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Abstract. In this paper, we introduce a family of Linear Multistep Methods used as Boundary
Value Methods, that we call PGSCMs, for the numerical solution of initial value problems for second
order ordinary differential equations of special type. We prove rigorously that it is composed by
P -stable schemes, in a generalized sense, of arbitrarily high order. This overcome the barrier that
Lambert and Watson established in [16] on Linear Multistep Methods used in the classic way; that
is as Initial Value Methods. A numerical illustration which confirms the theoretical results of the
paper is finally given.
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1. Introduction. The numerical solution of initial value problems for second
order ordinary differential equations of special type given by

y′′(x) = f(x, y) , y(x0) = y0 , y′(x0) = y′0, x ∈ [x0, X ] ,(1.1)

having periodic and oscillatory solution y(x) ∈ Rr, has attracted much interest in
recent decades. It is well-known that these problems can be easily reformulated as
systems of first order ODEs of size 2r so that one of the several schemes currently
available in the literature for the latter type of problems can be applied for their
solution. It is evident, however, that the use of numerical schemes designed for solving
(1.1) in its original formulation is more competitive from the point of view of the
computational complexity.
In this context, the application of Linear Multistep Methods (LMMs) is one of the
classical approach. If the interval of integration is discretized with a uniform partition
with stepsize h = (X − x0)/N, then a k-step LMM with coefficients αj ’s and βj ’s
replace the equation in (1.1) with the following difference equation

k
∑

j=0

αjyn+j = h2
k
∑

j=0

βjy
′′
n+j ,(1.2)

where yn ≈ y(xn), y
′′
n = f(xn, yn), with xn = x0 + nh, for all n = 0, 1, . . . , N.

When the problem to be solved is stiff, namely when its solution is a combination of
components with dominant short frequencies and components with large frequencies
and small amplitudes, the use of schemes satisfying “good” stability properties is
mandatory. Following the idea of Dahlquist, a rigorous definition of them was given
by Lambert and Watson in [16]. In such paper, the authors applied a linear stability
analysis of (1.2) based on the following test equation

y′′ = −λ2y , λ ∈ R ,(1.3)

whose general exact solution, given by y(x) = A cos(λx) +B sin(λx), is periodic with
period 2π/λ (actually with the only exception of the cases λ = 0 or A = B = 0). The
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Italy (l.aceto@dma.unipi.it, ghelardoni@dma.unipi.it, cecilia.magherini@dma.unipi.it)

1



2 L. Aceto, P. Ghelardoni, and C. Magherini

aim of the analysis is then that of finding the conditions for which the corresponding
numerical solution has (essentially) the same qualitative behaviour.
This led to the definition of interval of periodicity and of P -stability of a method
which ensures that the numerical solution has the desired behaviour independently of
the used stepsize. In the same paper [16], however, the authors established that the
order of a P -stable LMM, used as Initial Value Method (IVM), cannot exceed two
which is exactly the analogous of the famous second Dahlquist barrier.
In order to overcome this undeniable negative result, a number of approaches has been
adopted across the years. Among them, we mention the hybrid methods proposed in
[9, 10, 11] and the class of symmetric two-step Obrechkoff methods recently studied
by Van Daele and Vanden Berghe in [19]. In particular, the latter ones are P -stable
schemes of order p = 2m, with m ∈ N, which make use of the derivatives of the
unknown solution up to order 2m. In addition, in the last years, particular attention
has been devoted to exponential-fitting methods (see, for example, [12, 14, 18, 20]).
This field of research is surely interesting even though the derived methods require
the a priori knowledge of good approximations of the involved frequencies.
In this article, we shall investigate if the use of LMMs as Boundary Value Methods
(BVMs) is successful in overcoming the barrier of Lambert and Watson. The main
idea on which such schemes rely is that of completing the discrete problem generated
by a LMM with a set of boundary conditions instead of just initial ones as classi-
cally done. This approach was introduced in the nineties for the definition of schemes
for solving first order ODEs and the principal reference for them is [8]. Their linear
stability properties have been studied in details in several papers where it is proved
rigorously that they are able to overcome the second Dahlquist barrier [1, 2, 3, 5, 7, 17].

The article is organized as follows. In Section 2 we recall the definitions of interval
of periodicity and of P -stability for IVMs and we give their generalization for the case
where the LMMs are used as BVMs. In Section 3 we introduce a family of BVMs,
that we call PGSCMs, and we prove some properties of their coefficients. The linear
stability analysis of the new methods is carried out in Section 4 where it is proved
that they are P -stable formulae, in the sense corresponding to BVMs, of arbitrarily
high order. Finally, in Section 5 we propose additional formulae to be coupled with
the main LMM in order to recover the boundary values required by the discrete
problem. The results of a numerical experiment conducted with the new schemes are
also reported which confirm the theory of the previous sections.

2. P-stability for Initial and Boundary Value Methods. When the method
(1.2) is applied for solving (1.3) the discrete problem reduces to the following linear
difference equation

k
∑

j=0

αjyn+j + q2
k
∑

j=0

βjyn+j = 0 , q = hλ.

