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Abstract

We define a class of arbitrary high order symmetric one-step methods that,
when applied to Hamiltonian systems, are capable to precisely conserve the
Hamiltonian function when this is a polynomial, whatever the initial condition
and the stepsize h used.

The key idea to devise such methods is the use of the so called discrete
line integral, the discrete counterpart of the the line integral in conservative
vector fields. This approach naturally suggests a formulation of such methods
in terms of block Boundary Value Methods, although they can be as well recast
as Runge-Kutta methods, if preferred.
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1 Introduction and motivations

We are concerned with the numerical integration of Hamiltonian systems with m
degrees of freedom {

ẏ = J∇H(y),
y(t0) = y0,

J =

(
0 −I
I 0

)
, (1)
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where I is the identity matrix of dimension m. The state vector y is partitioned into
two m-length vectors p and q, the conjugate momenta and the generalized coordi-
nates respectively. Our aim is to devise new families of one-step high order methods
yn = Φh(yn−1) (h is the stepsize of integration) capable of providing numerical ap-
proximations yn to the true solution y(tn) such that

H(yn+1) = H(yn), for all n and h > 0, (2)

in the case where H(p, q) is a polynomial in the variables p and q. From a topo-
logical point of view this means that the discrete orbit generated by the numerical
method is demanded to lie on the same manifold of the continuous one, namely
H(p, q) = H(p0, q0). Thus we get the relevant property that the global portrait in the
2m dimensional phase space is preserved after the discretization of (1), whatever the
initial point y0 and the stepsize h used. Many interesting evolutionary systems deriv-
ing from different application fields are defined by polynomial Hamiltonian functions.

Example 1.1 The Fermi-Pasta-Ulam Problem. It is defined by the Hamiltonian
function

H(p, q) =
1

2

m∑
i=1

(p2
2i−1 + p2

2i) +
ω2

4

m∑
i=1

(q2i − q2i−1)
2 +

m∑
i=0

(q2i+1 − q2i)
4. (3)

This problem arises from molecular dynamics and describes the interaction of 2m
mass points linked with alternating soft nonlinear and stiff linear springs, in a one-
dimensional lattice with fixed end points (q0 = q2m+1 = 0) [6].

In the last section we will consider further examples for numerical tests1. Al-
ternately, some nonlinear Hamiltonian systems may be well approximated by poly-
nomials. Taylor expansion is a common tool to get polynomial approximations to
dynamical systems in a neighborhood of equilibrium points, especially when simple
linearization does not help in studying their stability character, as is the case of
marginally stable equilibria.

Example 1.2 Polynomial pendulum oscillator. Starting from the Hamiltonian func-
tion of the nonlinear pendulum equation

H(p, q) = 1/2p2 + 1− cos q, (4)

we retain a finite number of terms in the Taylor expansion of the cosine, thus obtain-
ing:

H(p, q) = 1
2
p2 + 1

2
q2 − 1

24
q4 (quartic pendulum oscillator),

H(p, q) = 1
2
p2 + 1

2
q2 − 1

24
q4 + 1

720
q6 (pend. oscillator of degree 6),

H(p, q) = 1
2
p2 + 1

2
q2 − 1

24
q4 + 1

720
q6 − 1

40320
q8 (pend. oscillator of degree 8),

(5)

1A more classical but puzzling example is the so called Infinitesimal Hilbert 16th problem.
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and so on. The approximation may be indefinitely improved by adding more and
more terms in the expansion. On a computer a polynomial pendulum oscillator
of high enough degree would be undistinguishable from the original problem. For
example, the last polynomial in (5) produces an approximation of order 10−10 for
|q| < 1/2 (this issue will be discussed again in the last section).

As well known, symplectic or symmetric RK-methods only conserve quadratic
Hamiltonian functions H(y) = 1

2
yT Cy, but, in general, they fail to yield conservation

for higher degree. In the general case, taking aside the roundoff errors deriving from
the use of floating point arithmetic, one can expertise two different behaviors in a
neighborhood of a critical point:

(a) nearly conservation, which means that, although the energy of the system is
not strictly conserved by the numerical method, the sequence H(yn) displays
an oscillating behavior around the theoretical value H(y0), where the amplitude
of oscillation is bounded with respect to the time n and of size O(hp), p being
the order of convergence.

