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Abstract. Hamiltonian Boundary Value Methods are one step schemes of high order where the internal stages are partly
exploited to impose the order conditions (fundamental stages) and partly to confer the formula the property of conservingthe
Hamiltonian function when this is a polynomial with a given degreeν. The term “silent stages” has been coined for these
latter set of extra-stages to mean that their presence does not cause an increase of the dimension of the associated nonlinear
system to be solved at each step. By considering a specific method in this class, we give some details about how the solution
of the nonlinear system may be conveniently carried out and how to compensate the effect of roundoff errors.
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INTRODUCTION

A Hamiltonian system withm degrees of freedom takes the form
{

ẏ = J∇H(y),
y(t0) = y0,

J =

(
0 Im

−Im 0

)
, (1)

(Im is the identity matrix of dimensionm). The state vectory splits into twom-length vectorsp andq, the conjugate
momenta and the generalized coordinates, respectively.

Its study deserves a huge interest in many application and research fields, where it is used to model specific
evolutionary problems where one or a number of functions depending on the state variables (thefirst integrals) remain
constant while the system evolves. Among such functions, one of the most important is the Hamiltonian function
itself H(y), sometimes referred to asEnergy function. The numerical integration of problem (1) is a very delicate
issue to handle because, in general, the method destroys twopeculiar properties of such systems: the conservation
of the Hamiltonian function and the symplecticity of the associated flow. While many classes of numerical methods
have been devised in the past years, which preserve this latter property, weaker results are available in the literature
concerning the former question. For example, it is well known that a symplectic method only conserve quadratic
Hamiltonian functions2 [6] and, on the other hand, energy conserving methods (such as discrete gradient methods)
have low order.

More recently [9, 7, 8, 2], high order one step schemesyn = Φh(yn−1) have been introduced, capable of providing
numerical approximationsyn to the true solutiony(tn) such that

H(yn+1) = H(yn), for all n andh > 0, (2)

in the case whereH(p,q) is a polynomial of degreeν, in the variablesp andq. Such formulae are more naturally
devised in the class of block-Boundary Value Methods (block-BVMs), and therefore they take the form

(A⊗ I)Y−h
(
B⊗J

)
∇H(Y) = −a0⊗y0+hb0⊗J∇H(y0), (3)

1 Work developed within the project “Numerical methods and software for differential equations”.
2 A drift of the Energy function is experienced by most of the standard methods, see for example [5, 4].



where

Y ≡





y1
y2
...

yk




, ∇H(Y) ≡





∇H(y1)
∇H(y2)

...
∇H(yk)




,

I is the identity matrix of dimension 2m, while the twok vectorsa0 andb0 and thek× k matricesA andB contain
the coefficients that form the linear combination of the vectorsyi andJ∇H(yi) respectively. System (3) represents the
standard form of a block-BVM (refer to [3] for the general theory on Boundary Value Methods). The vector stages
yi , i = 1, . . . ,k, approximate the true solution at the given timesti = t0 + cih, where 0= c0 < c1 < .. . < ck = 1 are
the associated abscissae. The trick to achieve (2) is to use the k stagesyi partly to confer the method a given order
(fundamental stages), and partly to accomplish a number of orthogonality conditions (silent stages) (see [2, 9] for
details) which guarantee formula (2) to be satisfied. The deriving methods are called Hamiltonian Boundary Value
Methods (HBVMs in the sequel). The number, says+ 1, of fundamental stages solely depends on the order of the
method, while the number, sayr = k− s, of silent stages solely depends on the degreeν of the Hamiltonian of the
problem. By using a Lobatto distribution of the abscissaeci , both the order of the method and its degree of precisionν
are maximized: in particular the order is 2s, whileν = ⌊2

(
1+ r

s

)
⌋. As an instance, tos= 2 andr = 4 there corresponds

a HBVM of order 4 and capable to conserve Hamiltonian functions of degree less than or equal to 6. Such a method has
been successfully used in [1] to integrate a polynomial problem of degree 6 which causes a drift in the energy function
for several well known symmetric/symplectic methods. Written as a Runge-Kutta method, its explicit expression has
been reported in Table 1. Hereafter we use this specific method as a practical example to sketch how the implementation
of HBVMs may be conveniently carried out.