The corresponding stability polynomial is

π(z, q2) = ρ(z) + q2σ(z),

where, as usual,

ρ(z) =

k
∑

j=0

αjz
j, σ(z) =

k
∑

j=0

βjz
j
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are the characteristic polynomials of the method. We recall that such method is
consistent if

ρ(1) = ρ′(1) = 0, ρ′′(1) = 2σ(1).(2.1)

Let, from now on, z1(q
2), z2(q

2), . . . , zk(q
2) be the roots of π(z, q2) ordered with

increasing modulus. In particular, when the LMM is used as IVM, namely when
the discrete problem (1.2) is completed by fixing the values of y0, y1, . . . yk−1, let
zk−1(q

2) = zk(q2) be the principal roots of the method; that is, zk−1(0) = zk(0) = 1.
It is well-known that, if |zk−2(q

2)| < |zk−1(q
2)| then the solution provided by an

IVM is essentially given by a linear combination of znk−1(q
2) and znk (q

2) and this led
Lambert and Watson to give the following definitions. Before them, we recall that a
polynomial is said to be of type (m1,m2,m3) if it has m1,m2 and m3 roots inside,
on the boundary, and outside the unit circle in the complex plane, respectively. This
notation will be used extensively in the sequel.

Definition 2.1. A k-step IVM has interval of periodicity I = (0, q20), if q
2 ∈ I

implies that its stability polynomial π(z, q2) is of type (k−m,m, 0) where m = m(q2)
with 2 ≤ m(q2) ≤ k.

Definition 2.2. An IVM is P-stable if I = (0,∞) being I its interval of period-
icity.

The use of a LMM with a non empty interval of periodicity means that the nu-
merical solution has the desired qualitative behaviour provided the stepsize is chosen
sufficiently small in such a way that q2 ∈ I. This is the case, for example, of the
famous Numerov method,

yn+2 − 2yn+1 + yn =
h2

12

(

y′′n+2 + 10y′′n+1 + y′′n
)

,

which has interval of periodicity (0, 6). A similar restriction on the stepsize does not
occur if the method used is P -stable and this is surely mandatory if the problem to
be solved is stiff. For example, the following methods introduced in [16]

yn+2 − 2yn+1 + yn =
h2

2− 2 cosφ

(

y′′n+2 − 2 cosφy′′n+1 + y′′n
)

(2.2)

have order two and are P -stable for all φ ∈ (0, 2π). The important negative result
stated in the same paper, however, establishes that the order of accuracy of a P -stable
LMM used as IVM cannot exceed two.

In this paper we shall investigate if the use of the BVM approach allows to
overcome such barrier. In this case a set of boundary conditions is associated to
the difference equation (1.2). More precisely, when applied for solving (1.1), the
discrete problem generated by a k-step BVM used with (k1, k2)-boundary conditions,
k1 + k2 = k, is given by (1.2) coupled with

y0, y1, . . . , yk1−1, yN−k2+1, . . . , yN fixed.(2.3)

We shall talk in Section 5 about a possible strategy that can be used for getting an
approximation of the boundary values. The important advantage that arises from
this approach is that the principal roots of the method are no longer restricted to be
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the ones of largest modulus. This is a consequence of the following result.

Theorem 2.3. Suppose that a linear difference equation of order k with constant
coefficients has characteristic roots zi satisfying

|z1| ≤ . . . ≤ |zk1−2| < |zk1−1| = |zk1
| < |zk1+1| ≤ . . . ≤ |zk|, 1 < |zk1+1|,

with zk1−1 6= zk1
. Then, the solution of an associated boundary value problem with k1

initial values and k2 = k − k1 final ones as in (2.3) behaves as

yn = |zk1
|n
[

γ̂1

(

zk1−1

|zk1−1|

)n

+ γ̂2

(

zk1

|zk1
|

)n

+O

(∣

∣

∣

∣

zk1−2

zk1

∣

∣

∣

∣

n)

+ O

(

∣

∣

∣

∣

zk1

zk1+1

∣

∣

∣

∣

N−n
)

+O
(

|zk1+1|
−N
)

]

+O
(

|zk1+1|
−(N−n)

)

,

when n and N − n are sufficiently large. In the previous asymptotic estimate, the
coefficients γ̂1 and γ̂2 depend only on the initial values y0, y1, . . . , yk1−1.

Proof. The statement can be proved by using arguments similar to the ones
considered in the proof of Theorem 2.6.1 in [8].

Clearly, from the previous theorem one gets that, for a fixed q2 > 0, the numerical
solution provided by a k-step BVM with (k1, k2)-boundary conditions is (essentially)
periodic if π(z, q2) is of type (k1 − 2, 2, k2). In this regard, in [16] it was proved that
this may happen only if the method is symmetric, i.e.

αj = αk−j , βj = βk−j , j = 0, 1, . . . , k.

In the same paper, it was also proved that a symmetric irreducible LMM has step-
number and order even. In the sequel, we shall therefore assume k = 2ν with ν ≥ 1.
We can now give the following definitions which extend the ones given for an IVM.

Definition 2.4. A (2ν)-step BVM with (ν+1, ν−1)-boundary conditions is said
to have interval of ν-periodicity Iν = (0, q20), if π(z, q

2) is of type (ν − 1, 2, ν − 1)
for all q2 ∈ Iν .

Definition 2.5. A (2ν)-step BVM with (ν+1, ν−1)-boundary conditions is said
Pν-stable if Iν = (0,∞).

