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Abstract. This paper describes a new practical strategy to detect stiffness based on explicit Runge-Kutta schemes. This
strategy implements an operative definition of stiffness based on the computation of two conditioning parameters. Testresults,
using a modified version of the MATLAB code DOPRI5, indicate that the new strategy is able to detect whether a problem
could be solved more efficiently by an implicit method.
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INTRODUCTION

We consider initial value problems for systems of ordinary differential equations

y′ = f (t,y), t0 ≤ t ≤ t f , y(t0) = y0; (1)

where y0 is a given vector inRm. In order to suitable choose the most efficient numerical scheme for
computing a numerical solution of (1), informations about the behavior of the solution are required. In
general, some problems are referred to as “stiff”, and many authors call the explicit numerical methods
as non stiff methods and the implicit ones as stiff methods, by relating the term stiff to the definition given,
for example, in [3]:Stiff equations are problems for which explicit methods don’t work. In [2] the evolution
of the notion of stiffness has been reviewed and a precise definition which encompasses all the previous ones
has been presented for uniformly asymptotically stable problems. We note that the needs of applications,
especially those arising in the construction of robust and general purpose codes, require nowadays a formally
precise definition of stiffness.

Early stiffness detection is important when we use explicitmethods, to have the information that the
problem could be solved more efficiently using an implicit scheme. Many researchers have attempted to
find a suitable way to automatically detect stiffness for explicit numerical schemes. For example in [5] the
author looks for a method that is able to recognize when the step-size is limited by stability. He used two
error estimators of different ordererr = O(hp), ˜err = O(hq), with q< h, usuallyerr < ẽrr, if the stepsize is
limited by stability requirements and ˜err � err when the stepsize is limited by accuracy requirements. More
details about this procedures are described in [3], pag. 21 where a second possibility to detect stiffness based
on an approximation of the dominant eigenvalues is reported. This technique has been implemented in the
code dopri5 [3]. In the following we recall the definition of stiffness presented in [1, 2, 4] and we describe a
new stiffness detection algorithm for explicit Runge-Kutta methods.

STIFFNESS DETECTION FOR EXPLICIT RUNGE-KUTTA METHODS

We consider the initial value problem

y′ = A(t)y+q(t), t ∈ [t0, t f ] (2)

y(0) = y0,

1 Work developed within the project “Numerical methods and software for differential equations”.



We recall that a solutiony(t) is calledasymptotically uniformly stableif, for all ε > 0, there is aδ > 0
such that any other solution ˆy(x) of (2) satisfying‖y(t1)− ŷ(t1)‖ ≤ δ at some pointst1 ≥ t0, also satisfies
‖y(t)− ŷ(t)‖ ≤ ε for all t > t1 and, in addition‖y(t)− ŷ(t)‖ → 0 ast → ∞.
Suppose that in (2) we perturbed the initial valuey0. The corresponding perturbed ODE is:

ŷ′ = A(t)ŷ+q(t), t ∈ [t0, t f ] (3)

ŷ(0) = y0+η ,

the difference between the solution of the perturbed and theunperturbed problem satisfies

z′ = A(t)z, t ∈ [t0, t f ] (4)

z(0) = η ,

For the solution of (4) (see, e.g., [4]), we can introduce twoparameters, related to the conditioning of the
problem, as follows:

κc(t0, t f ,η) =
1

‖η‖
max

t0≤t≤t f
‖z(t)‖, κc(t0, t f ) = max

‖η‖≤δ
κc(t0, t f ,η),

γc(t0, t f ,η) =
1

(t f − t0)‖η‖

∫ t f

t0
‖z(t)‖dt, γc(t0, t f ) = max

‖η‖≤δ
γc(t0, t f ,η),

(5)

with δ > 0, ‖η‖ 6= 0.

Definition: (See [1]) The initial value problem (1) is called stiff in[t0, t0+T], T > 0 if

σc(T) = max‖η‖≤δ
κc(t0,t0+T,η)
γc(t0,t0+T,η) � 1. (6)

If the conditioning parametersκc(t0, t f ) andγc(t0, t f ) are of moderate values, then the problem is said to be
well conditioned; for large values ofκc(t0, t f ) the problem is ill-conditioned. The stiffness ratioσc(T) is used
to determine the stiffness of the problems. In order to detect stiffness usingσc(T), we need to compute a
discrete approximation of the conditioning parameters. Inthe following we describe the implementation in
the MATLAB version of the code DOPRI5, even if the algorithm could be implemented in every Runge-
Kutta code. Usually a numerical code computes an approximation of y, on the gridπ = {t0, t1, ..., tN} with
grid spacinghi = ti − ti−1, i = 1, ...,N. In addition to this, we also compute an approximation of ˆy, the solution
of (3), on the same grid. This allows us to approximate the conditioning parameters as follows:

κη(π) =
1

‖η‖2
max

i=1,...,N
(‖zi‖2), (7)

γ̂η (π) = 1
‖η‖2

1
(tN − t0)

∑N
i=1hi max(‖zi‖2,‖zi−1‖2),

γ̄η (π) = 1
‖η‖2

1
(tN − t0)

∑N
i=1

hi
2 (‖zi‖2+ ‖zi−1‖2),

(8)

wherezi = ŷi − yi, and two approximations of the stiffness ratio as follows:

σ̂η(π) =
κη(π)
γ̂η(π)

, σ̄η (π) =
κη(π)
γ̄η(π)

. (9)

