Vh be the matrix of eigenvectors normalized to be of unit length of the matrix
S−1M. Then, if ν > 1, cond(Vh) and ‖S−1‖ are bounded independently of N in Euclidean norm
and if kh is “sufficiently” small, one has

|λk − λ
(h)
k | ∼ O(kp+1hp− 1

2 ) + O(kp+2hp) , p = 2ν + 2 .

5 BVMs with variable stepsize

The numerical experiments we have conducted with the methods described in Section 3 show the
presence of complex eigenvalues in the spectrum of the matrix pencil (M,S). As already observed
in [1], this drawback appears when the order p of the applied BVM increases and it seems to be
limited to at most two couples of complex conjugate pairs. Anyway, it is in contrast with the
peculiarity of a regular SLP with a real-valued potential q of having a real spectrum.
The cause of this incongruity is the presence of the auxiliary methods (15)-(16) and the discretiza-
tion of the boundary conditions via the use of the FDF and/or BDF methods.
A possible strategy for reducing such an effect consists in taking a finer mesh near the extremes of
the interval of integration, namely, the interval [0, π] is discretized as follows:

x0 = 0 , xi = xi−1 + hi , i = 1, 2, . . . , N + 1 , xN+1 = π , (34)

where










h1 ≤ h2 ≤ · · · ≤ hη ,

hi = hη , i = η + 1, . . . , N − η + 1 ,

hi = hN−i+2 , i = N − η + 2, . . . , N + 1.

(35)
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The choice of the nonuniformly distributed nodes can be made in several ways. For example, they
can be derived starting from the zeros of suitable orthogonal polynomials of degree 2η +1, as done
in [1], or arranged with a geometric progression distribution which, for η > 1, is given by

hi = ξη−i π

N − 2η + 5
, i = 1, 2, . . . , η, with ξ ∈ (0, 1),

η−1
∑

i=1

ξi = 1, (36)

see [8, pg. 284] for further details.
The LMFs occurring in the discretization of the continuous problem over the nonuniform mesh are
obtained similarly with respect to (14)-(16), (20) and (23). This leads to a generalized eigenvalue
problem

MV y(hη) = λ(hη)SV y(hη),

where MV and SV are the analogs of the matrices M and S given in (27) and (28), respectively,
and SV is assumed to be invertible.
The results of some experiments suggest that, for the nonuniform mesh (34)-(36), the best perfor-
mances of the methods are obtained by setting η = ν + 1. Moreover, for such values of η complex
eigenvalues no longer belong to the numerical spectrum.

Concerning the analysis of convergence of the so-obtained approximations λ
(hη)
k of the SLP eigen-

values, similarly to what we have done in the case of the uniform mesh, we conjecture that the
matrix MV is diagonalizable and that the condition number of the corresponding eigenvector ma-
trix is bounded with respect to N. Moreover, we assume that ‖S−1

V ‖ is bounded as well. These
properties of MV and SV are confirmed by the results of the numerical experiments we have done
with several potentials q.

Under these assumptions, arguments analogous to those used in Section 4 allow us to prove that

|λk − λ
(hη)
k | ∼ O(kp+1h

p− 1

2

η ) + O(kp+2hp
η) , k = 1, 2, . . . , N.

6 Numerical examples

The matrix methods introduced in Sections 3 and 5 have been applied to some SLPs (1)-(2) with
classical potentials and their performances have been compared with that of the corrected Numerov
method used as described in [5].

The numerical eigenvalues λ
(h)
k have been computed by using the matlab command eig for each

test and the accuracy of the so-obtained approximations has been evaluated by considering as
“exact” the eigenvalues λk provided by the matslise software package, [10]. The reported com-
parisons are all based on the number N of mesh points alone. A deeper comparison with Numerov’s
method should take into account the different structure of the matrices involved in the generalized
eigenvalue problem. In particular, in the case of SLPs subject to one of the natural boundary
conditions given in (3), (11)-(13) the matrices M and S in (27)-(28) corresponding to the higher
order methods have a larger bandwidth with respect to the analogs of Numerov’s method which
are tridiagonal. This leads to an increase of the computational cost whose exact quantification is
however rather difficult since it is strictly related to the routine of linear algebra used and to the
optimizations therein introduced.