(b) energy drift, that is the numerical method alters the marginal stability character
of the equilibrium by dissipating or absorbing energy thus leading to asymptotic
stability (that characterize dissipative systems) or instability.

The two situations listed above are visible in Figure 1 where we report the energy
function H(yn) obtained by applying the LobattoIIIB method of order four to the
quartic pendulum oscillator (5) (left picture) and to the system defined by the fol-
lowing Hamiltonian function:

H(p, q) =
1

3
p3 − 1

2
p +

1

30
q6 +

1

4
q4 − 1

3
q3 +

1

6
. (6)

This problem was introduced in [5] as a counterexample showing how symmet-
ric methods may display the energy drift phenomenon even when the problem is
reversible: H(−p, q) = H(p, q). 2

Of course the point (b) refers to a much more dangerous situation with respect to
the one described in point (a). Nevertheless, even the assumption of nearly conser-
vation would not prevent the occurrence of completed misleading results about the
asymptotic behavior of the solution in the phase space, as the next example shows.

2In fact, in [5] the author show that the system deriving from (6) is equivalent to a reversible
system. See also [2] for a discussion about the definition and the role of symmetry of Hamiltonian
systems in the numerical integration.

3



Figure 1: Energy function H(yn) evaluated over the numerical solution obtained by
the Lobatto IIIB method of order four applied to two Hamiltonian systems. Left
picture: the quartic pendulum oscillator has been solved with stepsize h = 1, number
of points n = 200 and initial condition [p0, q0] = [1, 0.5]. Central picture: problem (6)
has been solved with stepsize h = 1, number of points n = 1000 and initial condition
[p0, q0] = [1, 0]. The right picture confirms that the solution in the phase plane is far
from describing a closed orbit. In the first two plots the horizontal line denotes the
theoretical value of the Hamiltonian function.

Example 1.3 The system with one degree of freedom defined by the cubic Hamil-
tonian function

H(p, q) = p2 + q2 +
1

10
(p + q)3 (7)

admits the origin and the point P ∗ = (p∗, q∗) = (−5
3
,−5

3
) as equilibrium points, the

former being a center and the second a saddle point.

The left upper plot of Figure 2 shows the phase space portrait associated to system
(7): there are closed orbits surrounding the origin which are enveloped by open orbits
which embrace P ∗ and eventually depart to infinity.

This picture also reports the orbit (big dots) computed by the LobattoIIIA method
of order 4 starting from the initial point y0 = [p0, q0] = [−1, −1] and stepsize h = 1.
The numerical solution undergoes small oscillations around the level curve H(p, q) =
H(p0, q0) (see the upper right picture), but since y0 is close enough to the origin, any
point of the numerical solution remains strictly inside the stability region associated
to the origin and the stability character of the true solution is preserved.

On the other hand, as is easily argued, even a small deviation from a closed level
curve may drastically change the fate of an orbit if the dynamics takes place near
the boundary of a stability region of a given equilibrium point. This is emphasized
in the bottom pictures which show the numerical solution obtained by choosing y0 =
[−1.5643, −1.6430] (the orbit generated by such initial point is indeed closed). After
a few cycles around the origin, the numerical solution comes out of the stability region
and is pulled away towards infinity.
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Figure 2: Two orbits generated by the Lobatto IIIA method, with stepsize h = 1,
applied to system (7). The left pictures display these orbits as dots in the phase plane
(p, q), while the right pictures report the values H(yn) (the constant lines correspond
to the values of the energy of the theoretical solution). The method does introduce
oscillations around the theoretical closed orbit that may destroy the correct stability
behavior of the solution, when the amplitude of oscillations is large or when the
dynamics takes place near the boundary of the stability region of a given marginally
stable equilibrium point.

2 Extended collocation methods

The key idea to devise methods satisfying (2) is based upon the combination of the
following two ingredients: the definition of discrete line integral (introduced in [11]
and [10]) and the extended collocation conditions.

