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Abstract The BS Hermite spline quasi-interpolation scheme is presented. It is re-
lated to the continuous extension of the BS linear multistep methods, a class of
Boundary Value Methods for the solution of Ordinary Differential Equations. In the
ODE context, using the numerical solution and the associated numerical derivative
produced by the BS methods, it is possible to compute, with a local approach, a suit-
able spline with knots at the mesh points collocating the differential equation at the
knots and having the same convergence order as the numerical solution. Starting from
this spline, here we derive a new quasi-interpolation scheme having the function and
the derivative values at the knots as input data. When the knot distribution is uni-
form or the degree is low, explicit formulas can be given for the coefficients of the
new quasi-interpolant in the B-spline basis. In the general case these coefficients are
obtained as solution of suitable local linear systems of size 2d × 2d , where d is the
degree of the spline. The approximation order of the presented scheme is optimal and
the numerical results prove that its performances can be very good, in particular when
suitable knot distributions are used.
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1 Introduction

Univariate spline Quasi-Interpolants (QIs) are function approximations with the fol-
lowing general form,

Qdy =
∑

j∈J

μj (y)Bj ,

where {Bj , j ∈ J } is the B-spline basis of some space of splines of degree d on
a bounded interval I defined by some partition π of I . The μj , j ∈ J , are local
linear functionals for the definition of which several different approaches have been
considered in the literature, producing functionals of Differential type (DQIs) (see e.g.
[2, 4]), of integral type (iQIs) (see e.g. [15, 18]), or of discrete type (dQIs) (see e.g.
[7, 17]). We refer to [16] and to references mentioned therein for recent developments
on univariate quasi-interpolation and for its interesting extension to the multivariate
setting.

Even if many different types of spline quasi-interpolation schemes exist, they all
share locality as common denominator and this is the reason why quasi-interpolation
is usually preferred to interpolation or to least-squares approximation whenever the
computational cost is fundamental. This is for instance the case when real-time
processing of large streams of data is required and also when it is assumed that the in-
put information on the function y can be dynamically updated (and consequently also
the spline approximation is). Our specific interest for spline quasi-interpolation was
in particular motivated by the necessity of associating with the numerical solution
produced by a Boundary Value Method (BVM) for Ordinary Differential Equations
(see [1] for a general introduction to BVMs) an easy to compute continuous approx-
imation having the same convergence order [12]. Observe that, when dealing with
numerical methods for ODEs, the values at some mesh points of (an approximation
of) y are available together with the associated values of (an approximation of) y′.
This is the reason why here we focus our attention on DQIs and in particular on a
scheme requiring the knowledge of y and y′ only at the knot set. Now, for one class
of BVMs, namely the BS methods, it is possible to compute a spline Hermite inter-
polation scheme locally, that is to use a local procedure for associating the numerical
solution and the corresponding numerical derivative produced by such methods with
a spline with knots at the mesh points and there collocating the differential equation
[10, 11, 13]. In this paper we prove that the local approach introduced in [13] for the
definition of such spline defines a general Hermite spline quasi-interpolation scheme
when the input data are not necessarily produced by the BS methods for ODEs. In
particular, we prove that our quasi-interpolation operator is a projector in the space
of Cd−1 splines of degree d and that it has optimal approximation order p = d + 1
when y ∈ Cd+1(I ), provided that two positive (lower and upper) bounds exist for
the ratios between successive mesh sizes. Considering that the quasi-interpolation
approach here introduced is strictly related to BS methods, we call the new scheme
BS Hermite quasi-interpolant. A preliminary application to differential equations of
the strategy here proposed has been considered in [12], where we dealt with another
important class of BVMs, the Top Order Methods. On the other hand, the goal of this
paper is to present our approach in the general setting of quasi-interpolation because
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we believe that it can be useful not only for the specific application to differential
equations but also for different applications.

The paper is organized as follows. In Sect. 2 we give a general introduction to
BS methods and then, in Sect. 3, after some necessary preliminaries on the adopted
notation, the constructive approach used for defining the new quasi-interpolation op-
erator Q

(BS)
d is introduced in the general case of a nonuniform partition. Section 4 is

devoted to the analysis of its convergence behaviour. Finally, in Sect. 5 the results of
some numerical experiments are reported in order to check the performances of the
new quasi-interpolation scheme.

2 The BS methods

The BS methods are a recently studied class [10, 11] of Boundary Value Meth-
ods for ODEs which have been efficiently implemented for the numerical solution
of Boundary Value Problems [13]. BVMs are Linear Multistep Methods which are
combined with a specific number of initial and final additional methods in order to
equip the full scheme with good stability features which can be absent or poor when
it is used as a traditional Initial Value Method (see [1] for a general introduction
to Boundary Value Methods). In particular, the k-step BS method is correctly used
as BVM if it is combined with k1 − 1 left and k2 right additional methods, where
k1 := � k

