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Abstract. Hamiltonian Boundary Value Methods are one step schemegbfdrder where the internal stages are partly
exploited to impose the order conditiorfar{damental stagésnd partly to confer the formula the property of consentimg
Hamiltonian function when this is a polynomial with a giveegdeev. The term %ilent stageShas been coined for these
latter set of extra-stages to mean that their presence ditemnse an increase of the dimension of the associatecheanli
system to be solved at each step. By considering a speciftwoghét this class, we give some details about how the solution
of the nonlinear system may be conveniently carried out amdtb compensate the effect of roundoff errors.
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INTRODUCTION

A Hamiltonian system withm degrees of freedom takes the form

{ ooy ( D ) ®

(Im is the identity matrix of dimensiom). The state vectoy splits into twom-length vectorgp andq, the conjugate
momenta and the generalized coordinates, respectively.

Its study deserves a huge interest in many application aselreh fields, where it is used to model specific
evolutionary problems where one or a number of functiongddjmg on the state variables (tirst integralg remain
constant while the system evolves. Among such functions, afrthe most important is the Hamiltonian function
itself H(y), sometimes referred to &nergy function The numerical integration of problem (1) is a very delicate
issue to handle because, in general, the method destroypewdiar properties of such systems: the conservation
of the Hamiltonian function and the symplecticity of the@sated flow. While many classes of numerical methods
have been devised in the past years, which preserve ttes fatiperty, weaker results are available in the literature
concerning the former question. For example, it is well kndlat a symplectic method only conserve quadratic
Hamiltonian function$[6] and, on the other hand, energy conserving methods (ssichisarete gradient methods)
have low order.

More recently [9, 7, 8, 2], high order one step schemes ®(yn—1) have been introduced, capable of providing
numerical approximationg, to the true solutiory(tn) such that

H(Yn+1) =H(yn), for allnandh > 0, (2)

in the case wherél(p,q) is a polynomial of degree, in the variablep andg. Such formulae are more naturally
devised in the class of block-Boundary Value Methods (biB8\s), and therefore they take the form

(A®1)Y —h(B®J)OH(Y) = —a® Yo+ hbo® JOH (yo), ®)

1 Work developed within the project “Numerical methods anfiveare for differential equations”.
2 A drift of the Energy function is experienced by most of therstard methods, see for example [5, 4].



where

Y1 OH (y1)

Y2 OH (y2
vy=| 7|, oHy= _( ) ,

Yi OH (k)

| is the identity matrix of dimensionr@, while the twok vectorsag andbg and thek x k matricesA andB contain

the coefficients that form the linear combination of the wesy; andJOH (y;) respectively. System (3) represents the
standard form of a block-BVM (refer to [3] for the general ding on Boundary Value Methods). The vector stages
yi, i = 1,...,k, approximate the true solution at the given tintes to + cih, where 0=cp < c;1 < ... <cc =1 are

the associated abscissae. The trick to achieve (2) is tohedestagesy; partly to confer the method a given order
(fundamental stagg¢sand partly to accomplish a number of orthogonality cdondi ilent stagep(see [2, 9] for
details) which guarantee formula (2) to be satisfied. Thévithey methods are called Hamiltonian Boundary Value
Methods (HBVMs in the sequel). The number, say 1, of fundamental stages solely depends on the order of the
method, while the number, say= k — s, of silent stages solely depends on the degred the Hamiltonian of the
problem. By using a Lobatto distribution of the abscisgaboth the order of the method and its degree of precigion
are maximized: in particular the order is hilev = [2(1+ {)]. As an instance, te= 2 andr = 4 there corresponds

a HBVM of order 4 and capable to conserve Hamiltonian fumdiof degree less than or equal to 6. Such a method has
been successfully used in [1] to integrate a polynomial lerotof degree 6 which causes a drift in the energy function
for several well known symmetric/symplectic methods. Writas a Runge-Kutta method, its explicit expression has
beenreportedin Table 1. Hereafter we use this specific rdetha practical example to sketch how the implementation
of HBVMs may be conveniently carried out.

