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INTRODUCTION

Let us consider the numerical solution of second order singular perturbation problems

εy′′ = f (x,y,y′), x∈ [a, b], y∈ R, (1)

subject to the boundary conditions
g(y(a),y(b)) = 0, (2)

where f andg are sufficiently smooth functions andε > 0 is a small parameter. Several codes have been already
developed to solve (1)-(2): among the others we recall TWPBVP [8] and its variants [7], MIRKDC and its new
implementation BVP_SOLVER [11], COLSYS [4], COLNEW, and the matlab codes TOM [9] and BVP4c [10]. Most
of these codes require that the underline numerical methodsare applied to a first order system and hence transform
the second order equation (1) in an equivalent system withy andy′ as unknowns, thus doubling the size of the discrete
problem.

In [1, 2, 3] a completely different approach, based on the approximation of each derivative, has been proposed.
The equation (1) is solved in its original form by using even order finite difference schemes: the second derivative
by means of generalized central differences, the first derivative by means of generalized forward, central or backward
differences (called GFDFs, ECDFs and GBDFs, respectively). In [1] a prototype of a matlab code has been proposed
using high order upwind schemes (see also [3]), i.e., GFDFs or GBDFs depending on the sign of the coefficient ofy′.

If the considered formulae have orderp > 2, then the method approximating each derivative is built asa BVM (see
[5]), namely the considered scheme (called main method) is applied to all the internal feasible points while on the first
and last points of the mesh it is substituted by schemes defined on different stencils (called initial and final methods).

FINITE DIFFERENCE SCHEMES

Let
a = x0 < x1 < · · · < xN+1 = b (3)

be a mesh withN + 2 points,the idea developed in [1, 2, 3] is that of approximating the BVP (1) inxn, n = 1, . . . ,N,
by considering a specific finite difference scheme (of even order) for each derivative in (1). The same result is
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also obtainable by approximatingy′(xn) andy′′(xn) with two different (i.e., based on different stencils) interpolation
formulae. In particular, for the second derivative andn = s, . . . ,N−s+1, we use the Lagrange polynomial of degree
2s (the order of the method) which interpolatesy(x) at the pointsxn−s, . . . ,xn+s,

q2s(x) =
n+s

∑
i=n−s

yiLi(x), where Li(x) =
n+s

∏
j=n−s

j 6=i

x−x j

xi −x j
.

Theny′′(xn) ≈ q′′2s(xn) =
n+s

∑
i=n−s

α(s,n)
i+s yi , whereα(s,n)

i+s = L′′
i (xn), i = n− s, . . . ,n+ s. We remark that these coefficients

depend on the stepsizeshi , i = n−s, . . . ,n+s−1 only in case of variable mesh. Fors> 1 this procedure requires some
adjustment in order to approximatey′′(xi), for i = 1, . . . ,s−1 andi = N−s+2, . . . ,N. In fact, for the firsts−1 points
we always have to use the stencilx0, . . .x2s while for the last points the stencil must bexN−2s+1, . . .xN+1. This choice
gives rise to the initial and final formulae, respectively.

For the first derivativey′(xn) we consider an analogous polynomial of degree 2swhich interpolatesy(x) in the points
xn−s+t , . . . ,xn+s+t , wheret = −1,0,1 depends on the chosen formula among GBDF, ECDF or GFDF, respectively.
Similarly to the second derivative, the coefficients of these formulae derive from the first derivative of the Lagrange
polynomial computed atxn and the approximation ofy′(xi) in the first and last points of the mesh requiresad-hoc
formulae.

In conclusion, the solution of (1)-(2) on the mesh (3) is obtained by

Φ2s(y) =

(

εA2sy− f (x,y,B2sy)
g(y0,yN+1)

)

= 0, (4)

where (x, y) denotes the discrete solution, andA2s andB2s contain the coefficients of the formulae of order 2s. To
emphasize the relation between two methods of consecutive orders we now rewrite the previous formulae by using a
Newton-like polynomial rather than the Lagrange polynomial. Always keeping in mind the approximation ofy′′(xn),
we define

p2s(x) = y[xn]+
s

∑
i=1

(

y[xn−i, . . . ,xn+i−1]
n+i−1

∏
j=n−i+1

x−x j

xn−i −x j
+y[xn−i, . . . ,xn+i ]

n+i−1

∏
j=n−i

x−x j

xn+i −x j

)

where, in case of constant stepsize,y[xi , . . . ,xi+k] = ∆kyi is the forward difference of orderl . Then

y′′(xn) ≈ p′′2s(xn) =
2y[xn−1,xn,xn+1]

(xn+1−xn)(xn+1−xn−1)
+2

s

∑
i=2

(

γi,1y[xn−i, . . . ,xn+i−1]+ γi,2y[xn−i, . . . ,xn+i ]

)

= p′′2s−2(xn)+2(γs,1y[xn−s, . . . ,xn+s−1]+ γs,2y[xn−s, . . . ,xn+s])

(5)

whereγi,1 =
1

xn−i −xn

n+i−1

∑
j=n−i+1

j 6=n

1
xn−i −x j

n+i−1

∏
r=n−i+1

r 6= j ,n

xn−xr

xn−i −xr
andγi,2 =

1
xn+i −xn

n+i−1

∑
j=n−i
j 6=n

1
xn+i −x j

n+i−1

∏
r=n−i
r 6= j ,n

xn−xr

xn+i −xr
.