The main target of this article is to determine a family of Pν-stable BVMs of order
greater than two, i.e. methods that overcome the barrier established by Lambert and
Watson in [16]. The tool that we are going to use for the linear stability analysis is
the boundary locus of the method defined by

Γ =

{

q2 ∈ C : q2 ≡ ψ(θ) = −
ρ(eiθ)

σ(eiθ)
, θ ∈ [0, 2π)

}

.(2.4)

It is not difficult to verify that
• the elements of Γ are the values of q2 such that π(z, q2) has at least one root
on the unit circle;

• if the method is symmetric then Γ ⊂ R, ψ(θ) = ψ(2π − θ) = ψ(−θ);
• Iν ⊆ Γ so that a (2ν)-step BVM can be Pν-stable only if Γ is unbounded, i.e.
if there exists θ ∈ (0, 2π) such that σ(eiθ) = 0.
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3. PGSCMs for second order ODEs. In this section, we shall derive a fam-
ily of BVMs obtained as a generalization of the popular Störmer-Cowell methods.
They verify the necessary conditions to be Pν -stable, namely their boundary locus
is unbounded and they are symmetric. The first property is verified by construction
while the second one will be proved after their derivation. We name these schemes
PGSCMs, acronym for Pν-stable Generalized Störmer-Cowell Methods.
When applied for solving (1.1), the difference equation generated by the (2ν)-step
PGSCM reads

yn+1 − 2yn + yn−1 = h2
ν
∑

j=−ν

β
(2ν)
j+ν y

′′
n+j , n = ν, ν + 1, . . . , N − ν,(3.1)

with ν ∈ N. Observe that we have introduced an upper index on the coefficients βj ’s
to denote the stepnumber of the corresponding method. Like the Störmer-Cowell
methods, these formulae have the first characteristic polynomial

ρ2ν(z) =

2ν
∑

j=0

α
(2ν)
j zj = zν−1(z − 1)2(3.2)

fixed a priori which verifies the first two consistency conditions ρ2ν(1) = ρ′2ν(1) = 0,
see (2.1). The second characteristic polynomial

σ2ν(z) =
2ν
∑

j=0

β
(2ν)
j zj(3.3)

is determined by imposing the formula to have order p = 2ν and

σ2ν(−1) = 0,(3.4)

so that the associated boundary locus (2.4) is unbounded. The method has order
p = 2ν if the following order conditions, obtained by considering the Taylor series
expansion of the exact solution at x = xν , are verified

ν
∑

j=−ν

β
(2ν)
j+ν j

s−2 =
(−1)s + 1

s(s− 1)
, s = 2, 3, . . . , 2ν + 1.(3.5)

It is important to observe that the so-obtained 2-step method coincides with the one
in (2.2) corresponding to φ = π so that the family of PGSCMs represents a gener-
alization of it. In addition, the 4-step method has been already derived in [6] even
though its stability properties were not proved in such paper.
With the aim of writing (3.4)-(3.5) in matrix form, we introduce the following nota-
tion. For each ℓ ≥ 1 and x ∈ R, let

ξℓ(x) =
(

x0, x1, . . . , xℓ−1
)T
.(3.6)

In addition, let

V =











1 1 · · · 1
−ν −ν + 1 · · · ν
...

...
...

...
(−ν)2ν (−ν + 1)2ν · · · ν2ν











,(3.7)
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v2ν =

(

2

2 · 1
, 0,

2

4 · 3
, 0, . . . ,

2

2ν · (2ν − 1)
, 0

)T

,(3.8)

Ĩ =

(

I2ν 02ν

0T
2ν 0

)

, E =

(

O2ν 02ν

ξT2ν(−1) 1

)

,(3.9)

where I2ν , O2ν and 02ν are the identity matrix, the zero matrix and the zero vector of
size 2ν, respectively. Then, one verifies that (3.4)-(3.5) can be reformulated in matrix
form as

(ĨV + E)β(2ν) =

(

v2ν

0

)

(3.10)

where β(2ν) = (β
(2ν)
0 , β

(2ν)
1 , . . . , β

(2ν)
2ν )T . The methods obtained as just described sat-

isfy the following proposition.

Proposition 3.1. For each ν ≥ 1, the coefficient vector β(2ν) of the (2ν)-step
PGSCM (3.1) satisfying (3.4)-(3.5) is unique. Moreover, the method is symmetric,
namely, by denoting with J the anti-identity matrix of size 2ν+1, its coefficient vectors
satisfy

α(2ν) = Jα(2ν) , β(2ν) = Jβ(2ν) ,(3.11)

where α(2ν) = (α
(2ν)
0 , α

(2ν)
1 , . . . , α

(2ν)
2ν )T has all zero entries with the exception of

α
(2ν)
ν−1 = α

(2ν)
ν+1 = 1 and α

(2ν)
ν = −2.

Proof. By applying the Laplace expansion along the last row and using the fact
that the determinant of a Vandermonde matrix with increasing abscissae is positive,
it is not difficult to verify that the coefficient matrix ĨV + E of system (3.10) has a

positive determinant so that β(2ν) is uniquely determined.
Concerning the symmetry of the method, the first relation in (3.11) is trivially verified
by construction while, in view of the uniqueness of the method, the second relation
holds true if β(2ν) and Jβ(2ν) are both solution of (3.10). We observe that, see
(3.6)–(3.9), ĨV J = diag (ξ2ν+1(−1)) ĨV and E J = diag (ξ2ν+1(−1))E. This implies

(ĨV + E)Jβ(2ν) = diag (ξ2ν+1(−1)) (ĨV + E)β(2ν)

= diag (ξ2ν+1(−1))

(

v2ν

0

)

=

(

v2ν

0

)

,

where, see (3.8), the last equality is due to the fact that the entries with even index in

v2ν are all zero. The vector Jβ(2ν) is therefore solution of (3.10) and this completes
the proof.