2� and k2 := � k
2�, [10]. Even if clearly a suitable choice of the additional

methods is necessary for a good behaviour of the numerical scheme, in the follow-
ing we concentrate only on the main BS method because the additional methods
are not of specific interest for this paper (the interested reader can refer to [11]).
If y′(x) = f (x, y(x)), x ∈ [a, b], is the considered differential equation (associated
with suitable boundary conditions) and π := {a = x0 < x1 < · · · < xN = b} denotes
any fixed mesh in the integration interval, the numerical solution {yi, i = 0, . . . ,N}
computed using the k-step BS method satisfies the following main equations:

k2∑

j=−k1

α
(i)
j+k1

yi+j = hi

k2∑

j=−k1

β
(i)
j+k1

fi+j , i = k1, . . . ,N − k2, (1)

where hi := xi − xi−1, fl := f (xl, yl) and α(i) := (α
(i)
0 , . . . , α

(i)
k )T and β(i) :=

(β
(i)
0 , . . . , β

(i)
k )T , i = k1, . . . ,N − k2, are the coefficient vectors characterizing the

linear multistep BS method, used with variable mesh size.
Only in the special case of uniform meshes the vectors α(i) and β(i) do not depend

on i; in this case their components are a priori known and defined as follows,

αj := B ′(k − j + 1), βj := B(k − j + 1), j = 0, . . . , k, (2)

where B(x) here denotes the k + 1 degree B-spline with integer knots 0, . . . , k + 2.
In Table 1 the α and β coefficients of the BS methods with k = 1, . . . ,5 are reported.
For k = 1 the method corresponds to the trapezoidal rule, for k = 2 to the Simpson
rule.
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Table 1 The α and β coefficients of the BS methods with k = 1, . . . ,5

k α β

1 −1 1 1
2

1
2

2 − 1
2 0 1

2
1
6

4
6

1
6

3 − 1
6 − 1

2
1
2

1
6

1
24

11
24

11
24

1
24

4 − 1
24 − 5

12 0 5
12

1
24

1
120

13
60

11
20

13
60

1
120

5 − 1
120 − 5

24 − 1
3

1
3

5
24

1
120

1
720

19
240

151
360

151
360

19
240

1
720

In the general nonuniform case, each couple of vectors α(i) and β(i) has to be
computed solving the following linear system of size (2k + 2) × (2k + 2),

G(i)(α(i)T ,β(i)T )T = e2k+2, (3)

where e2k+2 = (0, . . . ,0,1)T ∈ R
2k+2 and

G(i) :=
[
A

(i−k1)T
1 −hiA

(i−k1)T
2

0T eT

]
, (4)

with e := (1, . . . ,1)T ∈ R
k+1, and A

(j)

1 , A
(j)

2 , j ∈ N, defined as,

A
(j)

1 :=
⎡

⎢⎣
Bj−k−1(xj ), . . . , Bj+k−1(xj )

...
...

...

Bj−k−1(xj+k), . . . , Bj+k−1(xj+k)

⎤

⎥⎦

(k+1)×(2k+1)

,

A
(j)

2 :=
⎡

⎢⎣

B ′
j−k−1(xj ), . . . , B ′

j+k−1(xj )

...
...

...

B ′
j−k−1(xj+k), . . . , B ′

j+k−1(xj+k)

⎤

⎥⎦

(k+1)×(2k+1)

,

(5)

where Bj (x), j = −(1 + k), . . . ,N − 1, denote the B-spline basis of degree k + 1
with extended knot vector {x−1−k, . . . , x−1, x0, . . . , xN , xN+1, . . . , xN+k+1}. In [11]
it has been proved that the local matrix G(i) is always non singular1 and an efficient
algorithm for the solution of (3) is given.

Observe that the local truncation error τ (i) of the main k-step BS method is defined
as follows,

τ (i) :=
k2∑

j=−k1

α
(i)
j+k1

y(xi+j )−hi

k2∑

j=−k1

β
(i)
j+k1

f (xi+j , y(xi+j )), i = k1, . . . ,N − k2,

(6)

1In [11] distinct auxiliary knots are assumed. However the proof of the nonsingularity of G(j) reported in
Corollary 1 in Appendix of that paper does not depend on such assumption and can be repeated also when
the auxiliary knots are coincident.
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where y(x) is the exact solution of the differential problem. In [10, 11] it has been
proved that τ (i) for the k-step BS method is O(hk+2), where h is the maximum mesh
size; thus, if a suitable selection of the additional methods is done, we can deduce
that the full scheme in (1) has approximation order p = k + 1. The stability features
of the BS methods are optimal, as proved in [10], and this is a fundamental point
for a robust numerical solution of differential problems; however, the characterizing
feature of such class of methods is that it is possible and easy to determine a spline
of degree k + 1 and with knots at the mesh points, s = ∑N−1

i=−1−k ciBi , verifying all
the following Hermite interpolation conditions (and, as a consequence, collocating
the differential equation at the knots),

s(xi) = yi, s′(xi) = fi, i = 0 . . . ,N. (7)

We refer to [13] for the proof of this result, but we recall here the local ap-
proach which can be used for the spline computation because this will be useful
to derive the new quasi-interpolation scheme. If we put d := k + 12 and we denote
as s(j), j = −1, . . . ,N − d , the restriction of s to the interval [xj+1, xj+d ], (i.e.

s(j) = ∑j−1+d

i=j+1−d ciBi ), (7) implies that

{
s(j)(xi) = yi, j + 1 ≤ i ≤ j + d,

ds(j)

dx
(xi) = fi, j + 1 ≤ i ≤ j + d,

(8)

which can be recast in matrix form deducing that

G(j+k1+1)T ĉ(j) = (yj+1, . . . , yj+d ,−hj+k1+1fj+1, . . . ,−hj+k1+1fj+d)T , (9)

where ĉ(j) = (cj+1−d , . . . , cj−1+d ,0)T ∈ R
2d .

Denoting as α̂
(j,r) = (α̂

(j,r)

1 , . . . , α̂
(j,r)

k+1 )T and β̂
(j,r) = (β̂

(j,r)

1 , . . . , β̂
(j,r)

k+1 )T two
vectors belonging to R

k+1 such that,

G(j+k1+1)(α̂
(j,r)T

, β̂
(j,r)T

)T = er , 1 ≤ r ≤ 2d, (10)

(thus, in particular, it is α̂
(j,2d) = α(j+k1+1) and β̂

(j,2d) = β(j+k1+1)), we can observe
that,

(α̂(j,r)T
, β̂

(j,r)T
)G(j+k1+1)T ĉ(j) =

{
c
(j)
j−d+r , if r < 2d,

0, if r = 2d.

