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Abstract. Piecewise Linear Systems (PLSs) are linear systems whesfctent matrix is a piecewise constant function of
the solution itself. Their general formulation has beemnddticed in [1] and their application to flows in porous media h
already been studied in [2]. Here we consider another immpbrpplication of such kind of systems, that is the numerica
solution of obstacle and parabolic obstacle problems. Tiberete formulation of such problems is expressed as arlinea
complementarity problem and it is then formulated as a $ipeeLS for the elliptic case and as a finite sequence of such
systems for the parabolic case. A semi—iterative Newtgre-tyethod is proposed for the solution of the obtained PL8gtan

is possible to prove that monotonic convergence in a finitelyar of steps is guaranteed. Some numerical results arenpees

to show the effectiveness of the proposed approach.
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INTRODUCTION

Here we are interested in the numerical solution of obstacteparabolic obstacle problems which have important
applications for example in the elasticity theory [8]. I tliterature, the classical approach used for this aim isdbas
on a finite—element discretization combined with the userofeggted relaxation methods [4] which however have
a convergence rate heavily depending on the mesh refinetnemtder to improve the efficiency, it has been later
proposed the use of multigrid (e.g. see [5, 11]) and/or oivaciet (e.g. see [9, 10]) strategies. Two approaches
recently introduced in the literature, respectively fag giliptic and the parabolic case, are presented in [9] af@]in
where the Lagrange multiplier strategy is used in order fress the problem as a higher dimension standard equality
problem; in particular in [9] such strategy is combined vathemi-iterative procedure based on a suitable successive
update of thecoincidence sefthat is the area where the solution touches the obstacligg wh[6] the solution of

the parabolic variational inequality is obtained as thatliof the solutions of a family of appropriately regularized
nonlinear parabolic equations.

In this paper, at the moment dealing with the linear casenireduce a new approach for the numerical effective
treatment of obstacle elliptic and parabolic problems Wwliias a very compact formulation and does not require the
use of Lagrange multipliers. The new method is obtained apphcation of Piecewise Linear Systems to the obstacle
problems. For the sake of simplicity and of clarity, it is @@ssumed to deal with hyper—rectangular domains because
this allows us to use a standard finite difference discrétimaHowever, the presented theory can be generalized
to more complicated geometries and also to different digat@on schemes. In fact the requirement for its safe
application is that aiM—matrix (a less restrictive condition on the matrix struetis also possible, see [3] for further
details) characterize the discrete inequality modelieggikien differential one. The method is at its initial formtibn,
for example mesh adaptation (see e.g. [7]) is an importamtmdal aspect which has not yet been investigated.

1 Work developed within the project “Numerical methods anfiveare for differential equations”.



APPLICATION OF PIECEWISE LINEAR SYSTEMSTO THE OBSTACLE PROBLEMS

The classical obstacle problem, often expressed as aigadatnequality, can be also formulated as the following
complementarity problem [8],

—du>f,  uzy,  (U-¢)Bu+f) =0, inQ )

with suitable prescribed boundary conditions, whérend ¢ are given functionsg2 is a domain in K,d > 1, and
Y is the obstaclefunction. Assuming for simplicity a hyper-rectangular gbdor Q, a standard finite difference
discretization of the Laplacian on a rectangular mesh camskd, which leads us to consider the following discrete
complementarity problem,

Tu>f, u>p (u-pT(Tu-f)=0 2)

whereu represents the unknown discrete solution &nid a square matrix. Observe thaf andp are vectors with

a numbem of entries equal to the number of inner mesh points if Diriehboundary conditions are considered (or,
more generally, to the number of mesh points where the solusi unknown) and that the vectbdepends on the
function f and on the boundary conditions. The maffibhas a useful special structure because it turns out to be an
M-matrix (i.e. it can be written asl — B with B > 0 andp(B) < a) if the solution is prescribed in at least one point on
the boundary (conversely, it has a relaxed similar strectuich anyway guarantees the robustness of the presented
approach, see [3] for further details). Thus, using a sléthlbbown vectob € R", problem (2) can be transformed into
the following standard complementarity problem,

Ty=>b, y>0,  y'(Ty-b)=0, (3)
whose solutiory can be proved to be mg8, x}, wherex = ()i is the solution of the following PLS,
[ = PX) + TP(X)]x = b, (4)
whereP(x) = diag(p(x1),..., P(Xn)), with p(x) denoting the step function

(x) = 1, ifx>0,
PIX) = 0, otherwise.