In Table 3.1 the normalized coefficients β̂j
(2ν)

= η2νβ
(2ν)
j , j = 0, 1, . . . , ν have

been reported for ν = 1, 2, 3, 4.

3.1. Properties of the second characteristic polynomial. The first result
we are going to prove is that the second characteristic polynomials of PGSCMs are
related by a recurrence relation and to this aim we need the following lemma.
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Table 3.1

Normalized coefficients of PGSCMs

ν η2ν β̂
(2ν)
0 β̂

(2ν)
1 β̂

(2ν)
2 β̂

(2ν)
3 β̂

(2ν)
4

1 4 1 2
2 24 -1 6 14
3 960 9 -58 231 596
4 60480 -134 1103 -4190 14017 38888

Lemma 3.2. For each integer m, let P = (pij)i,j=1,...,m be the lower triangular
Pascal matrix whose nonzero entries are

pij =

(

i− 1
j − 1

)

, 1 ≤ j ≤ i ≤ m,

and let

H =

(

0T 0
Im−1 0

)

.(3.12)

Then, for each ℓ = 1, . . . ,m− 1,

PTHℓ = (Im +H)ℓPT +Rℓ,(3.13)

where Rℓ has the first m− ℓ columns with all zero entries.
Proof. We proceed by induction on ℓ. If ℓ = 1 we verify the statement by direct

inspection. In fact,

(

PTH
)

ij
=

(

j
i− 1

)

=

(

j − 1
i− 1

)

+

(

j − 1
i− 2

)

=
(

PT
)

ij
+
(

HPT
)

ij
,

j = 1, 2, . . . ,m− 1, i = j, j + 1, . . . ,m.

This implies that, when ℓ = 1, (3.13) is verified with R1 a suitable matrix having the
first m− 1 columns with all zero entries.
Next, by induction, if it holds true for ℓ it holds true also for ℓ+ 1. In fact, from the
induction hypothesis and by taking into account that PTH = (Im +H)PT + R1, as
just proved, we obtain

PTHℓ+1 = (Im +H)ℓPTH +RℓH

= (Im +H)ℓ+1PT + (Im +H)ℓR1 +RℓH

≡ (Im +H)ℓ+1PT +Rℓ+1,

where Rℓ+1 has the first m− ℓ− 1 columns with all zero entries.

We can now state the following theorem.
Theorem 3.3. The second characteristic polynomials of PGSCMs verify the

recurrence relation

σ2(z) = γ1(z + 1)2 ≡
1

4
(z + 1)2,(3.14)

σ2ν(z) = z σ2ν−2(z) + γν(z − 1)2ν−2(z + 1)2 , ν = 2, 3, . . . ,(3.15)
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for suitable coefficients γν , ν ≥ 2.
Proof. Concerning (3.14) nothing has to be proved (see Table 3.1). With reference

to (3.15), the relation holds true if β(2ν) can be written in the form

β(2ν) =





0

β(2ν−2)

0



 + γνc
(ν)(3.16)

where γν is a suitable coefficient and c(ν) =
(

c
(ν)
0 , c

(ν)
1 , . . . , c

(ν)
2ν

)T

satisfies, see (3.6),

(z − 1)2ν−2(z + 1)2 =

2ν
∑

i=0

c
(ν)
i zi = ξT2ν+1(z)c

(ν) .(3.17)

¿From (3.10) one gets that (3.16) is equivalent to

(ĨV + E)





0

β(2ν−2)

0



−

(

v2ν

0

)

= −γν (ĨV + E)c(ν) .(3.18)

Now, it results

(ĨV + E)





0

β(2ν−2)

0



 =









v2ν−2

χ
0
0









,

for a suitable χ ∈ R. In fact, the first 2ν−2 of the previous equalities and the last one
are the conditions (3.10), with ν − 1 in place of ν, which uniquely determine β

(2ν−2).
The second last equality, instead, is due to the symmetry of the (2ν−2)-step method.
In addition, see (3.8),

v2ν =





v2ν−2
2

2ν·(2ν−1)

0



 .

This implies that the vector on the left hand-side in (3.18) belongs to span{e2ν−1}
where, from now on, eℓ will denote the ℓ-th unit vector of size 2ν + 1. It follows that
equation (3.18) holds true if (ĨV + E)c(ν) ∈ span{e2ν−1}. ¿From (3.9) and (3.17),
one gets Ec(ν) = 02ν+1 so that it remains to verify that ĨV c(ν) ∈ span{e2ν−1} or,
equivalently, that V c(ν) ∈ span{e2ν−1, e2ν+1}.
It is known that the Vandermonde matrix V can be decomposed as [4]

V = P−νSDfP
T ,

where P is the Pascal matrix of size 2ν + 1 given in Lemma 3.2, S is the unit lower
triangular matrix of order 2ν + 1 whose nonzero entries are the Stirling numbers of
the second kind and Df = diag(0!, 1!, . . . , (2ν)!). Therefore, if we let wν = PT c(ν),
then we need to verify that

P−νSDfwν ∈ span{e2ν−1, e2ν+1} .
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It is known that the nonzero entries of P−T are given by [4]

(

P−T
)

ij
=

(

j − 1
i− 1

)

(−1)i−j , 1 ≤ i ≤ j ≤ 2ν + 1

from which, see (3.6) and (3.12), one gets

zℓ(z − 1)2ν−2 =
(

ξT2ν+1(z)H
ℓ
)

P−Te2ν−1, ℓ = 0, 1, 2.