Given a vector field f : Rn → Rn, and a path σ : t ∈ [0, 1] → R2m joining two
pints in Rn, say y0 and y1, the discrete line integral associated to a given method
for the numerical solution of Initial Value Problems, is defined by the solution of the
pure quadrature problem ż = (σ̇(t))T f(σ(t)) in the time interval [0, 1], using stepsize
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h = 1. This means that the line integral∫
y0→y1

f(y) · dy ≡
∫ 1

0

(σ̇(t))T f(γ(t)) dt. (8)

is approximated by the simple quadrature formula induced by the numerical method.
By analogy, the notation

∑
γ

f ·∆y ≡
k∑

i=0

bi(γ̇(ti))
T f(γ(ti)),

will denote a discrete line integral: the coefficients bi and ti ∈ [0, 1] are the weights
and abscissae of the induced quadrature formula.

The interplay between the continuous and the discrete line integrals in associa-
tion with the differential problem and its discrete counterpart, is summarized by the
following diagram:

ẏ = f(y) −−−→
∫

y0→y1

f(y) · dyy y
y1 = Φh(y0) −−−→

∑
γ

f ·∆y

Before introducing more formally such tools and their use, we make a preliminary
remark in order to better elucidate the guide line of our investigation.

Remark 2.1 A collocation Runge-Kutta method applied to (1) and defined on the
collocation abscissae ti = t0 + cih, with 0 ≤ c1 < · · · < cs ≤ 1 is defined by means of
the following polynomial interpolation problem:{

γ(t0) = y0,

γ̇(ti) = J∇H(γ(ti)), i = 1, . . . , s.
(9)

Conditions (9) uniquely define a polynomial γ(t) of degree s which is used to advance
the solution by posing y1 = γ(t0 + h). The weights bi and the coefficients aij of the
Butcher array are defined as

bi =

∫ 1

0

`i(c)dc, aij =

∫ ci

0

`j(c)dc, with `i(c) =
∏
j 6=i

c− cj

ci − cj

.

As well known, the order p of the resulting RK is at least s + 1 (see for example [6]).
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The s-degree polynomial γ(t) may be thought of as a path in the phase space
joining the state vectors y0 and y1 = γ(t0 +h).3 Due to conservativeness of the vector
field, we have that H(y1)−H(y0) =

∫
σ
∇H(y) ·dy, where σ : [0, 1] → R2m is any path

such that σ(0) = y0 and σ(1) = y1. Choosing σ(c) = γ(t0 + ch) yields

H(y1)−H(y0) =

∫ t0+h

t0

(γ̇(t))T∇H(y(t))dt =
s∑

i=1

bi(γ̇(ti))
T∇H(y(ti)) + Es, (10)

where in the last equality we have approximated the integral by using the quadra-
ture formula

∑s
i=1 bif(ti) induced by the RK method. The error Es is propor-

tional to hp+1f (p)(ξ) where ξ is a suitable point in the interval [0, 1] and f(t) =
(γ̇(t))T∇H(y(t)). From (9) we have

(γ̇(ti))
T∇H(y(ti)) = −∇T H(y(ti))J∇H(y(ti)) = 0, for all i = 1, . . . , s,

which imply that the quadrature approximation in (10) vanishes. Therefore H(y1) =
H(y0) if and only if Es = 0, which means that the quadrature formula must be exact
when applied to the integrand polynomial (γ̇(t))T∇H(y(t)). Since the order p cannot
exceed 2s, such condition is equivalent to requiring that the degree of the integrand
is less than or equal to 2s− 1:

deg(γ)− 1 + (deg(H)− 1) deg(γ) ≤ p− 1 ≤ 2s− 1. (11)

However, since deg(γ) = s, this inequality imposes that deg(H) ≤ 2, which states the
well known result that this class of methods conserve quadratic Hamiltonian functions
while fail to conserve polynomial Hamiltonian functions of higher degree.

The computation carried out in Remark 2.1 gives us very useful suggestions on
how to modify things in order to retrive the conservativeness property (2) for high
degree polynomials. The trick is to observe that a method may be defined in such a
way as to have order p when applied to the differential equation ẏ = f(t, y) and order
d > p when applied to the pure quadrature formula ẏ = f(t). For such a method,
inequality (11) would read

deg(γ)− 1 + (deg(H)− 1) deg(γ) ≤ d− 1, (12)

which would be satisfied if the path γ has moderate degree and/or d is large enough.

