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Abstract. This paper describes a new practical strategy to detefhedts based on explicit Runge-Kutta schemes. This
strategy implements an operative definition of stiffnesseblzon the computation of two conditioning parameters. rfessiits,
using a modified version of the MATLAB code DOPRIS5, indicatattthe new strategy is able to detect whether a problem
could be solved more efficiently by an implicit method.
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INTRODUCTION

We consider initial value problems for systems of ordinaffedential equations

y="fty), to<t<t:, Yy(to)=Yo; (1)

whereyy is a given vector inR™. In order to suitable choose the most efficient numericabseh for
computing a numerical solution of (1), informations abduwt behavior of the solution are required. In
general, some problems are referred to as “stiff”, and marticas call the explicit numerical methods
as non stiff methods and the implicit ones as stiff methogiselating the term stiff to the definition given,
for example, in [3]:Stiff equations are problems for which explicit methods'deork. In [2] the evolution

of the notion of stiffness has been reviewed and a preciseitiefi which encompasses all the previous ones
has been presented for uniformly asymptotically stabldleras. We note that the needs of applications,
especially those arising in the construction of robust astkgal purpose codes, require nowadays a formally
precise definition of stiffness.

Early stiffness detection is important when we use exphogthods, to have the information that the
problem could be solved more efficiently using an impliciheme. Many researchers have attempted to
find a suitable way to automatically detect stiffness forledpnumerical schemes. For example in [5] the
author looks for a method that is able to recognize when te-size is limited by stability. He used two
error estimators of different orderr = O(hP), efr = O(h9), with q < h, usuallyerr < €fr, if the stepsize is
limited by stability requirements aretr > err when the stepsize is limited by accuracy requirements. More
details about this procedures are described in [3], pag.f&reva second possibility to detect stiffness based
on an approximation of the dominant eigenvalues is repofitbs technique has been implemented in the
code dopri5 [3]. In the following we recall the definition diffiess presented in [1, 2, 4] and we describe a
new stiffness detection algorithm for explicit Runge-kuttethods.

STIFFNESS DETECTION FOR EXPLICIT RUNGE-KUTTA METHODS
We consider the initial value problem

y = Aly+qt), telt,tf] (2
y(0) = o,

1 Work developed within the project “Numerical methods anfiveare for differential equations”.



We recall that a solution(t) is called asymptotically uniformly stablé, for all € > 0, there is ad > 0
such that any other solutioy(X) of (2) satisfying||y(t1) — ¥(t1)|| < o at some point$; > to, also satisfies
ly(t) —9(t)|| < e for allt > t; and, in additior]|y(t) — §(t)|| — O ast — co.

Suppose that in (2) we perturbed the initial vajgeThe corresponding perturbed ODE is:

y Ay+at),  tetots] 3)
y0) = Yyo+n,

the difference between the solution of the perturbed andiperturbed problem satisfies

Z = Atz tetot] (4)
z20) = n,

For the solution of (4) (see, e.g., [4]), we can introduce paoameters, related to the conditioning of the
problem, as follows:

Ke(to,tf, 1) = T e 12O Kelto,tr) = Hrrﬂngc(to,tf,n),
L y ®)
Wello ;M) = gy [ 12010t yello.t) = max ot ),
with 6 >0, ||| #O.
Definition: (See [1]) The initial value problem (1) is called stifffig,to+ T], T > O if
0e(T) = maX ;<5 % > 1. (6)

If the conditioning parametens:(to,ts) andy:(to,ts) are of moderate values, then the problem is said to be
well conditioned; for large values & (to,t;) the problem is ill-conditioned. The stiffness ratig(T) is used

to determine the stiffness of the problems. In order to det#ffness usingo¢(T), we need to compute a
discrete approximation of the conditioning parameterghinfollowing we describe the implementation in
the MATLAB version of the code DOPRIS5, even if the algorithwutd be implemented in every Runge-
Kutta code. Usually a numerical code computes an approiomaf y, on the gridmr = {to,t1,...,tn} with

grid spacingy, =t; —t;_3,i=1,...,N. In addition to this, we also compute an approximatiog,dhé solution

of (3), on the same grid. This allows us to approximate thalitmming parameters as follows:

1
Kn(”):mi:T?¥N(|\ziH2)a (7)
o _ 1 1 N K ' .
() = T ety Zahimexallz, [2-1]2)
(8)
o1 1 N D :
Yo (1) = Tz TN —to) Yic1 7 (zll2+ |1zi-all2),
wherez = Vi —y;, and two approximations of the stiffness ratio as follows:
N Kn (T — Kn (1T
N L A ©

It is important to detect the value af that yields a good approximation @t (T). After some extensive
numerical experiments we choogeas the dominant eigenvector Aft), with t ~ ty. This eigenvector is
computed by using the technique described in [3] as follows

i1
Yi=y(to)+h) bijkj, i=23..7,
=



Y7—Ys
Y7 — Ye|eo”

and we choose the scaling facswr= rtol « ||yo|| if ||Yo|| > 0 andsc= atol when||yp|| = 0.
In order to control the local error the code DOPRI5 uses, et step, a standard relative error estimation on

Y,
o~ 232

wheresc= Atol, + |yi| * Rtol andE(h) is an approximation of the local error. To have a good appnaxion
of y andz, we check the errors on these solutions using the sameggtrased fory.