The coefficient vector c(ν) in (3.17) can be therefore written as

c(ν) = (I2ν+1 + 2H +H2)P−Te2ν−1

so that, from (3.13) and considering that the last two entries of P−Te2ν−1 are zero,
we get

wν = PT c(ν) =
(

I + 2(I +H) + (I +H)2 + 2R1P
−T +R2P

−T
)

e2ν−1

= 4e2ν−1 + 4e2ν + e2ν+1.

By virtue of the fact that P−νSDf is lower triangular, we then obtain

P−νSDfwν ∈ span{e2ν−1, e2ν , e2ν+1}.

The result is therefore proved if eT2νP
−νSDfwν = 0, i.e. if

eT2νP
−νSDfwν = 4eT2νP

−νSDf (e2ν−1 + e2ν)

= 4(2ν − 2)! eT2νP
−νS (e2ν−1 + (2ν − 1)e2ν)

= 4(2ν − 2)!
(

eT2νP
−νSe2ν−1 + 2ν − 1

)

= 0,

but the latter equality holds true since P−ν and S are both unit lower triangular and
[4, 13]

(

P−ν
)

2ν,2ν−1
= −ν

(

2ν − 1
2ν − 2

)

, (S)2ν,2ν−1 =

(

2ν − 1
2

)

so that

eT2νP
−νSe2ν−1 =

(

P−ν
)

2ν,2ν−1
+ (S)2ν,2ν−1 = 1− 2ν.

Remark 3.4. For each ν ≥ 1, the coefficient γν in (3.14)-(3.15) is the leading

coefficient of σ2ν(z). This clearly implies γν = β
(2ν)
2ν .

We are now going to establish some properties of the coefficient β
(2ν)
2ν . If we apply

the Cramer method to (3.10), we get

β
(2ν)
2ν =

det(W )

det(ĨV + E)

where W is obtained from ĨV + E by replacing its last column with the vector of
constant terms. It can be verified by direct inspection that ĨV +E can be factorized
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as

ĨV + E ≡

(

V̂ ξ2ν(ν)
ξT2ν(−1) 1

)

=

(

I2ν 02ν

ξT2ν(−1)V̂ −1 1

)(

V̂ ξ2ν(ν)

0T
2ν 1− ξT2ν(−1)V̂ −1ξ2ν(ν)

)

,

where, see (3.7), V̂ ∈ R(2ν)×(2ν) is obtained from V by removing its last row and
column. It follows that det(ĨV +E) = det(V̂ )(1−ξT2ν(−1)V̂ −1ξ2ν(ν)). With a similar
factorization for W one gets det(W ) = −det(V̂ )(ξT2ν(−1)V̂ −1v2ν). Therefore,

β
(2ν)
2ν =

ξT2ν(−1)V̂ −1v2ν

ξT2ν(−1)V̂ −1ξ2ν(ν) − 1
.(3.19)

We observe that the entries of V̂ −T ξ2ν(−1) can be read as the coefficients with respect
to the monomial basis of the polynomial pν(t) = ξT2ν(−1)V̂ −1ξ2ν(t) ∈ Π2ν−1 that
interpolates the following data set

pν(j) = (−1)j+ν , j = −ν, 1− ν, . . . , ν − 1.(3.20)

This clearly implies that the denominator in (3.19) is equal to pν(ν)− 1. Concerning
the numerator, one may verify that, see (3.6)-(3.8)

ξT2ν(−1)V̂ −1v2ν = ξT2ν(−1)V̂ −1

∫ 1

0

∫ x

0

(ξ2ν(t) + ξ2ν(−t)) dt dx

=

∫ 1

0

∫ x

0

(pν(t) + pν(−t)) dt dx.

¿From all these considerations, we obtain that (3.19) can be rewritten as

β
(2ν)
2ν =

∫ 1

0

∫ x

−x pν(t) dt dx

pν(ν)− 1
.(3.21)

In order to prove some properties of β
(2ν)
2ν we need the results concerning the

polynomial pν(t) stated in the following lemma.

Lemma 3.5. For each ν ≥ 1, the polynomial pν(t) ∈ Π2ν−1 that interpolates the
data set (3.20) satisfies the following properties:

P1. pν(ν)− 1 = −4ν;
P2. the leading coefficient of pν(t), say ων , is negative;
P3. pν(t) is symmetric with respect to t = − 1

2 , i.e. pν(−1/2+t)+pν(−1/2−t) = 0
for all t ∈ R;

P4. (−1)ν
∫ x

−x
pν(t) dt > 0, for all x ∈ (0, 1);

P5. (−1)ν
∫ x

−x(pν(t) + pν+1(t)) dt ≥ 0, for all x ∈ [0, 1].

Proof. Concerning property P1, by using the Lagrange basis for the interpolating
polynomial, we get

pν(t) =

ν−1
∑

j=−ν

(−1)j+νℓj(t), ℓj(t) =

ν−1
∏

i=−ν,i6=j

t− i

j − i
.
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Now, one may verify that

ℓj(ν) =

ν−1
∏

i=−ν,i6=j

ν − i

j − i
=

(2ν)!

