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Abstract. In this short note we describe how to apply high order finitedénce methods to the solution of eigenvalue
problems with initial conditions. Finite differences haween successfully applied to both second order initial anthtary
value problems in ODEs. Here, based on the results preyiobshined, we outline an algorithm that at first computesadgo
approximation of the eigenvalues of a linear second ordérdntial equation with initial conditions. Then, for agywen
eigenvalue, it determines the associated eigenfunction.
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INTRODUCTION

Eigenvalue problems with boundary conditions are quiteartgnt and widely studied since they describe many
physical phenomena, both in classical and quantum mecharid also engineering problems such as wave functions
in signal processing. They are defined by means of an ODE wteplends on a parametgrcalled eigenvalue. A
classical example is the Sturm-Liouville problem [9] whishdescribed by a second order ODE and is in general
subject to separated boundary conditions. The main piiegest Sturm-Liouville problems are that the eigenvalues
are real and ordered as < A, < .... The eigenfunction associated withhasi — 1 zeros.

Different numerical approaches for solving BVODE eigenmegbroblems have been developed over the years. For
example, the shooting-type algorithms which reduce thatswl of a boundary value problem to an initial value
one (see, for example, [7]), and the so called matrix methwtsre finite difference or finite element methods are
considered to transform the original problem into the cotation of the eigenvalues of a matrix [1, 2]. Most of the
available code for boundary value problems have been adiaptbe solution of eigenvalue problems. As an example,
if the eigenvalue problem is singular, the code BVPSUITH1(] for singular boundary value problems has been
successfully applied.

In this note our interest is to determine the numerical soubf eigenvalue problems where initial conditions are
known. Although IVODE eigenvalue problems are less considién the literature, they are of practical interest. We
study the linear problem

Py +qt)y +r(t)y=2Ay, tel0, 1], yAeR 1)

subject to homogenous initial conditions

y(0) =y(0) =0, )

wherep, g andr are sufficiently smooth functions. In the following secsame describe a numerical method based on
high order finite difference schemes proposed in [4, 5, 6bfmrndary value problems, which have been generalized
to initial value problems in [3]. The idea of this approackoispproximate each derivative of the original problem by
a high order finite difference involving a finite set of diger@alues of the solution. Therefore, it is not necessary to
transform the original problem into a system of first orderE3D

Depending on the position in the interval of integration,wse symmetric finite differences for the feasible inner
points and one-sided finite differences at the boundames[g]. Furthermore, for the IVPs in ODEs of second order,
an appropriate use gf(0) has to be provided.



HIGH ORDER FINITE DIFFERENCES

Given an ODE
f(tayay’a}//)zoa te[oa 1]1 yER (3)
with initial conditions
y(0) =yo,  Y(0)=Yo, (4)
we fix a constant stepsize partition|[6f 1]
O=to<ty<---<th=1  ti=to+ih=ih, h:t";tO:%, (5)

and the following vector of approximations

Y = [3/07)/07)/17--- 7yn]7

wherey; ~ y(t) andyg andyp are the known values in (4).
Then, based on the mesh specified in (5) and for a fixed nuknveruse central finite differences (called ECDFs
in [5]) to approximate the first and the second derivative,
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wherea; and; are chosen in such a way that the formulae are consistenthtimaximum orderi
Moreover, we approximate the first and second derivativpsiaitst;, i = 1,...,k— 1, by
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and at pointsi, i =n—k+1,...,n, by
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We again choose the coefficients such that the formulae haxemam order.
Substitutingy; andy;’ in (3) we obtain the following nonlinear system

f(ti,yi,)/i,)/i/)zo, i=1...,n

that, together with the initial conditions (4), provide (ime linear case) a unique solution of the problem in the
meshpoints (5).



EIGENVALUE COMPUTATION

If we apply the numerical method of the previous section wl&it hand side of (1), we obtainrax n matrix. The
eigenvalues of such matrix are in general good approximatid the first eigenvalues of (1)-(2). Then, in order to
improve the approximation of these values and to computedhesponding eigenfunctions, we solve, for eaghf
interest, the following nonlinear problem with unknowas. . ., yn, Ak:

Pty +at)y +rt)yi =Ayi, i=1,...,n,

iy'z =1, (6)

where the last row is a normalization condition on the eigaafion.
Since for the solution of (6) a very good approximation Agris available, only few iterations are sufficient to
compute the corresponding eigenfunction too.

TEST EXAMPLE

In this section we consider the following test problem (ia titass of Sturm-Liouville problems)
-1y’ +2y-y=Ay te[0], (7)

with initial conditionsy(0) = y'(0) = 0. All the eigenvalues are real and positive.

We have computed the first 10 eigenvalues (and the corresppaigenvectors) by using the previous formulae for
the discretization of the derivatives. If we are interestesbtaining the eigenvalues with an error less than?].ehen
very small sizes (at most 30 for the 10th eigenvalue) of theffuient matrices are required. Viceversa, around 200
meshpoints were necessary to decrease the error to lesé@harin Table 1 we show the computed value of each
eigenvalue (approximated to 4 digits), the valu@oéquired to obtain the prescribed tolerance for the ordegssfhd
8, and the relative errors.

TABLE 1. Relative error obtained approximating the eigenvalueh fisted order anch.

Eigenvalue M 2 A3 Aq As As A7 Ag Ao Mo
1.001e0 1.100e1 2.901el 5.501el 8.902e1l 1.310e2 1.811e2 2.391e2 3.051e2 3.791e2
,?f‘“;rog 7.72e-4 9.36e-4 9.63e-4 9.72e-4 9.76e-4 9.79%-4 9.80e-4 8ledt 9.81e-4 9.75e-4
order 6
n=170 7.83e-4 9.48e-4 9.76e-4 9.86e-4 9.90e-4 9.92e-4 9.94e-4 95e4 9.96e-4 9.96e-4
order 8
n— 180 7.76e-4 9.41e-4 9.67e-4 9.77e-4 9.81e-4 9.83e-4 9.84e-4 85ed 9.85e-4 9.86e-4

We emphasize that, by using the orders and the number of miesbipshown in Table 1 for the above problem (7),
a much greater number of eigenvalues is approximated withrram smaller than 10*. In particular, 16 eigenvalues
are well approximated with order 4 amd= 170, 23 eigenvalues with order 6 and= 170, and 24 eigenvalues with
order 8 anch = 180. As an example, Figures 1 and 2 depict the eigenfunctisseciated with, andAg, respectively.
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FIGURE 1. Eigenfunction associated witty in (7)
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FIGURE 2. Eigenfunction associated withy in (7)
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