It is important to detect the value ofη that yields a good approximation ofσc(T). After some extensive
numerical experiments we chooseη as the dominant eigenvector ofA(t), with t ≈ t0. This eigenvector is
computed by using the technique described in [3] as follows

Yi = y(t0)+h
i−1

∑
j=1

bi j k j , i = 2,3, ...,7,



η = sc∗
Y7−Y6

‖Y7−Y6‖∞
,

and we choose the scaling factorsc= rtol ∗ ‖y0‖ if ‖y0‖> 0 andsc= atol when‖y0‖= 0.
In order to control the local error the code DOPRI5 uses, at each step, a standard relative error estimation on
y,

ey(h) =

√

1
m

m

∑
i=1

(Ei(h)
sc

)2
,

wheresc= Atoli + |yi | ∗Rtoli andE(h) is an approximation of the local error. To have a good approximation
of ŷ andz, we check the errors on these solutions using the same strategy used fory.

This generate a new mesh selection strategy:

hnew= f ac·hold ·et(h)
1/5, et(h) = max(ey(h),eŷ(h),ez(h)).

The step is accepted ifet(h) < 1 andσdi f f =
|σ̄η−σ̂η |

max(1,σ̄η )
< rσ = 0.5. In the new algorithm at each step we

doubled the number of function evaluations, but this is a very modest price to pay for explaining the behavior
of the integration and give information about the conditioning of the problem.

NUMERICAL EXAMPLES

In the following we present some numerical results to demonstrate the performance of the new stiff detection
algorithm. Comparisons are made between the original code and the modified one. The results are tabulated
in Table 1 for different values ofrtol andatol. In the table we show the timet of the integration when stiffness
is detected. We denote it byto for the original code andtm for the new one (– in the tables means that the
code was not able to recognize the stiffness in the problem and * means that the code failed to compute the
solution). We run the original code DOPRI5 using the parameter Nonstiff = 10, in order to start the stiffness
detection at the beginning of the integration.

Example 1.1 Classical problem due to Robertson [3] which models a chemical reaction. The equations and
initial values are given by

y
′

1 =−0.04y1+104y2y3,

y
′

2 = 0.04y1+104y2y3−3 ·107y2
2, t ∈ [0,10]

y
′

3 = 3 ·107y2
2,

y(0) = (1,0,0)T .

(10)

Example 1.2 The Brusselator problem modeled as (for more details see page 6 in [3])

∂u
∂ t

= A+u2v− (B+1)u+α ∂ 2u
∂x2 , t ∈ [0,10]

∂v
∂ t

= Bu−uv2+α ∂ 2v
∂x2 ,

(11)

where u and v denote the concentration of the reaction products, A and B denote the concentration of
input reagents. In our work we choose A= 1,B = 3 and α = 0.02. The initial conditions are u(x,0) =
1+ sin(2πx), v(x,0) = 3.

Example 1.3 The Model of Flame Propagation given by

y
′
= y2− y3, t ∈ [0,2/δ ]

y(0) = δ . (12)

By looking at Table 1 we see that for the Robertson problem thetwo codes detect stiffness at a similar
time. For rtol = atol = 1e-4, they fail to give a solution and the very big value ofκη means that the



TABLE 1. Examples 1.1,1.2 and 1.3

Problem to tm rtol atol σ̂η κη

– (*) 0.10505 (*) 1e-4 1e-4 4.63e12 1.38e11
Robertson t f = 10. 0.02661 0.03123 1e-4 1e-7 1.00e2 1.0e0

0.03159 0.03916 1e-5 1e-8 7.08e2 1.0e0
0.03354 0.03349 1e-6 1e-10 7.46e3 1.0e0

0.69436 0.33411 8e-2 8e-2 6.13e0 1.0e0
Brusselator N = 40 0.60002 0.12524 1e-4 1e-7 1.94e1 1.0e0

t f = 10 – 0.77738 1e-8 1e-8 1.94e1 1.0e0

Brusselator 0.21481 0.08467 8e-2 8e-2 3.92e0 1.0064e0
N = 80 0.15044 0.04052 1e-4 1e-7 4.85e1 1.0e0
t f = 10 1.4843 0.13567 1e-8 1e-8 3.24e1 1.0e0

δ = 1e-1 – – 1e-4 1e-7 3.18e0 1.51e1
Flame δ = 1e-2 192.7248 184.5933 1e-4 1e-7 2.98e1 1.50e3

propagation δ = 1e-3 1074.1924 1021.9909 1e-4 1e-7 2.91e2 1.47e5
δ = 1e-4 10084.9898 10020.9922 1e-4 1e-7 2.89e3 1.45e7
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FIGURE 1. The numerical solution for equation (11) using the original(left) and the modified DOPRI5 code (right).

numerical approximation is unstable. The value ofκη = 1 test out to be the same conditioning parameter
as the continuous one. We obtain similar results for the Brusselator problem, but looking at Figure 1, we see
that, usingatol = rtol = 8 · 10−2 the new algorithm provides a more accurate solution withoutoscillation,
with a smaller number of mesh points and an approximate relative errorey smaller than 5.2·10−5. Moreover,
for N = 80, the stiffness ratio increases and the new method detect stiffness at the beginning of the time
interval. For the third problem, the stiffness depends on the value ofδ . Forδ = 0.1 the problem is not stiff,
the value ofκη > 1 means that the problem has a growing solution in the interval. If we decreaseδ the code
not only detect stiffness, but also the ill-conditioning ofthe problem, in fact bothκη andση grow.
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