IMPLEMENTING HBVMS

To each HBVM it is possible to associate an underlyax¢endedcollocation polynomialo(c) which has degres
[9]. The term “extended” has been used to stress that althoyg) = y;, fori = 0,...,k, the polynomialo fails to
satisfy the collocation conditions’(c;) = f(o(c;)) (in [2] the relation betweew (c) and the classical collocation
polynomialu(c) is elucidated). Denoting by”; and.#, the sets of indices corresponding to the fundamental aextsil
stages respectively, it follows theatc) is uniquely identified by the+ 1 interpolation conditions (cj) =Vyj, j € 1.
Therefore all silent stages turn out to be a linear combanatf fundamental stages, according to the formula

yj = a(cj), for je .%. (4)

Each of the equations (4) represents a linear multistep formula innglthe fundamental stages and a single silent
stage; in particular we note that in (4) there is no expligite of the nonlinear functioH (y). Such equations will

be inserted as components of the nonlinear vector equaiothét must be solved to advance the solution. As a
consequence, tHex k matrix B in (3) will countr null rows, that we assume as the last ones. Inserting in €3) th
factorization of the matriX yields

(L@1)Y—h(UB®J)OH(Y) = —U tag® Yo+ hU b @ JOH (yo). (5)

The matrixU 1B has still null all the entries in the lastrows, which allows us to easily split in (5) the linear and
nonlinear part.

A similar argument may be also exploited when the HBVM is stda Runge-Kutta notation: hereafter we
concentrate our attention to this last form and, in paréigub the method in Table 1, in order to better emphasize
a noticeable property that links the present family of HBVidghe family of Lobatto IlIA methods to which they
reduce whem = 0. Written as Runge Kutta method, (3) takes the form

S 0...... S
Y=e h JOH(Y). 6
® Yo+ < Afl[b0|B] > ® ( ) ( )
with Y = [yJ,YT]™ ande= [1,...,1]". Due to the structure d8, the (k+ 1) x (k-+ 1) matrix in (6) has ranis = 2.

More precisely, a direct computation shows that the two nolheigenvalues aré +i %2\/§ the same as the matrix
associated to the LOBATTO IIIA method of order 4. This circatance, which holds true for any choicesdindk,



reveals the link between a HBVM and the corresponding géingraobatto formula: a change of variables of the
formZ = (T~1®1)Y exists such that (6) may be recast as

2=é®yo+h< 0 AL )®JG(2), 7

wheree'=T e, G(Z) = (T"1@ 1)OH((T ©1)Z) andA,. is the matrix associated to the LOBATTO IlIA method of
order 4. Since the first row d& oz is indeed null, the first 5 block componentsz)toincide with the corresponding
ones in the vectoe® Yo, while the remaining two components are retrieved by sghércomplex nonlinear system
of dimension 2n. In conclusion, since the multiplicatigif  |)Z requires onlyk’?m multiplications, the bulk of the
computational cost for the solution of the nonlinear systemot heavily influenced by the numbeiof the silent
stages introduced and is comparable to that of the undgrlyabatto formuld.

Another practical aspect to mention is that the use of finithraetic causes the numerical solution to satisfy the
conservation relation (2) up to the machine precision tithesconditioning number of the nonlinear system that is
to be solved at each step. To prevent the accumulation ofdaftiarrors we apply a simple and costlessrection
technique on the approximatign which consists in a single step of a gradient descent metfloce precisely the

correctiony;, is defined byy;, = yn — a% where the scalan is obtained by the minimization of the linear part

of the scalar functio®(a) = H(y, — a%) — H(yp) and therefore assumes the vatue- W.
To conclude, we consider a non-polynomial Hamiltonian prot-
lem, namely the nonlinear pendulum equation definetl by, q) = 10 ‘ ‘ ‘ ‘
%p2+ 1-cogq), and solve it by means of the HBVM of order 2 M\ R W YN N
for several increasing values nf The aim is to show that HBVMs 10~ “\W “ﬂ»v “‘m 1y W““ﬂ'\v P{ "\ ‘W ’ﬂ\w ¥

can provide goractical conservatiorof the Hamiltonian function
even wherH (y) is not a polynomial. This is easily understood af- ;4!
ter observing that the HBVM precisely conserve the Hamidon
function of a polynomial that, under suitable SmoothnessImP- s/~~~ e e e ey
tions, approximatéd (y) better and better as long as we increase B \ o -
the number of silent stages (see [9] for details). This itnais -
evident in the picture where we have reported the relativerer '° o 200 400 600 800 1000
[H(yn) —H(Y0)|/|H (Yo)| of the numerical Hamiltonian function re-

lated to the application of the four HBVMs of order 2 corresgimg to the choices = 0,1, 3,5 (from the top to the
bottom) , with stepsizé = 1, number of points = 1000 and initial conditiofipg, qo] = [1/2, 11/2].
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3 The cost of the LU factorization of a complex system of diniem@mis 32m°/3 multiplications.



1: The Butcher tableau of the HBVM with order 4 and degree etjsion 6, written in Runge Kutta notation. Four of the 7 etagresilent which means that

the underlying nonlinear system to be solved has the samendiion as the Lobatto IIIA method of order 4 (see section 2é&bails).
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