Example 1. Let us consider the Coffey-Evans equation [12] having q(x) = 40 cos(2x) +
(20 sin(2x))2 subject to Neumann boundary conditions given by

y′(0) = 0 , y′(π) = 0 .
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Figure 2: Numerical results for the SLP in Example 1 provided by the corrected Numerov method
(dash-dotted line), the BVM of order 8 with constant (dashed line) and variable (solid line) stepsize.

The methods applied for the approximation of its eigenvalues are the 6-step BVM of order 8 both
with constant and variable (geometrically distributed, see (36)) stepsize and the corrected Numerov
method. For this problem, in fact, the asymptotic correction for the latter method can be applied

with a negligible extra cost. In Figure 2, the corresponding errors
∣

∣

∣λk − λ
(h)
k

∣

∣

∣ with k = 10, 20, 30, 40

for increasing values of N (i.e. for h → 0) have been reported.
As one can see, the proposed schemes turn out to be competitive with respect to the corrected
Numerov method even without the application of any kind of a posteriori correction. Moreover,
the results provided by the BVM with nonuniform mesh are considerably more accurate than those
given by the same method with uniform mesh. A possible explanation of this behaviour lies in the
fact that the refinement of the mesh near the extremes of the interval of integration leads the FDF
and BDF methods to provide better discretizations of the boundary conditions. For this reason,
in the sequel, we will consider only the BVMs defined over a nonuniform mesh.
Finally, it is worth mentioning that for this and the following examples, the proposed schemes with
an appropriate order of accuracy and, eventually, with the application of the asymptotic correction
technique turn out to be competitive also with respect to the corrected Numerov method improved
with one extrapolation.

Example 2. Let us consider the SLP with potential q(x) = (0.1+x)−2 and boundary conditions

y(0) = 3y′(0), y(π) = −2y′(π) .

In this case we have applied the uncorrected and the corrected BVM of order 8 with variable (ge-
ometrically distributed) stepsize. The results obtained together with those given by the corrected
Numerov method have been reported in Figure 3 where a notation similar to the one adopted in the
previous example has been used. From the first two subplots, one immediately deduces that the
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Figure 3: Numerical results for the SLP in Example 2 provided by the corrected Numerov method
(dash-dotted line), the uncorrected (dashed line) and the corrected (solid line) BVM of order 8
with variable stepsize.

uncorrected BVM is competitive with respect to the corrected Numerov method in the case where
the interest is focused in finding an accurate approximations of the first eigenvalues. Moreover, as
shown in the last two subplots, the application of the asymptotic correction technique turns out to
be successfull in improving the accuracy of the higher index eigenvalues estimates that the former
method provides. This fact allows us to extend the range of index of the eigenvalues for which
such a scheme is competitive with respect to the corrected Numerov method. In addition, we have
to recall that for the boundary conditions of the SLP considered in this example, the asymptotic
correction for Numerov’s method cannot be operated at negligible extra cost since the error for
q ≡ 0 is not known in closed form (see [5]).

Example 3. Let us consider the SLP with potential q(x) = 10 cos(2x) and boundary conditions

y(0) = 4y′(0), y(π) = 0 .

Here the approximations of the eigenvalues have been computed by applying the corrected Nu-
merov method and the corrected 4 and 6 step BVM of order 6 and 8, respectively, with variable
(geometrically distributed) stepsize. The results obtained have been reported in Figure 4 and
comments similar to the ones made in the previous example apply also in this case.

7 Conclusions

A family of BVMs has been introduced for the approximation of the eigenvalues of regular SLPs
with general boundary conditions and a compact formulation of the corresponding discrete prob-
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Figure 4: Numerical results for the SLP in Example 3 provided by the corrected Numerov method
(dash-dotted line), the corrected variable stepsize BVMs of order 6 (dashed line) and 8 (solid line).

lems has been given. The numerical experiments we have carried out show an appreciable compet-
itiveness of the proposed schemes, eventually after the application of the asymptotic correction,
with respect to the corrected Numerov method.
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