The idea is then to allow the stages to be partly used to confer the method a
given order and partly to make the quadrature formula in (10) exact and null. More
precisely, as for standard collocation methods, the approximating polynomial will
interpolate all the stages even though its degree will be less than the number of
stages minus one. This means that some of the stages are deliberately positioned on
the polynomial individuated by the remaining ones. The term extended collocation
method has been coined to indicate such kind of relaxation.

3Since Ki = γ(t0 + cih), i = 1, . . . , s, the path γ also links the intermediate stages which are as
well approximations to the true solution: Ki ' y(t0 + cih).
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3 Polynomial Conservativeness

In order to construct the class of conservative methods we are looking for, it turns
out to be advantageous to reverse the flow of reasoning presented in the previous
section, that is we start by a generic polynomial path γ(t) in the phase space R2m,
impose conservativeness and then use the remaining free parameters to impose the
order conditions. As we will see, this way to proceed naturally leads to a formulation
of the methods in terms of block-Boundary Value Methods (block-BVMs), therefore
hereafter we slightly change the notation. We will recall later how to transform a
block-BVM into a Runge-Kutta method, if desired.

Consider s + 1 points zi ∈ R2m, i = 0, . . . , s, not better specified apart from z0

which is assumed to be equal to the initial condition y0. Let σ : [0, 1] → R2m be the
vector polynomial that interpolates the data (c′i, zi), i = 0, . . . , s, where 0 = c′0 < c′1 <
· · · < c′s = 1. Using Newton’s basis and divided differences, the polynomial σ reads:

σ(c) = z0 + (zs − z0)c + z[c′0, c
′
1, c

′
s]c(c− 1) + . . .

+z[c′0, c
′
1, . . . , c

′
s−1, c

′
s]c(c− 1) · · · (c− c′s−2),

(13)

where z[c′0, · · · , c′`, c
′
s] are the divided differences of the zi, defined on the nodes c′i, for

example

z[c′0, c
′
1, c

′
s] =

1

c′1(1− c′1)
(c′1zs − z1 + (1− c′1)z0) . (14)

Now we add a number of auxiliary points wj, j = 1, . . . , r, on the curve σ, on
locations different from those corresponding to the points zi. To do that, we consider
additional abscissae 0 < c̄1 < · · · < c̄r < 1, with c̄j 6= c′i for all indices i and j, and set

wj = σ(c̄j). (15)

It is worth noticing that (15) implies that each point wj is actually a linear combina-
tion of the points zi, i = 0, . . . , s (see also the examples in the next section).

As will be clear in a while, both the points zi and wj will act as stages in the
numerical method that is going to be defined. However, after specifying the nodes c̄j,
the additional points wj only depend on the choice of the points yi and do not alter the
degree of the polynomial σ. For this reason we call these points silent stages : they do
not contribute in increasing the order of the method but serve to get conservativeness.

Let k = s + r and 0 = c0 < c1 < · · · < ck = 1 be the abscissae c′i and c̄j gathered
and sorted in ascending order. We consider the interpolation quadrature formula
with weights bi, i = 0, . . . , k, defined on the nodes ci. Its degree of precision, that we
denote by d − 1 in order to be consistent with the notation used in (12), is at least
k and at most 2k − 1: this latter case corresponds to the choice of Gauss-Lobatto
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abscissae.4 Finally, by y1, y2, . . . , yk, we denote all the points zi, i = 1, . . . , s, and
wj, j = 1, . . . , r, sorted accordingly to the order introduced above for the abscissae
ci. Hence the polynomial σ : [0, 1] → R2m has degree s < k but interpolates all
the data (ci, yi), i = 0, . . . , k. We assume to use a sufficient number of silent stages
to ensure that (12) be satisfied, which implies that our quadrature formula will be

exact if applied to the integral
∫ 1

0
(σ̇(c))T∇H(σ(c))dc, for all Hamiltonian functions

of degree up to d/s.