I = SCx

This generate a new mesh selection strategy:

hnew= fac-hoig-@ ()%, a(h) = max(ey(h),ey(h), e-()).

The step is accepted & (h) < 1 andggit = n‘g’}(;ﬁ% < rg = 0.5. In the new algorithm at each step we
doubled the number of function evaluations, but this is & wevdest price to pay for explaining the behavior

of the integration and give information about the conditigrof the problem.

NUMERICAL EXAMPLES

In the following we present some numerical results to dermatesthe performance of the new stiff detection
algorithm. Comparisons are made between the original codétee modified one. The results are tabulated
in Table 1 for different values afol andatol. In the table we show the tinteof the integration when stiffness
is detected. We denote it by for the original code antl, for the new one (- in the tables means that the
code was not able to recognize the stiffness in the probledrt ameans that the code failed to compute the
solution). We run the original code DOPRI5 using the paramibnstiff = 10, in order to start the stiffness
detection at the beginning of the integration.

Example 1.1 Classical problem due to Robertson [3] which models a chahn@action. The equations and
initial values are given by

y; = —0.04y; + 10%y5ys,

Y, = 0.04y1 + 10%2y3 —3-107y3,  t€ (0,10 (10)
ys = 3- 1073,
y(0) = (1,0,0)7
Example 1.2 The Brusselator problem modeled as (for more details see fag [3])
du 2 d°u
5 =A+uv— (B+lu+a , t€[0,10
gt + (B+1)u+ ENa 0,10 (11)
vV _

_ %
S =Bu uv + a% s

where u and v denote the concentration of the reaction prtsjut and B denote the concentration of
input reagents. In our work we choose=A1,B = 3 and a = 0.02. The initial conditions are (x,0) =
1+ sin(2nx), v(x,0) = 3.

Example 1.3 The Model of Flame Propagation given by

y =y?—y%, t€(0,2/d]
Y(0) = 5. (12)

By looking at Table 1 we see that for the Robertson problentwiiecodes detect stiffness at a similar
time. Forrtol = atol = le-4, they fail to give a solution and the very big valuexgf means that the



solution u

TABLE 1. Examples1.1,1.2and 1.3

| Problem || It [ tm [ rtol || atol | Gp || kg |

- 0.10505 (*) | 1e-4 || le-4 || 4.63el12| 1.38ell
Robertson || tf = 10. 0.02661 0.03123 le-4 | 1e-7 1.00e2 1.0e0
0.03159 0.03916 le-5|| 1e-8 7.08e2 1.0e0
0.03354 0.03349 le-6 || le-10|| 7.46e3 1.0e0

0.69436 0.33411 8e-2 || 8e-2 || 6.13e0 1.0e0

Brusselator|| N=40 0.60002 0.12524 le-4 le-7 1.94el 1.0e0
ty =10 - 0.77738 le-8|| 1e-8 1.94el 1.0e0

Brusselator 0.21481 0.08467 8e-2 || 8e-2 3.92e0 || 1.0064e0
N =80 0.15044 0.04052 le-4|| 1le-7 4.85el 1.0e0
tf =10 1.4843 0.13567 le-8 || 1e-8 3.24el 1.0e0
d=1le-1 le-4 || 1le-7 3.18e0 1.51el

Flame o=1e-2 192.7248 184.5933 || 1le-4 || le-7 2.98el 1.50e3
propagation{| 6 =1e-3|| 1074.1924 || 1021.9909 || le-4 || le-7 2.91e2 1.47e5
0 =1e-4 || 10084.9898|| 10020.9922|| le-4| 1le-7 2.89e3 1.45e7

The Brusselator, N = 40, steps=498 The Brusselator, N =40, steps 409
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FIGURE 1. The numerical solution for equation (11) using the origifaft) and the modified DOPRI5 code (right).

numerical approximation is unstable. The valuexgf= 1 test out to be the same conditioning parameter
as the continuous one. We obtain similar results for the &rasor problem, but looking at Figure 1, we see
that, usingatol = rtol = 8- 102 the new algorithm provides a more accurate solution withusaillation,
with a smaller number of mesh points and an approximateivelatrore, smaller than 2-10-°. Moreover,

for N = 80, the stiffness ratio increases and the new method detefttestif at the beginning of the time
interval. For the third problem, the stiffness depends enwvtlue ofd. For d = 0.1 the problem is not stiff,
the value ofk; > 1 means that the problem has a growing solution in the intelfuae decrease the code
not only detect stiffness, but also the ill-conditioningleé problem, in fact botk, ando, grow.
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