2Observe that, throughout the paper, we use not only the integer d denoting the spline degree but also the
superfluous integer k = d − 1 denoting the spline smoothness. This use is done in the following sections
mainly for brevity reasons; on the other hand, at the beginning of this section, k is preferred to d because
it can be interpreted as step number in the BVM setting.
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Thus, the following local approach for the computation of the spline coefficients
cj , j = −d, . . . ,N − 1, is suggested in [13],

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cj = ∑d
i=1 α̂

(−1,j+d+1)
i yi−1 − hk1

∑d
i=1 β̂

(−1,j+d+1)
i fi−1,

j = −d, . . . ,−2,

cj = ∑d
i=1 α̂

(j,d)
i yi+j − hj+k1+1

∑d
i=1 β̂

(j,d)
i fi+j ,

j = −1, . . . , N̂,

cj = ∑d
i=1 α̂

(N̂,j−N̂+d)
i y

N̂+i
− hN−k2

∑d
i=1 β̂

(N̂,j−N̂+d)
i f

N̂+i
,

j = N̂ + 1, . . . ,N − 1,

(11)

where the symbol N̂ = N − d has been used for brevity reasons. Under the assump-
tion of quasi-uniform meshes (i.e. meshes such that for all i it is m ≤ hi/hi+1 ≤ M ,
where m and M are two assigned positive constants) in [13] it has been proved that,
when the solution of the differential problem is Cd+1 smooth, the spline s extend-
ing the numerical solution produced by the k-step BS method has convergence or-
der O(hd).

The quasi-interpolation approach introduced in this paper takes the local formulas
in (11) as a tool for defining a spline of degree d approximating a function y(x),
assuming as input data its values and derivative values on the mesh π . Observe that,
in the general case, we can not determine the spline by requiring all the conditions
in (7) because the dimension of the spline space is only N + d; this fact can be also
interpreted locally observing that, in general it is not true that the solution of the local
system in (9) has a vanishing last component. On the other hand, the formulas given in
(11) can still be used for defining the coefficients of a d degree good quasi-interpolant
approximation of y(x), as it will be shown in the next section.

3 The BS Hermite spline quasi-interpolant

In this section we introduce our BS Hermite spline quasi-interpolation scheme which
approximates on an interval [a, b] a function y which is known together with its deriv-
ative at N + 1 mesh points, π = {x0, . . . , xN } with a = x0 < · · · < xN = b. The data,
that is the function and derivative values at the mesh points, are denoted as y0, . . . , yN

and f0, . . . , fN , respectively. The spline here defined belongs to Sd,π , i.e. to the linear
space of all polynomial splines of degree d defined in the interval [a, b] with knots in
π = {x0, . . . , xN }, and with smoothness Ck[a, b], with k = d − 1. As in the previous
section, the B-spline basis of Sd,π is denoted as Bj (x), j = −d, . . . ,N − 1, and the
associated extended knot vector is {x−d, . . . , x−1, x0, . . . , xN , xN+1, . . . , xN+d}. By
using this notation, our quasi-interpolant spline is represented as follows,

Q
(BS)
d (y) =

N−1∑

j=−d

μ
(BS)
j (y)Bj , (12)
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where μ
(BS)
j (y) are the local linear combinations of function and derivative values

already introduced in (11) which we report here for clarity reasons,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ
(BS)
j (y) = ∑d

i=1 α̂
(−1,j+d+1)
i yi−1 − hk1

∑d
i=1 β̂

(−1,j+d+1)
i fi−1,

j = −d, . . . ,−2,

μ
(BS)
j (y) = ∑d

i=1 α̂
(j,d)
i yi+j − hj+k1+1

∑d
i=1 β̂

(j,d)
i fi+j ,

j = −1, . . . , N̂,

μ
(BS)
j (y) = ∑d

i=1 α̂
(N̂,j−N̂+d)
i y

N̂+i
− hN−k2

∑d
i=1 β̂

(N̂,j−N̂+d)
i f

N̂+i
,

j = N̂ + 1, . . . ,N − 1,

(13)

where N̂ = N − d and the vectors α̂
(j,r) = (α̂

(j,r)

1 , . . . , α̂
(j,r)
d )T and β̂

(j,r) =
(β̂

(j,r)

1 , . . . , β̂
(j,r)
d )T are defined as solution of the linear system in (10).

In the next subsection we give an interpretation of the above formulas within the
general context of quasi-interpolation and in the following one we report their explicit
analytic expression for low degree cases. The study of the convergence behaviour of
the associated quasi-interpolant Q

(BS)
d (y) is developed in Sect. 4.

3.1 Interpretation of the functional definition

In this subsection we show how the scheme introduced in (12) and (13) can be inter-
preted and explained by using a common strategy in the quasi-interpolation setting
(see for example [6, 8]) which is based on the use of local projectors. In particular
we outline that each μ

(BS)
j (y) can be associated with a suitable local function which

approximates y|Ij
, where Ij ⊂ [a, b] is fixed as follows,

Ij =

⎧
⎪⎨

⎪⎩

[xj+1,, xj+d ], if − 1 ≤ j ≤ N − d,

[x0, xd−1], if − d ≤ j ≤ −2,

[xN−d+1, xN ], if N − d + 1 ≤ j ≤ N − 1.