Now we are ready to retrieve the conditions for conservativeness: we observe that
now relation (2) reads H(yk) = H(y0). We have

H(yk)−H(y0) =

∫
y0→y1

∇H(y) · dy =

∫ 1

0

(σ̇(c))T∇H(σ(c))dc =
k∑

i=0

bi(σ̇(ci))
T∇H(σ(ci))

= (yk − y0)
T

k∑
i=0

bi∇H(yi) + z[c′0, c
′
1, c

′
s]

T

k∑
i=0

bi(2ci − 1)∇H(yi)

+z[c′0, c
′
1, . . . , c

′
s−1, c

′
s]

T

k∑
i=0

bi
d

dc
c(c− 1) · · · (c− c′s−2)

∣∣∣
c=ci

∇H(yi).

Hence the conservativeness conditions are

(yk − y0)
T

k∑
i=0

bi∇H(yi) = 0,

z[c′0, c
′
1, c

′
s]

T

k∑
i=0

bi(2ci − 1)∇H(yi) = 0,

...
...

...

z[c′0, c
′
1, . . . , c

′
s−1, c

′
s]

T

k∑
i=0

bi
d

dc
c(c− 1) · · · (c− c′s−2)

∣∣∣
c=ci

∇H(yi) = 0.

(16)

The first condition in (16) is satisfied if we assume that the state vector yk is
computed by the formula

yk − y0 = h

k∑
i=0

biJ∇H(yi). (17)

In fact, multiplying both terms on the left by (yk − y0)
T JT just yields this first

condition.

4In this paper the endpoints of the interval [0, 1] have been included in the set of abscissae, since
we have assumed c0 = 0 and ck = 1. A further generalization of this approach would be to eliminate
such constraints.
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Analogously, the second condition suggests the following relation on the involved
stages:

z[c′0, c
′
1, c

′
s] = h

k∑
i=0

ηbi(2ci − 1)∇H(yi). (18)

As is clear by looking at relation (14), the left hand side of (18) is nothing but a
linear combination of the stages y0, z1 and yk. The free parameter η will be suitably
chosen in order to maximize the order of (18). Again, one easily verifies that this
equation implies the second condition.

Continuing this reasoning, we see that all the remaining conditions in (16) will
dictate analogous equations as the ones above. We have obtained s linear multistep
equations involving y0 and the k unknown stages y1 . . . , yk. We need k − s = r extra
conditions in order to close the system, but these were already settled up in (15)
and, as observed, consist of linear homogeneous difference equations with constant
coefficients in the unknown yi.

Collecting all these k equations gives rise to a system of k (vector) equations in
the k unknowns yi, i = 1, . . . , k, of the form

([a0|A]⊗ I)Ŷ − h
(
[b0|B]⊗ J

)
∇H(Ŷ ) = 0, (19)

where

Ŷ ≡


y0

y1
...
yk

 , ∇H(Ŷ ) ≡


∇H(y0)
∇H(y1)

...
∇H(yk)

 ,

I is the identity matrix of dimension 2m, while the two k vectors a0 and b0 and the
k × k matrices A and B contain the coefficients that form the linear combination of
the vectors yi and J∇H(yi) respectively. System (19) represents the standard form of
a block-BVM (refer to [3] for the general theory on Boundary Value Methods). The
columns a0 and b0 have been explicitly indicated to emphasize that they will multiply
the known vector y0; pulling them out of the coefficient matrices yields

(A⊗ I)Y − h
(
B ⊗ J

)
∇H(Y ) = −a0 ⊗ y0 + hb0 ⊗ J∇H(y0), (20)

where all the known terms have been moved to the right hand side and the block-
vector Y now only contains unknown data: Y T = [yT

1 , . . . , yT
k ].

Though a systematic study of the convergence properties of these methods and
their appropriate implementation will be carried out in a different paper, in the next
sections we use the technique described above to derive the explicit formulation of a
number of methods, compute their order, and finally apply them to solve some test
problems.
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We conclude this section by recalling how the block-BVM (19) may be recast in
Runge-Kutta form. First of all we see that the sums over each row of the matrix
[a0|A] are all null. This follows from the obvious fact that each divided difference
with at least two arguments computed along the constant values zi = 1 is null. Hence
we have −A−1a0 = [1, . . . , 1]T ≡ e (the pre-consistency condition), which allows us to
recast (20) in the form

Ŷ = e⊗ y0 + h

(
0 . . . . . . 0
A−1[b0|B]

)
⊗ J∇H(Ŷ ). (21)

Equation (21) represents a (k + 1)-stages Runge-Kutta method with the coefficients
bi, i = 0, . . . , k, taken from the last row of the matrix A−1[b0|B].