The following Picard iteration is used for iteratively siolyg system (4),
PO—0, (1-PWLTPR)xkL—p — Pkt — pixktly k=0,1,.... (5)
In fact, thanks to the structure af it is possible to prove that the sequence of matrieésis not decreasing and
that, if Pt = P thenx*1 = x [3]. Clearly, considering how(x) is defined, this implies that the iteration (5)
converges in at moststeps.
With analogous considerations, the discrete formulatfgdh@following parabolic obstacle problem,
W — Au > f, u>y, (u—¢)(w—Au—f) =0, inQ, t>0, (6)
with suitable initial and boundary conditions can be reditoeconsider, at each time step, a PLS in the form,
I + TP(X)]x = b, @)

whereb now changes at each time step anis a matrix with the same structure obtained for the statippeoblem.
Using the proofs produced for the elliptic case, it can bélyedsduced that even in this case the associated Picard
iteration has a finite and monotonic convergence behavior.



TABLE 1. Example 1. Number of
iterations (5) for various coupld€, N).
N\C |25 50 75 100

-5 9 17 25 32

-10| 5 10 13 16
=15 4 7 9 11
-20| 1 5 7 9
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FIGURE 1. Example 1. On the left the obstacle function and on the rightdorresponding numerical solution computed with
N=127,C= —5.

EXAMPLES

The torsion problem of an elastic—plastic isotropic and bgemeous cylindrical bar with square cross secfioa
(0, 1)2 is here considered as a test example for the elliptic caséoritulation as a complementarity problem is the
following [8],

—Au 2 Ca U(X,y) Z _min{xvl_xvyvl_y} = L)U(va)a (Xay) €Q= (03 1)25 (8)
(U=y)(Au+C) =0, Uulso = Ylsa,

whereu(x,y) is the unknown stress function a@ds a negative constant depending on both the rigidity of thé&enmal
and the angular rotation applied at the end cross sectiotieadylinder. Observe that the obstagievhich is shown

in the left plot in Figure 1 is actually the opposite of thetdixe of a domain point from the boundary. For the
discretization, a uniform mesh is used in the reported empsarts, with spatial stepdx = Ay = NLH, which implies
that the associated PLS has dimensioa N2. In the right plot in Figure 1 the associated numerical solutivhen

N = 127 andC = —5 is shown. In Table 1 the number of iterations (5) to get coymece is reported and it can be
observed that it is slowly increasing with = \/n. In addition, the two left plots in Figure 2 show that, the tégh
is |C|, the larger is the extension of the associated active set Aélavior explains why the required number of
iterations decreases wh#g increases, as shown in Table 1. In fact, fforincreasing, the initial approximation used
for ubecomes progressively more suited because in our impleti@mtt is chosen equal t¢r. The inner right plotin
Figure 2 shows the nicely shaped coincidence set of the Phterical solution of a variant of Problem (8), where the
case of a non constant right—hand sfdia the differential inequality is considered. The domalig bbstacle function
and the boundary condition are unchanged amgldefined as follows (see Example 5.2 in [9]),

f(xy) = —45x—x?) [1 4 sin(11mx)).

We observe that even in this case the required number ofdFteaiations is slowly depending &= /n (for N = 25
andN = 100 it is respectively equal to 7 and to.p6

As a test example for the parabolic case we consider now floerdation of a thin homogeneous membrane loaded
by a normal uniformly distributed forck constrained to lie above a body (represented by the obdtaxgon) where
it is initially positioned and fixed to the body on the boundaf the domain [8],

Ut—AU 2 f(X,y), UZ W(va)v (va)EQv O<t§TmaXa (9)
(U=yY)(u—Du—f) =0, Usa = Plsa, Yt <Tmax  UOXY) = P(xy) V(Xy)E€Q,
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FIGURE 2. The coincidence sets (black area) related to the numeridafiens of Example 1 wittC = —5 (outer—left) and
C = —20 (inner—left), of its variant case (inner-right) and of thumerical solution at time= Tax 0f Example 2 (outer—right).
Uniform discretizations used, with = 127 andAt = 20 for the parabolic case.

where in particular, as in the example considered in Seétidin [7], we assum® = (-1, 1)%, Tmax= 0.1, f(x,y) =
—4 and the obstacle function is chosen equal to the followénlipd symmetric function:

P(xy) = max{0, —0.1+ 0.6 xexg—10%r?),0.5—r},  with r = /x2+y2.

As for the previous examples, we report here some resulsredat by using a uniform grid withx = Ay = N%l

andAt = TR]—?X In particular, the coincidence set of the numerical sotuéibthe final timelax Obtained withN = 127

andNt = 20 is depicted in the outer right plot in Figure 2. The numktfd?ioard iterations required at each time step
ranges from 9 to 11
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