The local function defined in Ij is a spline denoted as BSQ(j) belonging to the space
Sd,Nj

of the (local) splines defined in Ij with degree d and knots at the d inner active
knots of Bj , j = −1, . . . ,N − d . Consequently, such local spline can be represented
as follows,

BSQ(j)(x) =
j+d−1∑

s=j−d+1

c
(j)
s Bs(x), if − 1 ≤ j ≤ N − d, (14)

and it is assumed that

BSQ(j)(x) = BSQ(−1)(x), if − d ≤ j ≤ −2,

BSQ(j)(x) = BSQ(N−d)(x), if N − d + 1 ≤ j ≤ N − 1.
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The (2d − 1) coefficients defining in (14) each local approximation BSQ(j)(x)

in the corresponding local B-spline basis are obtained by requiring the following
conditions,

{
BSQ(j)(xi) = yi, j + 1 ≤ i ≤ j + d,

dBSQ(j)

dx
(xi) = fi + τ (j+k1+1)

hj+k1+1
, j + 1 ≤ i ≤ j + d,

(15)

where we remind that k1 := � d−1
2 � and hi := xi −xi−1; the symbol τ (j+k1+1) denotes

an additional necessary unknown; in fact one can observe that in (15) 2d conditions
are required but the coefficients defining BSQ(j)(x) are only 2d − 1. We can also
remark that this system is similar to the local system (8), except for the additional
unknown τ (j+k1+1) and we will show at the end of this subsection that, if the function
y(x) is sufficiently smooth in [a, b], τ (j+k1+1) is O(hd+1), where h is the maximal
mesh size.

The equations in (15) can be recast in matrix form by using the local matrix
G(j+k1+1) introduced in (4), as follows,

G(j+k1+1)T ĉ(j) = (yj+1, . . . , yj+d ,−hj+k1+1fj+1, . . . ,−hj+k1+1fj+d)T , (16)

where now ĉ(j) := (c
(j)

j−d+1, . . . , c
(j)

j+d−1, τ
(j+k1+1))T .

By using again the vectors α̂
(j,r)

, β̂
(j,r)

introduced in (10), we can write,

(α̂(j,r)T
, β̂

(j,r)T
)G(j+k1+1)T ĉ(j) =

{
c
(j)
j−d+r , if r < 2d,

τ (j+k1+1), if r = 2d,
(17)

and such formula, considering also (16), implies that,

c
(j)
j−d+r =

d∑

i=1

α̂
(j,r)
i yj+i − hj+k1+1

d∑

i=1

β̂
(j,r)
i fj+i , r = 1, . . . ,2d − 1. (18)

Then we can conclude that our functional values μ
(BS)
j (y) can be interpreted as fol-

lows,

μ
(BS)
j (y) =

⎧
⎪⎪⎨

⎪⎪⎩

c
(−1)
j , −d ≤ j ≤ −2,

c
(j)
j , −1 ≤ j ≤ N − d,

c
(N−d)
j , N − d + 1 ≤ j ≤ N − 1,

(19)

that is each inner μ
(BS)
j (y) can be associated with the central coefficient of the corre-

sponding local approximation BSQ(j) and the left (right) (d − 1) boundary ones can
be associated with the first (last) (d − 1) coefficients of BSQ(−1) (BSQ(N−d)).

Let us now analyze more deeply the meaning of the additional unknown τ (j+k1+1)

appearing in (15) and consequently in (16). For this aim, first we observe that (16)
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and (17) imply also that τ (j+k1+1) can be expressed as follows,

τ (j+k1+1) =
d∑

i=1

α̂
(j,2d)
i yj+i − hj+k1+1

d∑

i=1

β̂
(j,2d)
i fj+i . (20)

Then, by using a general result about the approximation order of the BS methods for
ODEs proved in [11], we can state the following proposition.

Proposition 1 The values of τ (j+k1+1), j = −1, . . . ,N − d , are the local trun-
cation errors of the k-step BS linear multistep method constructed on the knots
xj+1, . . . , xj+d . As a consequence, the following properties are satisfied:

1. If y ∈ Cd+1[a, b], then τ (j+k1+1) = O(hd+1), where h denotes the maximal mesh
size;

2. If y is a polynomial of degree d , then τ (j+k1+1) = 0;
3. If y ∈ Sd,π , then τ (j+k1+1) = 0.

Proof First, observe that (10) and (3) imply that α(j+k1+1) = α̂
(j,2d) and β(j+k1+1) =

β̂
(j,2d)

. Thus, considering (6) and relating to the differential equation y′ = f , we can
say that τ (j+k1+1) in (20) is the local truncation error associated with the correspond-
ing linear k-step BS scheme. In [11] it has been proved that such method satisfies
the order conditions with order p = k + 1 (= d). This immediately implies the first
two statements of this proposition. The third one is a consequence of the fact that if
y ∈ Sd,π , its values and its derivative values at the mesh points verify (1). As a conse-
quence, from the analysis reported in the previous section, we can infer that the last
component of the solution of (16) vanishes if y ∈ Sd,π , that is τ (j+k1+1) = 0. �

Summarizing, we can conclude that the determination of the coefficients of
Q

(BS)
d (y) in the B-spline basis requires the solution of all the local systems (10)

for j = −1, r = 1, . . . , d , for 0 ≤ j ≤ N − d − 1, r = d and for j = N − d ,
r = d, . . . ,2d − 1. Thus, the computational cost is related to the solution of these
N + d linear systems of size 2d × 2d which can be solved in an efficient and stable
way using the algorithm described in [11] for general nonuniform meshes.

