Hamiltonian BVMs (HBVMSs): a family of “drift free”
methods for integrating polynomial Hamiltonian problems!
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Abstract. In this paper, we present a number of numerical results comgethe newly introduced class éfamiltonian
Boundary Value MethodgereafterHBVMg. Such methods are very suited for the numerical integrasfoHamiltonian
problems, since they are able to preserve, in the discratBsg the exact value of polynomial Hamiltonians. In sacivay,
a numerical drift of the Hamiltonian, sometimes experiehaten solving such problems, cannot occur.
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INTRODUCTION
Let
Y =JOH(Y),  y(0)=yo€ R, (1)
be a Hamiltonian problem, where
J= < | Im ) ,  with I, the identity matrix of dimensiom, (2)
—Im

and where the Hamiltonian functioH,(y), is a polynomial of degree. One has that, over a trajectowt), of (1)

HYH) =HOO) + [ RO (DdT=HEo) + [ OHYE)IHYD) T =Hoo, @)

due to the fact that matrikin (2) is skew-symmetric. More in general, from the constveanature of the vector field
it follows that

1
HY)=HO0) = [ OHO)Tdy=h [ o't OH(a ()t @

Yo—Y*
whereo : [0,1] — R?™is any smooth curve such that
0=y, o)=Yy

In particular, we here consider the case whefe) is a polynomial of degres, which interpolates the solution of
problem (1Y at the abscissae

O=c<C<...<Cs=1, (5)

i.e., one has:

1 Work developed within the project “Numerical methods anfiveare for differential equations”.
2 Actually, it is an approximate solution of the problem.
3 The polynomialo is not a collocation polynomial, even though it is relatedt.to



o(c) =i, i=0,...,s (6)
Let us now approximate the integral in (4) by means of a quadedormula, with knots (5) and weights

1 5 t—g

biz/ Ldt, i=0,1,...,s (7)
0 j—o,)i G —Ci

which has degree of precision ranging fragio 2s— 1, depending on the choice of the abscissae (5). In partjcha

highest precision degree is obtained by using the Lobatoisae, which we shall consider in the sedudlfe now

ask for preserving the Hamiltonian functieh(y) at the end-point of the discrete trajectory. From (4) we nexfilnen

that

/01 o' (t)TOH(o(t))dt = ibi o'(¢)"OH(o(g)) =0, (8)

i.e., that the quadrature formula is exact when applied ¢éodiven function, and that the integral itself vanishes.
However, since the integrand has degree

(s—1)+(v—1)s=vs—1,

it follows that the maximum allowed value foris 2. Indeed, it is well known that quadratic invariants aresgrved
by symmetric collocation methods. For the general casewaudd need a quadrature formula with, sky; 1 points,
where

kil g

if the corresponding Lobatto abscissae are used. For thimpa, let = k— sbe the number of the required additional
points, and let

0<1<...<Tr <1, (20)
ber additional abscissae distinct from (5). Moreover, let uisngethe followingsilent stage$11]

w = o(T), i=1...,r (11)

Consequently, the polynomiat(t), which interpolates the couples;,y;), i = 0,1,...,s, also interpolates the
couples(ti,w;),i =1,...,r. Thatis,o(t) interpolates ak+ 1 points, even though it has only dege€onsequently,
if we define the following abscissae,

{to<ti<... <t} ={c}tU{m}, (12)
which will coincide with the Lobatto abscissae of the forenaf degree R° one obtains that
1 k
J, & OTOH (@)= 3 bo'()TOH (), (13)
0 =
where, now,
O
bi:/ —Jdt, i=0,1,....k (14)
0 jojxti—h

Imposing that the sum in (13) vanish, allows us to derive m@s$h calledHamiltonian Boundary Value Methods
(HBVMS)[2], which have order &for all s=1,2,..., and are able to exactlyreserve polynomial Hamiltonians of
degreek (see (9)). In particular, whek = s (i.e., in the case of a quadratic Hamiltonian), one obtdiesltobatto

4 Different choices of the abscissae will be the subject afriiinvestigations.
5 More general choices of the abscissae will be the subjeattofd investigations.
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FIGURE 1. Problem (15): fourth-order Lobatto IIIA method (left pic&), and HBVM(6,2) (right picturely = 0.16.

IIIA methods. Moreover, a practical preservation of the Hamian over the numerical solution can be achieved also
in the case of a non-polynomial Hamiltonian since, undetable regularity assumptions, the latter can be locally
approximated, to machine precision, by a polynomial of sidfitly high degree.

NUMERICAL TESTS

The actual cost for implementing the HBVKJ§) methods above described, can be seen to depegdatier than on
k. However, we here skip such details, which will be descriipea future paper [3] and sketched in [1]. Instead, we
here report a few numerical tests, in order to show the piatéigs of such methods.

Let then consider, at first, the Hamiltonian problem chamaned by the polynomial Hamiltonian (4.1) in [6],

pPop o g ¢ 1
HPa =3 -3+t s " 3te (15)

having degreev = 6, starting at the initial poinyy = (g(0), p(0))" = (0,1)T. For such a problem, in [6] it is
experienced a numerical drift in the discrete Hamiltoniahen using the fourth-order Lobatto 111A meth®avith
stepsizeéh = 0.16. This is confirmed by the left plot in Figure 1, where a linggft in the numerical Hamiltonian is
evident. On the other hand, by using the fourth-order HBVJdlénethod with the same stepsize, the drift disappears,
as it is shown in the right plot in Figure 1, since such methatdy preserves polynomial Hamiltonians of degree 6.

The second test problem is the Fermi-Pasta-Ulam proble®g@tion 1.5.1], defined by the Hamiltonian

m
H(p,q) = P51+ P5) Qo — O2i-1)’ + § (Gair1— 0z)*, (16)
2 21 1— i 4 zi | 1— iZO 1 1
with o = gomy1 = 0, m= 3, w = 50, and starting vector
pi=0, g =(—-1)/10, i=1...,6.

In such a case, the Hamiltonian function is a polynomial afrde 4, so that the fourth-order HBVM(4,2) method,
which is used with stepsize= 0.05, is able to exactly preserve the Hamiltonian, as confirtmethe right plot in
Figure 2, whereas the fourth-order Lobatto I11A method jdes the result plotted in the left plot in the same figure.
Finally, in the following tables we list the measured nuroarbrder of convergence for the HBVM(6,2) method on
problem (15) and for the HBVM(4,2) method on problem (163pectively, which confirm their fourth-order accuracy.

6 which coincides with the HBVM(2,2) above described.



4 14

15

o
T 05 B

L L L L L L L A L 25 L L L L L L L L L

9.

10.

11.

12.

5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
t t

FIGURE 2. Problem (16): fourth-order Lobatto IlIA method (left pica) and HBVM(4,2) (right picture)y = 0.05.

| h |0.32 0.16 0.08 0.04 0.02 |
error | 2.288-102 1.487-103 9.398-10° 5.890-10% 3.684-107

| |

| order| — 3.94 3.98 4.00 4.00 |
| h |16-102 8-10°3 4-10°3 2:10°3 1073 |
| error | 3.030 1967-10°% 1.240-102 7.761-10* 4.853-107° |
order | — 3.97 3.99 4.00 4.00

| | |
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