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Abstract. In this paper, we present a number of numerical results concerning the newly introduced class ofHamiltonian
Boundary Value Methods(hereafter,HBVMs). Such methods are very suited for the numerical integration of Hamiltonian
problems, since they are able to preserve, in the discrete solution, the exact value of polynomial Hamiltonians. In sucha way,
a numerical drift of the Hamiltonian, sometimes experienced when solving such problems, cannot occur.
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INTRODUCTION

Let
y′ = J∇H(y), y(0) = y0 ∈ IR2m, (1)

be a Hamiltonian problem, where

J =

(

Im
−Im

)

, with Im the identity matrix of dimensionm, (2)

and where the Hamiltonian function,H(y), is a polynomial of degreeν. One has that, over a trajectory,y(t), of (1)

H(y(t)) = H(y0)+

∫ t

0
∇H(y(τ))T y′(τ)dτ = H(y0)+

∫ t

0
∇H(y(τ))TJ∇H(y(τ))dτ = H(y0), (3)

due to the fact that matrixJ in (2) is skew-symmetric. More in general, from the conservative nature of the vector field
it follows that

H(y∗)−H(y0) =
∫

y0→y∗
∇H(y)Tdy= h

∫ 1

0
σ ′(t)T∇H(σ(t))dt, (4)

whereσ : [0,1]→ R2m is any smooth curve such that

σ(0) = y0, σ(1) = y∗.

In particular, we here consider the case whereσ(t) is a polynomial of degrees, which interpolates the solution of
problem (1)2 at the abscissae

0 = c0 < c1 < .. . < cs = 1, (5)

i.e., one has:3

1 Work developed within the project “Numerical methods and software for differential equations”.
2 Actually, it is an approximate solution of the problem.
3 The polynomialσ is not a collocation polynomial, even though it is related toit.



σ(ci) = yi , i = 0, . . . ,s. (6)

Let us now approximate the integral in (4) by means of a quadrature formula, with knots (5) and weights

bi =

∫ 1

0

s

∏
j=0, j 6=i

t −c j

ci −c j
dt, i = 0,1, . . . ,s, (7)

which has degree of precision ranging froms to 2s−1, depending on the choice of the abscissae (5). In particular, the
highest precision degree is obtained by using the Lobatto abscissae, which we shall consider in the sequel.4 We now
ask for preserving the Hamiltonian functionH(y) at the end-point of the discrete trajectory. From (4) we require then
that

∫ 1

0
σ ′(t)T∇H(σ(t))dt =

s

∑
i=0

biσ ′(ci)
T∇H(σ(ci)) = 0, (8)

i.e., that the quadrature formula is exact when applied to the given function, and that the integral itself vanishes.
However, since the integrand has degree

(s−1)+ (ν −1)s= νs−1,

it follows that the maximum allowed value forν is 2. Indeed, it is well known that quadratic invariants are preserved
by symmetric collocation methods. For the general case, onewould need a quadrature formula with, say,k+1 points,
where

k =
⌈νs

2

⌉

, (9)

if the corresponding Lobatto abscissae are used. For this purpose, letr = k−sbe the number of the required additional
points, and let

0 < τ1 < .. . < τr < 1, (10)

ber additional abscissae distinct from (5). Moreover, let us define the followingsilent stages[11]

wi ≡ σ(τi), i = 1, . . . , r. (11)

Consequently, the polynomialσ(t), which interpolates the couples(ci ,yi), i = 0,1, . . . ,s, also interpolates the
couples(τi ,wi), i = 1, . . . , r. That is,σ(t) interpolates atk+1 points, even though it has only degrees. Consequently,
if we define the following abscissae,

{t0 < t1 < .. . < tk} = {ci}∪{τi}, (12)

which will coincide with the Lobatto abscissae of the formula of degree 2k,5 one obtains that

