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Abstract. In this note we give implementation details on the compatatf the monitor function which is used inside a
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INTRODUCTION

Let us consider the numerical solution of second order $amguerturbation problems

ey’ =f(xyy), xelab], yeR, 1)
subject to the boundary conditions
9(y(a),y(b)) =0, )

where f and g are sufficiently smooth functions arad> 0 is a small parameter. Several codes have been already
developed to solve (1)-(2): among the others we recall TWPB8] and its variants [7], MIRKDC and its new
implementation BVP_SOLVER [11], COLSYS [4], COLNEW, ancttimatlab codes TOM [9] and BVP4c [10]. Most

of these codes require that the underline numerical metapdapplied to a first order system and hence transform
the second order equation (1) in an equivalent systemyatidy’ as unknowns, thus doubling the size of the discrete
problem.

In [1, 2, 3] a completely different approach, based on the@pmation of each derivative, has been proposed.
The equation (1) is solved in its original form by using evedey finite difference schemes: the second derivative
by means of generalized central differences, the first dévie by means of generalized forward, central or backward
differences (called GFDFs, ECDFs and GBDFs, respectivii\lL] a prototype of a matlab code has been proposed
using high order upwind schemes (see also [3]), i.e., GFDEBDFs depending on the sign of the coefficienyof

If the considered formulae have order- 2, then the method approximating each derivative is buitt BYM (see
[5]), namely the considered scheme (called main methog)ped to all the internal feasible points while on the first
and last points of the mesh it is substituted by schemes dedingifferent stencils (called initial and final methods).

FINITE DIFFERENCE SCHEMES

Let
a=X<X1<--<Xny1=Db 3)

be a mesh withN + 2 points,the idea developed in [1, 2, 3] is that of approxintathe BVP (1) inx,, n=1,...,N,
by considering a specific finite difference scheme (of evateqrfor each derivative in (1). The same result is

1 Work developed within the project “Numerical methods anfiveare for differential equations”.



also obtainable by approximatiyyx,) andy”(x,) with two different (i.e., based on different stencils) iqtelation
formulae. In particular, for the second derivative and s,...,N — s+ 1, we use the Lagrange polynomial of degree
2s (the order of the method) which interpolatgg) at the points,_s, . . . , Xn+s,

n+s ( ) n+s X—X;
O2s(X yiLi where Li(x) = .
Z j=n—sXi = Xj
J#i
Theny’(xn) =~ 05(Xn) z al+s i, Whereal(+s) L/ (%), i =n—s,...,n+s. We remark that these coefficients

depend on the stepS|zlas| = n S,...,N+s—1only in case of variable mesh. Fer 1 this procedure requires some
adjustment in order to approxim@t’é(xi), fori=1,...,s—1andi=N-s+2, ... ,N. Infact, for the firss— 1 points
we always have to use the stengjl. .. xos while for the last points the stencil must kg 2s.1,...Xn,1. This choice
gives rise to the initial and final formulae, respectively.

For the first derivativg’ (xn) we consider an analogous polynomial of degre@/Rich interpolateg(x) in the points
Xn—stt, - - -, Xn+stt, Wheret = —1,0,1 depends on the chosen formula among GBDF, ECDF or GFDFectgely.
Similarly to the second derivative, the coefficients of themmulae derive from the first derivative of the Lagrange
polynomial computed at, and the approximation of (x;) in the first and last points of the mesh requisgshoc
formulae.

In conclusion, the solution of (1)-(2) on the mesh (3) is oted by

€Aosy — f(X,Y,Bagy)
Pasly) = ( 9(Yo, YN+1) > % “)

where §, y) denotes the discrete solution, aAgk and Bys contain the coefficients of the formulae of ordex Zo
emphasize the relation between two methods of consecutiewe now rewrite the previous formulae by using a
Newton-like polynomial rather than the Lagrange polyndmAéways keeping in mind the approximation gf(x,),

we define

n+i—1 X—X;

S n+i—1 X—Xj
X) = y[Xn] + Xneis o s Xnpie A V[ Xasis e Xng
P2s(X) = Y[Xn] i; Y[Xn—i N+ 1]j—r|1_l|+1Xn X Y[Xn—i n+|]jl_n|7i —

where, in case of constant stepsige;, . . ., %, k] = AXy; is the forward difference of ordér Then

2Y[Xn—1,%n, Xn 1]
(Xn+1— Xn) (Xn1 — Xn—1)

= plzlsfz(xn) + 2()’3,1Y[Xn—8a s Xnps—1] + VS,ZY[Xn—s; vy Xnts])