In the following subsection the explicit analytic expression of our quasi-interpolant
for some splines of low degrees is reported. Observe that, when a uniform mesh

π is used, the inner coefficient vectors α̂(j,d) and β̂
(j,d)

do not depend on j, j =
−1, . . . ,N − d .

3.2 Low degree cases

When low degree cases are considered, even if general nonuniform knot distribution
are assumed, it is possible to compute the analytic expression of all the μ

(BS)
j (y)

defining our quasi-interpolant with the help of symbolic computation. Tables 2 and 3
report such expressions for d = 2 and d = 3 and we can observe that for d = 2 they
do not depend on the knot distribution while for d = 3 each μ

(BS)
j (y) only depends
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Table 2 Values of μj for d = 2. General knot distribution

μ
(BS)
j

(y) = 1
2 (yj+1 + yj+2) − 1

4 hj+1(−fj+1 + fj+2), j = −1, . . . ,N − 2,

μ
(BS)
−2 (y) = y0, μ

(BS)
N−1(y) = yN

Table 3 Values of μj for d = 3. General knot distribution. Rj = hj+3/hj+2

μ
(BS)
j

(y) = 1
3

(−Rj (2+Rj )

1+Rj
yj+1 + R2

j
+4Rj +1

Rj
yj+2 − 1+2Rj

Rj (1+Rj )
yj+3

)

− 1
9 hj+2

(Rj (2+Rj )

1+Rj
fj+1 + (1 − Rj )fj+2 − 1+2Rj

1+Rj
fj+3

)
, j = −1, . . . ,N − 3,

μ
(BS)
−3 (y) = y0, μ

(BS)
N−1(y) = yN ,

μ
(BS)
−2 (y) = 1

3

( 3+2R−1
1+R−1

y0 + R−1−1
R−1

y1 + 1
R−1(1+R−1)

y2
)

− 1
9 h1

( − 3+2R−1
1+R−1

f0 + 2f1 + 1
1+R−1

f2
)
,

μ
(BS)
N−2(y) = 1

3

( R2
N−3

1+RN−3
yN−2 + (1 − RN−3)yN−1 + 2+3RN−3

1+RN−3
yN

)

− 1
9 hN−1

(− R2
N−3

1+RN−3
fN−2 − 2RN−3fN−1 + RN−3(2+3RN−3)

1+RN−3
fN

)

Table 4 Values of μj for d = 4. Uniform knot distribution

μ
(BS)
j

(y) = 1
12 (5yj+1 + yj+2 + yj+3 + 5yj+4)

− 1
48 h(−5fj+1 − 41fj+2 + 41fj+3 + 5fj+4), j = −1, . . . ,N − 4,

μ
(BS)
−4 (y) = y0, μ

(BS)
N−1(y) = yN ,

μ
(BS)
−3 (y) = 1

24 (23y0 − 3y1 + 3y2 + y3)

− 1
96 h(−23f0 + 11f1 + 11f2 + f3),

μ
(BS)
−2 (y) = 1

24 (−11y0 + 47y1 − 7y2 − 5y3)

− 1
96 h(11f0 + 41f1 − 47f2 − 5f3),

μ
(BS)
N−3(y) = 1

24 (−5yN−3 − 7yN−2 + 47yN−1 − 11yN )

− 1
96 h(5f0 + 47f1 − 41f2 − 11f3),

μ
(BS)
N−2(y) = 1

24 (yN−3 + 3yN−2 − 3yN−1 + 23yN )

− 1
96 h(−fN−3 − 11fN−2 − 11fN−1 + 23fN )

on one of the ratios of consecutive mesh sizes. Table 4 reports their form for d = 4 in
the special case of uniform knot distribution. Observe that in all the reported tables
we relate to the case of coincident additional knots for the definition of the boundary
functionals (see also Remark 2 at the end of the following section).

4 Convergence behaviour of Q
(BS)
d (y)

Theorem 1 The quasi-interpolation operator Q
(BS)
d is a projector on the spline

space Sd,π .
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Proof Keeping in mind the locality of the B-spline basis and considering the rep-
resentation given in (19) of the functionals μ

(BS)
j (y), it is sufficient to prove that

the local approximation BSQ(j)(y) reproduces the local spline space Sd,Nj
, ∀ − 1 ≤

j ≤ N − d , where Nj := π ∩ Ij (e.g. see Lemma 8.2 in [8]). Thus, let us assume

that, y|Ij
(x) = ∑j+d−1

s=j−d+1 bsBs(x). Then, from Proposition 1, the right hand side

of the local approximation problem (16) can be written as (G(j+k1+1))T b̂(j), where
b̂(j) := (bj−d+1, . . . , bj+d−1,0)T . Since G(j+k1+1) is non singular, we have that
ĉ(j) = b̂(j). This immediately implies that BSQ(j)(y) = y|Ij

. �

As a special case, the previous theorem implies that Q
(BS)
d (y) = y when y is a

polynomial of degree less or equal to d . Now, in order to derive the approximation
order for the BS quasi-interpolation scheme when smooth enough functions are ap-
proximated, we need some assumption on the knot distribution. We define:

h := max
1≤s≤N

hs, ĥi := max
max(i−k2,1)≤s≤min(i+k1+1,N)

hs, i = 0, . . . ,N − 1,

and the following two scalar quantities related to the coefficients used in (13):

‖α̂‖ := max
(

max
−1≤j≤N−d

‖α̂(j,d)‖1, max
1≤r≤k

‖α̂(−1,r)‖1, max
1≤r≤k

‖α̂(N−d,2d−r)‖1

)
,

‖β̂‖ := max
(

max
−1≤j≤N−d

‖β̂(j,d)‖1, max
1≤r≤k

‖β̂(−1,r)‖1, max
1≤r≤k

‖β̂(N−d,2d−r)‖1

)
.