(ν − j)

(−1)ν−j−1

(ν + j)!(ν − j − 1)!
= (−1)ν−j−1

(

2ν
ν + j

)

.

and, consequently,

pν(ν)− 1 = −





ν−1
∑

j=−ν

(

2ν
ν + j

)



− 1 = −

2ν
∑

j=0

(

2ν
j

)

= −4ν.

The property P2 is a consequence of the fact that pν ∈ Π2ν−1, pν(−ν) = 1 and the
zeros of pν(t) are all real and belong to [−ν, ν− 1] since in such interval pν(t) changes
sign 2ν − 1 times. This implies limt→−∞ pν(t) = +∞, i.e. ων < 0.
In order to prove P3, it suffices to observe that pν(−1/2+ tj)+pν(−1/2− tj) = 0, for
tj = −ν − 1

2 + j with j = 1, 2, . . . , 2ν which implies that pν(−1/2+ t) + pν(−1/2− t)
is the zero polynomial.
Concerning P4, notice that pν(t) ∈ Π2ν−1, ων < 0 and, see (3.20), pν(j)−pν(−j) = 0,

for each j = 1− ν, . . . , ν − 1. Consequently, pν(t)− pν(−t) = 2ων

∏ν−1
j=1−ν(t − j) and

therefore

(−1)ν (pν(t)− pν(−t)) > 0, for all t ∈ (0, 1).(3.22)

This implies that if x ∈ (0, 1) then

(−1)ν
∫ x

−x

pν(t) dt > (−1)ν
(∫ x

0

pν(−t) dt+

∫ 0

−x

pν(t) dt

)

= (−1)ν2

∫ 0

−x

pν(t) dt ≥ 0,

where the last inequality is due to property P3 and to the facts that pν(0) = (−1)ν

and, when t ∈ [−1, 0], pν(t) = 0 only for t = − 1
2 .

Finally, in order to obtain property P5 we proceed by applying arguments similar
to the ones used for proving the inequality in (3.22). In fact, by letting qν(t) =
pν(t) + pν+1(t) ∈ Π2ν+1, from (3.20) and property P3 we get qν(j) = 0, for each
j = −ν, . . . , ν − 1,− 1

2 , i.e.

qν(t) = ων+1(t+
1

2
)

ν−1
∏

j=−ν

(t− j) = ων+1 t(t+
1

2
)(t+ ν)

ν−1
∏

j=1

(t2 − j2),

where we recall that ων+1 < 0 represents the leading coefficient of pν+1(t). This
implies

qν(t) + qν(−t) = ων+1 t

(

(t+
1

2
)(t+ ν)− (−t+

1

2
)(−t+ ν)

) ν−1
∏

j=1

(t2 − j2)

= ων+1(1 + 2ν) t2
ν−1
∏

j=1

(t2 − j2),

so that (−1)ν (qν(t) + qν(−t)) ≥ 0, for all t ∈ [0, 1], from which property P5 immedi-
ately follows.

We now have all the instruments for proving the following result.
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Proposition 3.6. For all ν ≥ 1, the following inequalities hold true

(−1)ν+1β
(2ν)
2ν > 0, (−1)ν+1

(

4β
(2ν+2)
2ν+2 + β

(2ν)
2ν

)

≥ 0.(3.23)

Proof. The first inequality follows immediately from (3.21) and properties P1,
P4 in the previous lemma.
Concerning the second inequality, again from (3.21) and property P1, one gets that
it is verified if

(−1)ν
∫ 1

0

∫ x

−x

(pν(t) + pν+1(t)) dt dx ≥ 0,

and this holds true because of property P5.

We conclude this section with the following result which establishes the type of the
second characteristic polynomial σ2ν(z).

Theorem 3.7. For each ν ≥ 1 and θ ∈ [0, 2π) it results

σ2ν(e
iθ) =

(

eiθ + 1
)2

ei(ν−1)θgν−1(θ),(3.24)

where

gν−1(θ) =
ν−1
∑

j=0

(−1)jβ
(2j+2)
2j+2

(

2 sin
θ

2

)2j

> 0.(3.25)

It follows that σ2ν(z) is of type (ν − 1, 2, ν − 1).
Proof. In order to obtain (3.24)-(3.25), it is sufficient to consider Remark 3.4 and

to apply Theorem 5.1 in [1] to the sequence of polynomials (z + 1)−2σ2ν(z), ν ≥ 1.
In addition, from the first inequality in (3.23), we obtain gν−1(θ) > 0. Consequently
σ2ν(z) has exactly two roots, namely z = −1 with multiplicity 2, of unit modulus. In
view of the symmetry of the same polynomial, see (3.11), we therefore deduce that it
is of the indicated type.

4. Pν-stability of PGSCMs. This section is devoted to the proof of the main
result of this paper consisting of the Pν-stability of the family of PGSCMs. As men-
tioned in Section 2, the main tool we are going to use is the boundary locus (2.4).
We will in fact establish that, for θ ∈ [0, π), the map θ → ψ(θ) is one-to-one and onto
with respect to the positive semireal axis (origin included). By using this result, we
will then prove that the stability polynomial π(z, q2) is of type (ν − 1, 2, ν− 1) for all
q2 ∈ (0,∞), i.e. that the method is Pν-stable.