Y’ (%n) = Pas(%n) =

S
+ 2; (Vl.lY[Xn—ia o Xngi—1] + Vi2Y[Xnsiy - ,xn+i]> 5)

n+i—1 1 n+i—1 1 n+i—1 1 n+i—1 X — X
n— n I
wherey 1 = andy 2=— .
—Xn jofmi X T Xj opi X — X Xn+i — Xn j:zn,i Xnti — Xj rﬂ,i Xnti — Xr
j#n r#j,n j#n r#j,n

j
The main advantage of this representation is the posgibbditompute an approximation of the error term with
relatively few operations. It will be particularly useful ithe next section. If constant stepsize is used, then the
coefficientsy; 1 = 0 due to symmetry whilg, = {—1/12,1/90,—1/560,1/3150} for the even orders form 4 to

10.
With a similar reasoning, we can obtain an approximatioyl ©§,) in the form

S
Y (Xn) ~ Zl <d.ly[xn—i+tv s Xngio14t] F G 2YXnsitt, - ,Xn+i+t]> ; (6)
i=
1 n+i—1 Xn — Xiit 1 n+i—1 Xn — Xi it
where &= n o and &= n_ow
Xn—itt = Xn j_p_j 1 Xn—i+t — Xj+t Xnti+t = Xn j2plj Xnti+t — Xj4t

j#n—t #n—t



COMPUTATION OF AN ESTIMATE OF THE GLOBAL ERROR

The numerical codes for BVPs often estimate the error on@ngmesh by using formulae in the same family and of
two consecutive orders. The code proposed in [1, 3] is basegwind formulae of even order from 4 to 10 and uses
formulae of ordemp + 2 to estimate the ordey solution. Lety(P) the solution of ordep, i.e., such tha®p(y(P)) = 0.
Then the effective computation of the more accurate saiutichich should be more expensive since the associated
linear system is banded with a larger bandwidth) can be adoiny considering one step of the iterative procedure
(recall that®p, > = Py +epi o)
Z0= y(p)
i=0
while [[®p2(z)|| > tol
computez; 1 from ®p(zi11) = —€p2(z)
i=i+1
end
which is monotonically convergent §6P+2). This approach is equivalent to deferred correction armhalto compute
y(P+2) without directly solving the associated system. On therdtlaad, since; is a better approximation thas®,
the differencez; —y(P) may be used as a good estimate of the error and, hence, as @mnienction to compute the
new grid (see [1]). This means that, since the computatioostl of the algorithm essentially depends on the number
of factorizations andpb, has already been used to comput®, z; is computed with no additional cost. Moreover,
alsoep2(z1) may be computed in a cheaper form by using the formulae in(@%3)—

TEST EXAMPLE

In this section we consider an example taken from the tes fidgo show the efficiency of the proposed technique. We
have updated the matlab code HOGUP, introduced in [1] toessdalar second order singular perturbation problems
including the new computation of the monitor function. Thelgem analyzed is the following (test problem 6 in [6]):

gy’ +xy = —em?cos(nx) — mxsin(mx),  xe€ [—1,1], 7

with boundary conditiong(—1) = —2,y(1) = 0. Its exact solution has a shock layer in the turning poigio near
x=0.

In (7) the coefficient ofy’ changes its sign (the upwind strategy requires the use &f GBDFs and GFDFs)
and there is ng-term (consequently, the coefficient matrix of the genetditeear system is at most weakly well
conditioned).

In Figure 1 we plot foe = 10~2 the numerical order of accuracy of both the solution of o&land ofz; computed
as explained in the previous section. The following formslased to evaluate the order of accuracy:

__log(err(n)/err(n+10)) B
ord(n) = log((n+10)/1) , n=30,...,190

We have to note that, in general, the numerical order osedllaround the theoretical ordeand the order of accuracy
of z; is only slightly better tharp.

In the Figure 2 we plot the number of points required by théalde order/variable stepsize code in order to obtain
an error estimate less than 0 The code starts with order 4 and exit tolerance?8nd proceeds with (order,exit
tolerance)= (6,10%), (8,107%) to conclude with(10,1078).

For ¢ = 10 ° the initial solutions (with 10/20 points) are completelyong and the meshlength is doubled. With
respect to the previous version of the code we observe tdar 40 may be favorably used to improve the obtained
numerical solution, provided that it is sufficiently acciera
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FIGURE 1. Test problem 6 in [6] £ = 10~2): numerical computation of the order of accuracy.

10 T
— N ——

order 4
order 6
order 8 [}
order 10

* + 0d

N :

2 10°
Q)
X 3
6 £=10"
10° £ \
\
107 ¢
10° L *
10° £
107 I I I I I
0 50 100 150 200 250 300

meshsize

FIGURE 2. Test problem 6 in [6]: step/order variation strategy to oistan error less thari0 8.
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