By using this notation, we can first state two preliminary lemmas and then our
main theorem concerning the approximation order of our quasi-interpolant.

Lemma 1 Let g ∈ C1[a, b]. Then, ∀0 ≤ i ≤ N − 1 and ∀0 ≤ r ≤ k there holds

‖DrQ
(BS)
d (g)‖∞,[xi ,xi+1] ≤ Cr,π

ĥr
i

(
‖α̂‖‖g‖∞,[xi1 ,xi2 ] + ĥi‖β̂‖‖g′‖∞,[xi1 ,xi2 ]

)
,

where i1 = max{i − k,0}, i2 = min{i + d,N},Cr,π is a suitable positive constant
depending on r and on the ratios between consecutive mesh sizes, with C0,π = 1.

Proof Considering that the B-splines are nonnegative and that they sum up to one,
from the relation Q

(BS)
d (g)|[xi ,xi+1] = ∑i

s=i−d μ
(BS)
s (g)Bs(x), we get that

‖Q(BS)
d (g)‖∞,[xi ,xi+1] ≤ max

i−d≤s≤i
|μ(BS)

s (g)|.

From (13), we deduce the proof for r = 0. For r > 0 the result follows by con-
sidering the recursive derivative formulas for splines expressed in the B-spline basis
(see for example [3]). �
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Lemma 2 Let x−d < · · · < x−1 < x0 < · · · < xN < xN+1 < · · · < xN+d . If there exist
two positive constants, m and M , with m ≤ 1 ≤ M , such that

m ≤ hi

hi+1
≤ M, i = −d + 1, . . . ,N + d − 1, (21)

then there exist two other positive constants Am,M,d and Bm,M,d depending only on
m,M and on d such that

‖α̂‖ ≤ Am,M,d, and ‖β̂‖ ≤ Bm,M,d .

Proof Observe that the recursive definition of the B-spline basis implies that, ∀s with
−1 ≤ s ≤ N − d , the entries of the matrix G(s+k1+1) only depend on the successive
ratios hi/hi+1, i = s − d + 2, . . . , s + 2d − 1. Considering that such matrix is always

nonsingular [11], we get that each of the vectors α̂
(j,r) and β̂

(j,r)
depends continu-

ously on the ratios between successive mesh sizes. Thus the hypothesis (21) implies
the thesis of the Lemma because we can say that ‖α̂‖ and ‖β̂‖ are continuous func-
tions of all the ratios hi/hi+1, i = −d + 1, . . . ,N + d − 1. �

Lemma 3 Let x−d = · · · = x−1 = x0 < · · · < xN = xN+1 = · · · = xN+d . If there exist
two other positive constants, m and M , with m ≤ 1 ≤ M , such that

m ≤ hi

hi+1
≤ M, i = 1, . . . ,N − 1, (22)

then there exist other two positive constants Am,M,d and Bm,M,d depending only on
m,M and on d such that

‖α̂‖ ≤ Am,M,d, and ‖β̂‖ ≤ Bm,M,d .

Proof Even in this case we can state that each matrix G(j) is nonsingular (see foot-
note 1). Then, by using arguments analogous to those used in Lemma 2, the thesis
can be proved. �

Then we are ready to prove the following main result,

Theorem 2 Let us assume the hypotheses in Lemmas 2 or 3 for the knot distribution.
If y ∈ Cd+1[a, b], then the r-th derivative of the approximation error of the quasi-
interpolant Q

(BS)
d (y) satisfies the following inequality,

‖Dr(y − Q
(BS)
d (y))‖∞ ≤ Lhd+1−r‖Dd+1y‖∞, r = 0, . . . , k, (23)

where L is a suitable positive constant depending on d, r and on the positive quanti-
ties m and M introduced in Lemmas 2 or 3.

Proof Let us consider the r-th derivative of the error in the interval [xi, xi+1], with
0 ≤ i ≤ N −1 and for the sake of brevity let us use the notation ‖·‖i := ‖·‖∞,[xi ,xi+1].
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We have that, if p belongs to the space �d of all polynomials with degree less than
or equal to d , we get the following bounds:

‖Dr(y − Q
(BS)
d (y))‖i = ‖Dr(y − p) − Dr(Q

(BS)
d (y) − p)‖i

≤ ‖Dr(y − p)‖i + ‖Dr(Q
(BS)
d (y) − p)‖i

= ‖Dr(y − p)‖i + ‖DrQ
(BS)
d (y − p)‖i .

From Lemma 1 we get the following inequality,

‖DrQ
(BS)
d (y − p)‖i ≤ Cr,π

ĥr
i

(
‖α̂‖‖y − p‖∞,[xi1 ,xi2 ] + ĥi‖β̂‖‖y′ − p′‖∞,[xi1 ,xi2 ]

)
,

where C0,π = 1 and Cr,π , for each r > 0, depends on the positive constants m and M .
Now, if p is the Taylor expansion of order d of y|[xi ,xi+1] at the point xi , we get

‖Dr(y − p)‖i ≤ ρd,rh
d+1−r
i+1 ‖Dd+1y‖i ,

where ρd,r is a positive constant depending only on d and r , with r = 0, . . . , d .
In conclusion, using the above bound, we obtain the following local error estimate,

‖Dr(y−Q
(BS)
d (y))‖i ≤ [ρd,r +Cr,π (‖α̂‖ρd,0 +‖β̂‖ρd,1)]‖Dd+1y‖∞,[xi1 ,xi2 ]ĥd+1−r

i .