IMPLEMENTING HBVMS

To each HBVM it is possible to associate an underlyingextendedcollocation polynomialσ(c) which has degrees
[9]. The term “extended” has been used to stress that although σ(ci) = yi , for i = 0, . . . ,k, the polynomialσ fails to
satisfy the collocation conditionsσ ′(ci) = f (σ(ci)) (in [2] the relation betweenσ(c) and the classical collocation
polynomialu(c) is elucidated). Denoting byI1 andI2 the sets of indices corresponding to the fundamental and silent
stages respectively, it follows thatσ(c) is uniquely identified by thes+1 interpolation conditionsσ(c j) = y j , j ∈ I1.
Therefore all silent stages turn out to be a linear combination of fundamental stages, according to the formula

y j = σ(c j), for j ∈ I2. (4)

Each of ther equations (4) represents a linear multistep formula involving the fundamental stages and a single silent
stage; in particular we note that in (4) there is no explicit trace of the nonlinear functionH(y). Such equations will
be inserted as components of the nonlinear vector equation (3) that must be solved to advance the solution. As a
consequence, thek×k matrix B in (3) will count r null rows, that we assume as the last ones. Inserting in (3) theUL
factorization of the matrixA yields

(L⊗ I)Y−h
(
U−1B⊗J

)
∇H(Y) = −U−1a0⊗y0+hU−1b0⊗J∇H(y0). (5)

The matrixU−1B has still null all the entries in the lastr rows, which allows us to easily split in (5) the linear and
nonlinear part.

A similar argument may be also exploited when the HBVM is recast in Runge-Kutta notation: hereafter we
concentrate our attention to this last form and, in particular, to the method in Table 1, in order to better emphasize
a noticeable property that links the present family of HBVMsto the family of Lobatto IIIA methods to which they
reduce whenr = 0. Written as Runge Kutta method, (3) takes the form

Ŷ = e⊗y0+h

(
0. . . . . .0
A−1[b0|B]

)
⊗J∇H(Ŷ). (6)

with Ŷ = [yT
0 ,YT ]T ande= [1, . . . ,1]T . Due to the structure ofB, the(k+ 1)× (k+ 1) matrix in (6) has ranks= 2.

More precisely, a direct computation shows that the two non-null eigenvalues are14 ± i 1
12

√
3, the same as the matrix

associated to the LOBATTO IIIA method of order 4. This circumstance, which holds true for any choice ofs andk,



reveals the link between a HBVM and the corresponding generating Lobatto formula: a change of variables of the
form Ẑ = (T−1⊗ I)Ŷ exists such that (6) may be recast as

Ẑ = ê⊗y0+h

(
0

ALOB

)
⊗JG(Ẑ), (7)

whereê= T−1e, G(Ẑ) = (T−1⊗ I)∇H((T ⊗ I)Ẑ) andALOB is the matrix associated to the LOBATTO IIIA method of
order 4. Since the first row ofALOB is indeed null, the first 5 block components ofẐ coincide with the corresponding
ones in the vector ˆe⊗ y0, while the remaining two components are retrieved by solving a complex nonlinear system
of dimension 2m. In conclusion, since the multiplication(T ⊗ I)Ẑ requires onlyk2m multiplications, the bulk of the
computational cost for the solution of the nonlinear systemis not heavily influenced by the numberr of the silent
stages introduced and is comparable to that of the underlying Lobatto formula3.

Another practical aspect to mention is that the use of finite arithmetic causes the numerical solution to satisfy the
conservation relation (2) up to the machine precision timesthe conditioning number of the nonlinear system that is
to be solved at each step. To prevent the accumulation of roundoff errors we apply a simple and costlesscorrection
technique on the approximationyk which consists in a single step of a gradient descent method.More precisely the
correctiony∗n is defined byy∗n = yn−α ∇H(yn)

||∇H(yn)||2 where the scalarα is obtained by the minimization of the linear part

of the scalar functionΦ(α) = H(yn−α ∇H(yn))
||∇H(yn)||2 )−H(y0) and therefore assumes the valueα = H(y)−H(y0)

||∇H(yn)||2 .

To conclude, we consider a non-polynomial Hamiltonian prob-
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lem, namely the nonlinear pendulum equation defined byH(p,q) =
1
2 p2 + 1− cos(q), and solve it by means of the HBVM of order 2
for several increasing values ofr. The aim is to show that HBVMs
can provide apractical conservationof the Hamiltonian function
even whenH(y) is not a polynomial. This is easily understood af-
ter observing that the HBVM precisely conserve the Hamiltonian
function of a polynomial that, under suitable smoothness assump-
tions, approximateH(y) better and better as long as we increase
the number of silent stages (see [9] for details). This situation is
evident in the picture where we have reported the relative errors
|H(yn)−H(y0)|/|H(y0)| of the numerical Hamiltonian function re-
lated to the application of the four HBVMs of order 2 corresponding to the choicesr = 0,1,3,5 (from the top to the
bottom) , with stepsizeh = 1, number of pointsn = 1000 and initial condition[p0,q0] = [1/2,π/2].
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1: The Butcher tableau of the HBVM with order 4 and degree of precision 6, written in Runge Kutta notation. Four of the 7 stages aresilent, which means that
the underlying nonlinear system to be solved has the same dimension as the Lobatto IIIA method of order 4 (see section 2 fordetails).
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