Theorem 4.1. For each ν ≥ 1, let ρ2ν(z) and σ2ν(z) be the characteristic polyno-

mials of the (2ν)-step PGSCM defined in (3.2)-(3.3) with coefficients β
(2ν)
j ’s uniquely

determined from (3.10). Then, the map ψ : [0, π) → [0,∞) given by

ψ(θ) = −
ρ2ν(e

iθ)

σ2ν(eiθ)

is one-to-one and onto.
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Proof. ¿From (3.2) and (3.24), one immediately gets

ψ(θ) = −
ei(ν−1)θ(eiθ − 1)2

(eiθ + 1)2ei(ν−1)θgν−1(θ)
= −

(eiθ/2 − e−iθ/2)2

(eiθ/2 + e−iθ/2)2
1

gν−1(θ)

=

(

tan
θ

2

)2
1

gν−1(θ)

so that the map is onto (recall that, see (3.25), gν−1(θ) > 0). With the aim of proving
that it is also one-to-one, we need to verify that ψ(θ) is an increasing function for
θ ∈ (0, π). If we let s(θ) ≡ sin2 θ

2 then, see (3.25),

ψ(θ) = φ(s(θ)) ≡
s(θ)

1− s(θ)

1

gν−1(s(θ))
, gν−1(s) =

ν−1
∑

j=0

(−4)jβ
(2j+2)
2j+2 sj .(4.1)

Clearly, s(θ) is increasing for θ ∈ (0, π) so that it is sufficient to prove that

φ′(s) =
gν−1(s)− s(1− s)g′ν−1(s)

((1 − s)gν−1(s))
2 > 0

or, equivalently, that its numerator is positive. From (4.1), with some computations,
one gets

(

gν−1(s)− sg′ν−1(s)
)

+ s2g′ν−1(s) =

=

ν−1
∑

j=0

(−4)jβ
(2j+2)
2j+2 (1− j)sj +

ν
∑

j=2

(−1)jβ
(2j)
2j 4j−1(1− j)sj

= β
(2)
2 + (−4)ν−1β

(2ν)
2ν (ν − 1)sν +

ν−1
∑

j=2

(−4)j−1(j − 1)
(

4β
(2j+2)
2j+2 + β

(2j)
2j

)

sj

which is strictly positive since β
(2)
2 = 1/4 and, in view of (3.23), all the other addends

are nonnegative.

Theorem 4.2. For each ν ≥ 1, let π(z, q2) = ρ2ν(z) + q2σ2ν(z) be the stability
polynomial associated to the (2ν)-step PGSCM. Then, for all q2 ∈ (0,∞) the type of
π(z, q2) is (ν − 1, 2, ν − 1) and the method is Pν-stable when used with (ν + 1, ν − 1)-
boundary conditions.

Proof. By virtue of the previous theorem and considering that π(z, q2) has real
coefficients it is sufficient to observe that, see (2.4), for all q2 ∈ (0,∞) there exists a
unique θ ∈ (0, π) such that π(eiθ, q2) = π(e−iθ, q2) = 0. ¿From the symmetry of the
method, one therefore gets that the type of π(z, q2) is (ν − 1, 2, ν − 1) for all q2 > 0
so that, when used with (ν + 1, ν − 1)-boundary conditions, the method is Pν-stable
according to Definitions 2.1,2.2.

5. Additional methods and a numerical illustration. The effective use of
PGSCMs requires the definition of a suitable strategy for recovering the boundary
values in (2.3). Clearly, the initial value y0 is provided by the continuous problem.
Concerning the remaining ones, we have applied the usual technique for BVMs of
getting them implicitly through the application of a set of 2ν − 2 additional formulae
together with a discretization of the first order derivative y′(x0) = y′0 at the initial
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point.
In more details, if the interval of integration is [x0, X ] and h = (X − x0)/N then the
following set of ν − 1 initial and ν − 1 final additional methods

yi−1 − 2yi + yi+1 = h2
2ν−1
∑

j=0

β
(i,2ν)
j y′′j , i = 1, 2, . . . , ν − 1,(5.1)

ym−1 − 2ym + ym+1 = h2
2ν−1
∑

j=0

β
(i,2ν)
j y′′m−i+j+1, i = ν + 1, . . . , 2ν − 1,(5.2)

m = N + i− 2ν.

are coupled with the main formula in (3.1). Here, for each i = 1, 2, . . . , ν − 1, ν +

1, . . . , 2ν − 1, the coefficients β
(i,2ν)
j ’s of the ith additional formula are uniquely de-

termined by imposing it to be of order 2ν, i.e. of the same order as that of the main
method.
With reference to the discretization of y′(x0) we have used a formula analogous to
the one considered in [6] for the 4-step method which is given by

−y0 + y1 − hy′0 = h2
2ν−1
∑

j=0

β
(0,2ν)
j y′′j(5.3)

where again the coefficients are computed in order to keep the same order of the other
formulae.