Taking into account the upper bounds for ‖α̂‖ and for ‖β̂‖ obtained in Lemmas 2 or 3
under the assumed hypotheses on the knot distribution, this local estimate implies the
global estimate in (23), where

L := ρd,r + Cr,π (Am,M,dρd,0 + Bm,M,dρd,1). �

Remark 1 Even if the statement of the previous theorem is true whatever the fixed
positive constants m ≤ 1 ≤ M are, the value of the constant L in the upper bound on
the error (23) deteriorates when m decreases and/or M increases. In our experience it
is reasonable to require m = M−1,M = 2.

Remark 2 The specific selection adopted for fixing the necessary auxiliary left
and right knots (respectively x−d, . . . , x−1 and xN+1, . . . , xN+d ) influence only
the definition of the boundary functionals, that is only the vector coefficients

α̂(−1,j+d+1), β̂
(−1,j+d+1)

, j = −d, . . . ,−2 and α̂(N−d,j−N+2d), β̂
(N−d,j−N+2d)

,
j = N − k, . . . ,N − 1. We observe that the choice of coincident additional knots
seems preferable because it ensures that Q

(BS)
d (y)(a) = y(a) and Q

(BS)
d (y)(b) =

y(b). In addition, at least when uniform partitions are used, the corresponding values
of ‖α̂‖ and of ‖β̂‖ increase when a uniform distribution of auxiliary knots with mesh
size h is used.



F. Mazzia, A. Sestini

5 Numerical results

In this section we analyze the behavior of Q
(BS)
d for approximation by using the fol-

lowing two testing functions,

y1(x) = e−x sin(5πx), [a, b] = [−1,1],

y2(x) = exp(−x/
√

ε) − exp((x − 2)/
√

ε)

(1 − exp(−2/
√

ε))
, ε = 0.001, [a, b] = [0,1].

For the first test function we report only results obtained with a uniform knot distribu-
tion. In fact in this case we had not a significant gain from using nonuniform distribu-
tions. For the second test function, characterized by a boundary layer of width ε near
x = 0, we report results obtained with uniform and nonuniform distributions because
in this case the use of a suitable knot sequence can be very profitable. Observe that
the nonuniform knot sequences considered for the reported experiments have always
geometric distribution (with common ratio α).

The obtained results are summarized in Tables 5–13 where N denotes always
the number of mesh steps and εBS

d the infinity norm (which is computed using a
uniform mesh with 1000 points) of the absolute error with respect to the BS quasi-
interpolant of degree d . When a uniform knot distribution is used, we can compare
the accuracy of our approximation with that of the discrete spline quasi-interpolation
operator presented in [17] that in the following will be referred to as Qd (the knot set
is unchanged). Thus, in all the tables where a uniform knot distribution is assumed,
we report also εd which is the absolute error with respect to the Qd quasi-interpolant.

In the general case the comparison is done with the accuracy of the approximant
produced by the d-degree spline Hermite interpolation scheme based on the selection

Table 5 Approximation errors
for the test function 1, d = 3.
Uniform knots

N εBS
3 rBS

3 ε3 r3 εHC
3 rHC

3 εHI
3 rHI

3

16 2.9e−1 5.8e−1 1.1e−1 2.3e−2

32 1.2e−2 4.6 1.0e−1 2.5 6.6e−3 4.1 2.5e−3 3.2

64 5.0e−4 4.6 5.1e−3 4.3 4.0e−4 4.0 1.8e−4 3.8

128 2.6e−5 4.2 2.8e−4 4.2 2.4e−5 4.1 1.2e−5 4.0

256 1.5e−6 4.1 1.8e−5 4.0 1.5e−6 4.0 7.2e−7 4.0

512 9.4e−8 4.0 1.1e−6 4.0 9.4e−8 4.0 4.5e−8 4.0

Table 6 Approximation errors
for the test function 2, d = 3.
Uniform knots

N εBS
3 rBS

3 ε3 r3 εHC
3 rHC

3 εHI
3 rHI

3

16 1.9e−2 8.4e−2 1.9e−2 7.4e−3

32 1.7e−3 3.5 1.4e−2 2.6 1.7e−3 3.5 4.5e−4 4.0

64 1.3e−4 3.7 1.4e−3 3.2 1.3e−4 3.7 3.3e−5 3.7

128 8.8e−6 3.9 1.2e−4 3.6 8.8e−6 3.9 2.9e−6 3.5

256 5.8e−7 3.9 7.8e−6 3.9 5.8e−7 3.9 2.2e−7 3.7

512 3.7e−8 4.0 5.2e−7 3.9 3.7e−8 4.0 1.5e−8 3.9
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Table 7 Approximation errors
for the test function 2 d = 3.
Geometric knot distribution