The main advantage of this representation is the possibility to compute an approximation of the error term with
relatively few operations. It will be particularly useful in the next section. If constant stepsize is used, then the
coefficientsγi,1 = 0 due to symmetry whileγi,2 = {−1/12,1/90,−1/560,1/3150} for the even orders form 4 to
10.

With a similar reasoning, we can obtain an approximation ofy′(xn) in the form

y′(xn) ≈
s

∑
i=1

(

δi,1y[xn−i+t , . . . ,xn+i−1+t ]+ δi,2y[xn−i+t , . . . ,xn+i+t ]

)

, (6)

where δi,1 =
1

xn−i+t −xn

n+i−1

∏
j=n−i+1

j 6=n−t

xn−x j+t

xn−i+t −x j+t
and δi,2 =

1
xn+i+t −xn

n+i−1

∏
j=n−i
j 6=n−t

xn−x j+t

xn+i+t −x j+t
.



COMPUTATION OF AN ESTIMATE OF THE GLOBAL ERROR

The numerical codes for BVPs often estimate the error on a given mesh by using formulae in the same family and of
two consecutive orders. The code proposed in [1, 3] is based on upwind formulae of even order from 4 to 10 and uses
formulae of orderp+2 to estimate the orderp solution. Lety(p) the solution of orderp, i.e., such thatΦp(y(p)) = 0.
Then the effective computation of the more accurate solution (which should be more expensive since the associated
linear system is banded with a larger bandwidth) can be avoided by considering one step of the iterative procedure
(recall thatΦp+2 = Φp +ep+2)

z0 = y(p)

i = 0
while ‖Φp+2(zi)‖ > tol

computezi+1 from Φp(zi+1) = −ep+2(zi)
i = i +1

end
which is monotonically convergent toy(p+2). This approach is equivalent to deferred correction and allows to compute
y(p+2) without directly solving the associated system. On the other hand, sincez1 is a better approximation thany(p),
the differencez1−y(p) may be used as a good estimate of the error and, hence, as a monitor function to compute the
new grid (see [1]). This means that, since the computationalcost of the algorithm essentially depends on the number
of factorizations andΦp has already been used to computey(p), z1 is computed with no additional cost. Moreover,
alsoep+2(z1) may be computed in a cheaper form by using the formulae in (5)–(6).

TEST EXAMPLE

In this section we consider an example taken from the test page [6] to show the efficiency of the proposed technique. We
have updated the matlab code HOGUP, introduced in [1] to solve scalar second order singular perturbation problems
including the new computation of the monitor function. The problem analyzed is the following (test problem 6 in [6]):

εy′′ +xy′ = −επ2cos(πx)−πxsin(πx), x∈ [−1,1], (7)

with boundary conditionsy(−1) = −2, y(1) = 0. Its exact solution has a shock layer in the turning point region near
x = 0.

In (7) the coefficient ofy′ changes its sign (the upwind strategy requires the use of both GBDFs and GFDFs)
and there is noy-term (consequently, the coefficient matrix of the generated linear system is at most weakly well
conditioned).

In Figure 1 we plot forε = 10−2 the numerical order of accuracy of both the solution of order8 and ofz1 computed
as explained in the previous section. The following formulais used to evaluate the order of accuracy:

ord(n) =
log(err(n)/err(n+10))

log((n+10)/n)
, n = 30, . . . ,190.

We have to note that, in general, the numerical order oscillates around the theoretical orderp and the order of accuracy
of z1 is only slightly better thanp.

In the Figure 2 we plot the number of points required by the variable order/variable stepsize code in order to obtain
an error estimate less than 10−8. The code starts with order 4 and exit tolerance 10−2 and proceeds with (order,exit
tolerance)= (6,10−4),(8,10−6) to conclude with(10,10−8).

For ε = 10−9 the initial solutions (with 10/20 points) are completely wrong and the meshlength is doubled. With
respect to the previous version of the code we observe that order 10 may be favorably used to improve the obtained
numerical solution, provided that it is sufficiently accurate.
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FIGURE 1. Test problem 6 in [6] (ε = 10−2): numerical computation of the order of accuracy.
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FIGURE 2. Test problem 6 in [6]: step/order variation strategy to obtain an error less than10−8.
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