We have applied PGSCMs coupled with (5.1)–(5.3) for solving the initial value
problem

y′′(x) =

(

µ− 2 2µ− 2
1− µ 1− 2µ

)

y(x), y(0) =

(

2
−1

)

, y′(0) =

(

0
0

)

,

whose exact solution is y(x) = (2 cos(x),− cos(x))
T

independently of µ > 0. When
µ is large, this is a typical example of stiff problem for second order ODEs which is
frequently used for testing the performance of P -stable schemes. The eigenvalues of
the Jacobian matrix are in fact −µ and −1. With the chosen initial value, however,
the continuous solution is smooth, i.e. it does not contain modes corresponding to
the high frequency. In spite of this the application of methods with not appropriate
stability properties determines a severe restriction on the choice of the stepsize in
order to maintain the stiff mode under control.
We have solved the problem with µ = 2500, known in the literature as Kramarz’s
system [15], over the interval [0, 20π], by using the PGSCMs of orders 2, 4, 6, and
8 with stepsize h = π/32. In Figure 5.1, the obtained maximum error over each
semi-period for the first component of the solution has been reported. The graphics
corresponding to the second component are similar.

As one can see, the figure confirms that the property of Pν -stability of PGSCMs
allows to get good approximations of oscillatory solutions of IVPs for second order
ODEs even when stiff modes are present. Moreover, it is clear that the accuracy of
the approximations increases together with the order of the method.

REFERENCES



PGSCMs: a family of P-stable BVMs 15

0 10 20 30 40 50 60
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

x

er
ro

r

order 2
order 4
order 6
order 8

Fig. 5.1. Error in the approximation of the first component of the solution of Kramarz’s system

[1] L. ACETO AND R. PANDOLFI, Theoretical analysis of the stability for Extended Trapezoidal

Rules, Nonlinear Analysis, 71 (2009), pp. 2521-2534.
[2] L. ACETO, R. PANDOLFI, AND D. TRIGIANTE, One parameter family of linear difference

equations and the stability problem for the numerical solution of ODEs, Adv. Difference
Equ., (2006), Art. 19276, pp. 1-14.

[3] L. ACETO, R. PANDOLFI, AND D. TRIGIANTE, Stability analysis of linear multistep meth-

ods via polynomial type variation, J. Numer. Anal. Ind. Appl. Math., 2 (2007), pp. 1-9.
[4] L. ACETO AND D. TRIGIANTE, The matrices of Pascal and other greats, Amer. Math.

Monthly, 108 (2001), pp. 232-245.
[5] L. ACETO AND D. TRIGIANTE, On the A-stable methods in the GBDF class, Nonlinear

Anal. Real World Appl., 3 (2002), pp. 9-23.
[6] P. AMODIO AND F. IAVERNARO, Symmetric boundary value methods for second order

initial and boundary value problems, Mediterr. J. Math., 3 (2006), pp. 383-398.
[7] L. BRUGNANO AND D. TRIGIANTE,Convergence and stability of Boundary Value Methods

for Ordinary Differential Equations, J. Comp. Appl. Math., 66 (1996), pp. 97-109.
[8] L. BRUGNANO AND D. TRIGIANTE, Solving ODEs by Linear Multistep Initial and Bound-

ary Value Methods, Gordon & Breach, Amsterdam, 1998.
[9] M.V. BULATOV AND G.VANDEN BERGHE, Two-step fourth order methods for linear ODEs

of the second order, Numer. Algor., 51 (2009), pp. 449-460.
[10] M.M. CHAWLA, Two-step fourth order P -stable methods for second order differential equa-

tions, BIT, 21 (1981), pp. 190-193.
[11] M.M. CHAWLA AND B. NETA, Families of two-step fourth order P -stable methods for second

order differential equations, J. Comp. Appl. Math., 15 (1986), pp. 213-223.
[12] J.P. COLEMAN AND L.GR. IXARU, P-stability and exponential-fitting methods for y′′ =

f(x, y), IMA Journal of Numerical Analysis, 16 (1996), pp. 179-199.
[13] R.L. GRAHAM, D.E. KNUTH, AND O. PATASHNIK, Concrete mathematics. A foundation

for computer science, Second edition. Addison-Wesley Publishing Company, Reading, MA,
1994.

[14] L.GR. IXARU AND B. PATERNOSTER, A conditionally P-stable fourth-order exponential-

fitting method for y′′ = f(x, y), J. Comput. Appl. Math., 106 (1999), pp. 87-98.
[15] L. KRAMARZ, Stability of collocation methods for the numerical solution of y′′(t) = f(t, y),

BIT, 20 (1980), pp. 215-222.
[16] J.D. LAMBERT AND I.A. WATSON, Symmetric multistep methods for periodic initial value

problems, J. Inst. Math. Appl., 18 (1976), pp.189-202.
[17] F. MAZZIA, A. SESTINI, AND D. TRIGIANTE, B-spline linear multistep methods and their

continuous extensions, SIAM J. Numer. Anal., 44 (2006), pp. 1954-1973.
[18] M. VAN DAELE, G. VANDEN BERGHE, H. DE MEYER, AND L.GR.IXARU, Exponential-

fitted four-step methods for y′′ = f(x, y), Int. J. Comput. Math., 66 (1998), pp. 299-309.
[19] M. VAN DAELE AND G. VANDEN BERGHE, P-stable Obrechkoff methods of arbitrary order

for second-order differential equations, Numer. Algor., 44 (2007), pp. 115-131.



16 L. Aceto, P. Ghelardoni, and C. Magherini

[20] M. VAN DAELE AND G. VANDEN BERGHE, P-stable exponentially-fitted Obrechkoff meth-

ods of arbitrary order for second-order differential equations, Numer. Algor., 46 (2007),
pp. 333-350.