∫ 1

0
σ ′(t)T∇H(σ(t))dt =

k

∑
i=0

biσ ′(ti)
T ∇H(σ(ti)), (13)

where, now,

bi =

∫ 1

0

k

∏
j=0, j 6=i

t − t j

ti − t j
dt, i = 0,1, . . . ,k. (14)

Imposing that the sum in (13) vanish, allows us to derive methods, calledHamiltonian Boundary Value Methods
(HBVMs)[2], which have order 2s for all s= 1,2, . . ., and are able to exactlypreserve polynomial Hamiltonians of
degreek (see (9)). In particular, whenk = s (i.e., in the case of a quadratic Hamiltonian), one obtains the Lobatto

4 Different choices of the abscissae will be the subject of future investigations.
5 More general choices of the abscissae will be the subject of future investigations.
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FIGURE 1. Problem (15): fourth-order Lobatto IIIA method (left picture), and HBVM(6,2) (right picture),h = 0.16.

IIIA methods. Moreover, a practical preservation of the Hamiltonian over the numerical solution can be achieved also
in the case of a non-polynomial Hamiltonian since, under suitable regularity assumptions, the latter can be locally
approximated, to machine precision, by a polynomial of sufficiently high degree.

NUMERICAL TESTS

The actual cost for implementing the HBVM(k,s) methods above described, can be seen to depend ons, rather than on
k. However, we here skip such details, which will be describedin a future paper [3] and sketched in [1]. Instead, we
here report a few numerical tests, in order to show the potentialities of such methods.

Let then consider, at first, the Hamiltonian problem characterized by the polynomial Hamiltonian (4.1) in [6],

H(p,q) =
p3

3
−

p
2

+
q6

30
+

q4

4
−

q3

3
+

1
6
, (15)

having degreeν = 6, starting at the initial pointy0 ≡ (q(0), p(0))T = (0,1)T . For such a problem, in [6] it is
experienced a numerical drift in the discrete Hamiltonian,when using the fourth-order Lobatto IIIA method6 with
stepsizeh = 0.16. This is confirmed by the left plot in Figure 1, where a linear drift in the numerical Hamiltonian is
evident. On the other hand, by using the fourth-order HBVM(6,2) method with the same stepsize, the drift disappears,
as it is shown in the right plot in Figure 1, since such method exactly preserves polynomial Hamiltonians of degree 6.

The second test problem is the Fermi-Pasta-Ulam problem [7,Section I.5.1], defined by the Hamiltonian

H(p,q) =
1
2

m

∑
i=1

(

p2
2i−1 + p2

2i

)

+
ω2

4

m

∑
i=1

(q2i −q2i−1)
2 +

m

∑
i=0

(q2i+1−q2i)
4 , (16)

with q0 = q2m+1 = 0, m= 3, ω = 50, and starting vector

pi = 0, qi = (i −1)/10, i = 1, . . . ,6.

In such a case, the Hamiltonian function is a polynomial of degree 4, so that the fourth-order HBVM(4,2) method,
which is used with stepsizeh = 0.05, is able to exactly preserve the Hamiltonian, as confirmedby the right plot in
Figure 2, whereas the fourth-order Lobatto IIIA method provides the result plotted in the left plot in the same figure.

Finally, in the following tables we list the measured numerical order of convergence for the HBVM(6,2) method on
problem (15) and for the HBVM(4,2) method on problem (16), respectively, which confirm their fourth-order accuracy.

6 which coincides with the HBVM(2,2) above described.
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FIGURE 2. Problem (16): fourth-order Lobatto IIIA method (left picture) and HBVM(4,2) (right picture),h = 0.05.

h 0.32 0.16 0.08 0.04 0.02

error 2.288·10−2 1.487·10−3 9.398·10−5 5.890·10−6 3.684·10−7

order – 3.94 3.98 4.00 4.00

h 1.6 ·10−2 8 ·10−3 4 ·10−3 2 ·10−3 10−3

error 3.030 1.967·10−1 1.240·10−2 7.761·10−4 4.853·10−5

order – 3.97 3.99 4.00 4.00
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