4 Extended LobattoIIIA methods and numerical

tests

In this section we derive some methods of order 2 and 4 obtained by choosing σ(c) of
degree 1 and 2. Since the points σ(0) = y0 and σ(1) = yk have been included in the
vector of stages, we can look at the following methods as extensions of LobattoIIIA
formulae, because they become the standard LobattoIIIA methods when the set of
silent stages is empty. In a sense, each one of the new methods listed below is
generated by an underlying Lobatto formula.5 Of course, one can derive arbitrary
high order conservative methods by acting on both the degree of σ and the number of
silent stages. Clearly, it turns out to be advantageous to choose a Lobatto distribution
for all the abscissae ci in the interval [0, 1], since such choice maximizes the degree of
precision of the underlying quadrature formula.

In this paper we will not discuss about how the implementation of the derived
methods should be carried out, but it is worth observing that, by the very definition,
all the silent stages may be expressed in terms of the fundamental stages so that the
resulting nonlinear system associated to the method has dimension independent on
the number of silent stages introduced.

4.1 s-stages Trapezoidal Methods

These methods correspond to the choice deg(σ) = 1 and an arbitrary number of silent
stages. They have been introduced and described in [8] where they have been applied
to the polynomial pendulum equation for several degrees. The associated Butcher

5The algebraic and topological link that there exists between the extended collocation methods
and their generating formulae will be object of a different study.
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array is
0 0 0 . . . . . . 0
c1 c1b0 c1b1 . . . . . . c1bk

c2 c2b0 c2b1 . . . . . . c2bk
...

...
...

...
ck−1 ck−1b0 ck−1b1 . . . . . . ck−1bk

1 b0 b1 . . . . . . bk

b0 b1 . . . . . . bk

=
c c bT

bT .

It is easily seen that each method under consideration is symmetric. When k = 2 we
obtain the trapezoidal method. For k = 3 and k = 5, we obtain the methods

y1 = y0 +
h

6

(
f(y0) + 4f(

y0 + y1

2
) + f(y1)

)
(22)

and, after setting c0 = 0, c1 = (1
2
− 1

14

√
21), c2 = 1

2
, c3 = (1

2
+ 1

14

√
21), c4 = 1,

y1 = y0 +
h

180

(
9f(y0) + 49f(c2y0 + c1y1) + 64f(

y0 + y1

2
) + 49f(c1y0 + c2y1) + 9f(y1)

)
,

(23)
where we have removed the explicit presence of the silent stages by replacing their

expression in terms of the first stage y0, and the last stage approximating the solution
in t0 + h that now we denote by y1. When applied to y′ = f(t), the above schemes
become the Lobatto quadrature formulae of order 4 and 8 (and therefore with degree
of precision 3 and 7) respectively. On the other hand, when applied to general ODE
problems, their order falls down to two. These formulae look similar to Mono-Impicit
Runge-Kutta schemes in that they are implicit only in y1 (see for example [4]).

The pictures in Figure 3 refer to the application of the 3-stages Trapezoidal method
(22) to the Fermi-Pasta-Ulam problem (3). The underlying quadrature rule is the
Simpson formula that has degree of precision 3. Consequently, on the basis of formula
(12), such method is appropriate for the conservation of Hamiltonian polynomial
functions of degree up to four, as confirmed by the right picture that reports the
quantity H(yn).

The aim of the second experiment is to show how these methods, under suitable
conditions, can provide a practical conservation of the Hamiltonian function even
when H(y) is not a polynomial. This is true in all the cases when the Hamiltonian

function H(y) may be approximated by a polynomial H̃(y) within a given tolerance
ε in a set D of the phase space that contains the level curve H(y) = H(y0):

|H(y)− H̃(y)| < ε, for all y ∈ D. (24)

It is clear that adding a suitable number of silent stages assures the conservation of
the energy function H̃(y). Hence, from (24) it follows that |H(yn)−H(y0)| < ε inde-
pendently of the stepsize h used. If ε matches the machine precision, the computer
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Figure 3: Application of the 3-stages Trapezoidal Method to the solution of problem
(3) with stepsize h = 1/10, number of points n = 200 and initial condition pi = 0 and
qi = (i− 1)/10, for i = 1, . . . , 6. In particular the left picture reports the components
qi, i = 1, . . . , 6 of the numerical solution, while the central picture confirms the
conservation of the Hamiltonian function along the numerical solution: H(yn) =
H(y0).

makes no practical difference between the Hamiltonian function and its polynomial
approximation. This is illustrated in Figure 4 which displays the relative error in the
numerical Hamiltonian function H(yn) computed after applying the s-stages Trape-
zoidal Methods corresponding to the values s = 2, 3, 5, 7, to the nonlinear pendulum
equation (4).

4.2 Extended Lobatto IIIA methods of order four

These methods correspond to the choice deg(σ) = 2 and an arbitrary number of silent
stages defined on a set of abscissae ci chosen according to a Lobatto distribution in
the interval [0, 1].6 The quadratic curve σ(c) is determined by the tree fundamental
stages corresponding to the abscissae c0 = 0, c(k+1)/2 = 1

2
and ck = 1.

To better elucidate the argument presented in the previous section, we repeat the
steps to devise the method in this class defined on 5 stages: 3 fundamental stages
y0, y2 and y4 corresponding to the abscissae c0 = 0, c2 = 1

2
and c4 = 1, and 2 silent

stages y1 and y3 defined on the nodes c1 = (1
2
− 1

14

√
21) and c3 = (1

2
+ 1

14

√
21) (see

the left picture of Figure 5). On the basis of (12) this method is appropriate for the
conservation of the energy for all Hamiltonian polynomial functions with degree up
to four. Therefore, in this example we assume deg(H(p, q)) ≤ 4.

The interpolation conditions σ(0) = y0, σ(1
2
) = y2, and σ(1) = y4 yield, after

6An extended collocation method of order four with 5 stages corresponding to a uniform distri-
bution of the abscissae ci, i = 1, . . . , 5, has been presented in [9].
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Figure 4: Relative error |H(yn)−H(y0)|/|H(y0)| of the numerical Hamiltonian func-
tion related to the application of four s-stages Trapezoidal Methods to the nonlinear
pendulum (4), with stepsize h = 1, number of points n = 1000 and initial condition
[p0, q0] = [1/2, π/2]. The methods differ for the number of silent stages introduced
that is, starting from the top plot, 0 (s = 2, the trapezoidal method), 1 (s = 3,
method (22)), 3 (s = 5, method (23)) and 5 (s = 7). Increasing the number of silent
stages results in a significant reduction of the error, independently of the choice of
the stepsize h.

ordering the nodes as 0, 1 and 1/2,

σ(c) = y0 + (y4 − y0)c + 2(y4 − 2y2 + y0)c(c− 1).

Consequently, we define the two additional stages y1 and y3 as

y1 = σ(c1) =
1

14
(3 +

√
21)y0 +

4

7
y2 +

1

14
(3−

√
21)y4 (25)

and

y3 = σ(c3) =
1

14
(3−

√
21)y0 +

4

7
y2 +

1

14
(3 +

√
21)y4. (26)

The line integral along the curve σ is:

H(y4)−H(y0) =

∫
y0→y4

∇H(y) · dy =

∫ 1

0

(σ̇(c))T ∇H(σ(c)) dc

= (y4 − y0)
T

∫ 1

0

∇H(σ(c)) dc + 2(y4 − 2y2 + y0)
T

∫ 1

0

(2c− 1)∇H(σ(c)) dc.

The integrand has degree less than or equal to 7 and therefore it is exactly computed
by the Lobatto quadrature formula with 5 nodes which, referred to the quadrature
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y0
y2

y4

y1

y3f b f
b

f

Figure 5: Left picture: the path σ(c) is the quadratic curve that interpolates the
points y0 y2 and y4 (big circles). The remaining stages, in this example y1 and y3

(small circles), are to be selected on σ in order to improve the degree of the underlying
quadrature formula. Right picture: the block-BVM (29)-(30) applied to the test
problem (7) provides a numerical solution (pn, qn) lying on the theoretical orbit in
the phase plane. Compare with Figure 2.

problem y′ = f(t), t ∈ [0, 1], y(0) = y0, reads:

y4 = y0 +
4∑

i=0

bif(ci), with [b0, b1, . . . , b4] =

[
1

20
,

49

180
,
16

45
,

49

180
,

1

20

]
.

As a consequence we have:

H(y4)−H(y0) = (y4−y0)
T

4∑
i=0

bi∇H(γ(ci))+2(y4−2y2+y0)
T

4∑
i=0

bi(2ci−1)∇H(γ(ci)).

Requiring that H(y4) = H(y0) results in the following two conditions:
(y4 − y0)

T

4∑
i=0

bi∇H(γ(ci)) = 0,

(y4 − 2y2 + y0)
T

4∑
i=0

bi(2ci − 1)∇H(γ(ci)) = 0.

As seen in the previous section, they come out from assuming that the stages satisfy
the following two linear multistep formulae

y4 − y0 = h
4∑

i=0

biJ∇H(γ(ci)) (27)

and

y4 − 2y2 + y0 = h

4∑
i=0

ηbi(2ci − 1)J∇H(γ(ci)). (28)
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Choosing η = 3
2

maximizes the order of formula (28). The resulting conservative
block-BVM is the collection of linear multistep formulae (27), (28), (25) and (26).
Referring to the notation in (19), it is defined by the following coefficient matrices:

[a0|A] =


− 1

14
(
√

21 + 3) 1 −4
7

0 1
14

(
√

21− 3)
1 0 −2 0 1

1
14

(
√

21− 3) 0 −4
7

1 − 1
14

(
√

21 + 3)
−1 0 0 0 1

 (29)

and

[b0|B] =


0 0 0 0 0

− 3
40

− 7
120

√
21 0 7

120

√
21 3

40

0 0 0 0 0
1
20

49
180

16
45

49
180

1
20

.

 (30)

Written as a Runge-Kutta formula, this method is defined by means of the fol-
lowing Butcher tableau:

0 0 0 0 0 0

1
2
− 1

14

√
21

13
280

− 1
280

√
21

49
360

− 1
360

√
21

8
45
− 8

315

√
21

49
360

− 13
360

√
21

1
280

− 1
280

√
21

1
2

1
16

49
360

+ 7
240

√
21

8
45

49
360

− 7
240

√
21 − 1

80

1
2

+ 1
14

√
21

13
280

+ 1
280

√
21

49
360

+ 13
360

√
21

8
45

+ 8
315

√
21

49
360

+ 1
360

√
21

1
280

+ 1
280

√
21

1 1
20

49
180

16
45

49
180

1
20

1
20

49
180

16
45

49
180

1
20

The order four can be stated by checking, for example, the simplifying conditions
listed in [7, Theorem 5.1, page 71]. This method has been applied to the test problem
(7): the absence of oscillation of H(yn)−H(y0) prevent the numerical orbit to escape
from the stability region (see the right picture of Figure 5).

By an analogous computation we have derived the order 4 method with 7 stages,
suitable for the conservation of Hamiltonian polynomials of degree up to 6 and applied
it to the test problem (6) (see Figure 6).

Conlusions

We have derived new one step symmetric methods that, applied to Hamiltonian prob-
lems, provide a precise conservation of the Hamiltonian function in the case where
this is a polynomial in the momenta p and in the generalized coordinates q. The de-
finition of such methods exploits the properties of the so called discrete line integral,
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Figure 6: The extended LobattoIIIA formula of order 4 with 7 stages has been applied
to the problem defined by the 6-degree polynomial (6). We have used stepsize h = 1,
number of points n = 500 and initial condition [1, 0]. The two pictures display the
numerical orbit in the phase plane and the numerical Hamiltonian function H(yn).

which is the discrete counterpart of line integrals that represent a common tool to
define and study conservative fields.

These methods are naturally set up in block-BVM form and may be interpreted
as extensions of well-known formulae obtained by introducing a certain number of
additional stages to get conservativeness. However, as outlined in the last section,
the presence of these extra-stages does not alter the dimension of the associated
nonlinear system that must be solved at each step.

A general convergence and stability theory on such methods, their appropriate
implementation, and their geometrical features will be the subject of a future research
[1].
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