N α εBS
3 rBS

3 εHC
3 rHC

3 εHI
3 rHI

3

8 1.6479 2.9e−3 1.9e−3 1.3e−3

16 1.3209 1.4e−4 3.8 9.4e−6 3.7 4.7e−6 3.8

64 1.0921 8.5e−7 3.6 8.3e−7 3.5 4.0e−7 3.5

128 1.0504 7.6e−8 3.5 7.6e−8 3.5 3.7e−8 3.5

256 1.0276 6.9e−9 3.5 6.9e−9 3.5 3.3e−9 3.5

512 1.0150 6.1e−10 3.5 6.1e−10 3.5 2.9e−10 3.5

Table 8 Approximation errors
for the test function 1, d = 4.
Uniform knots

N εBS
4 rBS

4 ε4 r4 εHI
4 rHI

4

16 2.7e−1 4.6e−1 4.3e−3

32 3.6e−3 6.2 1.4e−2 5.0 6.4e−4 2.7

64 6.0e−5 5.9 3.3e−4 5.5 2.4e−5 4.7

128 1.1e−6 5.8 1.8e−5 4.2 8.0e−7 4.9

256 2.1e−8 5.6 6.3e−7 4.8 2.4e−8 5.1

512 4.5e−10 5.6 2.1e−8 4.9 7.4e−10 5.0

Table 9 Approximation errors
for the test function 2, d = 4.
Uniform knots

N εBS
4 rBS

4 ε4 r4 εHI
4 rHI

4

16 4.9e−3 2.2e−2 4.9e−3

32 1.9e−4 4.7 2.3e−3 3.3 2.3e−4 4.4

64 9.3e−6 4.3 1.4e−4 4.1 8.6e−6 4.7

128 2.9e−7 5.0 6.1e−6 4.5 3.0e−7 4.9

256 8.0e−9 5.2 2.3e−7 4.7 9.0e−9 5.0

512 1.5e−10 5.8 7.8e−9 4.9 2.9e−10 5.0

Table 10 Approximation errors
for the test function 2, d = 4.
Geometric knot distribution

N α εBS
4 rBS

4 εHI
4 rHI

4

8 1.6479 2.6e−3 3.0e−4

16 1.3209 5.3e−5 5.6 2.6e−6 6.8

32 1.1697 1.6e−6 5.1 8.0e−8 5.0

64 1.0921 5.3e−8 4.9 3.2e−9 4.7

128 1.0504 1.9e−9 4.7 1.4e−10 4.5

256 1.0276 8.1e−11 4.6 5.3e−11 1.4

of an optimal knot distribution, which is available in the Matlab spline package (re-
lease 7.2) [19] and here is referred to as Hd (observe that the number of degrees of
freedom used by this scheme is 2N +2); for the details about Hd , the interested reader
can refer to [5, 14]. The related absolute error is denoted in the tables as εHI

d . For the
case d = 3 the accuracy of our approach is also compared with that of the classical
C1 cubic spline Hermite interpolant at the knots whose knot sequence is the same
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Table 11 Approximation errors for the test function 1 and its derivative, d = 6. Uniform knots

N εBS
6 rBS

6 εHI
6 rHI

6 ε′BS
6 r ′BS

6 ε′HI
6 r ′HI

6

16 1.0e−1 9.5e−3 1.5e0 2.9e−1

32 5.0e−4 7.7 1.7e−5 9.1 8.5e−3 7.5 1.2e−3 7.9

64 1.6e−6 8.3 4.0e−7 5.4 5.7e−5 7.2 5.5e−5 4.5

128 7.0e−9 7.8 3.9e−9 6.7 4.8e−7 6.9 1.0e−6 5.7

256 2.7e−11 8.0 2.7e−11 7.2 5.4e−9 6.5 1.1e−8 6.5

512 1.1e−13 7.9 2.1e−13 7.0 7.2e−11 6.2 1.3e−10 6.5

Table 12 Approximation errors for the test function 2, d = 6. Uniform knots

N εBS
6 rBS

6 εHI
6 rHI

6 ε′BS
6 r ′BS

6 ε′HI
6 r ′HI

6

8 1.0e−2 3.0e−2 4.1e−1 9.7e−1

16 2.8e−4 5.2 9.3e−4 5.0 1.5e−2 4.8 6.1e−2 4.0

32 8.5e−6 5.1 1.5e−5 6.0 9.9e−4 3.9 1.9e−3 5.0

64 1.2e−7 6.2 1.6e−7 6.5 2.1e−5 5.6 4.4e−5 5.5

128 1.1e−9 6.7 1.5e−9 6.7 3.0e−7 6.1 8.2e−7 5.7

256 7.7e−12 7.2 1.1e−11 7.1 4.0e−9 6.3 8.9e−9 6.5

512 3.7e−14 7.7 8.6e−14 7.0 5.9e−11 6.1 1.0e−10 6.4

Table 13 Approximation errors for the test function 2, d = 6. Geometric knot distribution

N α εBS
6 rBS

6 εHI
6 rHI

6 ε′BS
6 r ′BS

6 ε′HI
6 r ′HI

6

8 1.6479 2.4e−3 1.1e−2 3.4e−2 1.1e−1

16 1.3209 1.8e−5 7.0 2.6e−6 12.0 3.2e−4 6.7 4.1e−5 11.4

32 1.1697 1.6e−7 6.9 2.2e−9 10.0 4.4e−6 6.2 2.1e−7 7.6

64 1.0921 1.5e−9 6.8 1.7e−11 7.0 8.0e−8 5.8 3.5e−9 5.9

128 1.0504 1.4e−11 6.7 6.2e−13 4.8 1.9e−9 5.4 6.0e−9 *

256 1.0276 1.3e−13 6.7 2.9e−11 * 5.0e−11 5.2 1.4e−8 *

512 1.0150 1.3e−15 6.7 2.0e−10 * 8.1e−11 * 8.6e−8 *

used for Q
(BS)
d . Such local spline approximation will be denoted in the following as

HC3(y) and the associated absolute error as εHC
3 . Observe that, we do not compare

QBS
d with such scheme when d > 3 because we want to compare approximations with

the same approximation order. For facilitating the evaluation of the accuracy of the
considered schemes, in all the tables each error column has on the right an associ-
ated column reporting the corresponding numerically computed approximation order
(denoted as r with the corresponding sub and superscripts).

Tables 5–7 relate to the case d = 3 and we can verify that all the schemes have
the theoretical convergence order. In particular Table 7 shows that a significant im-
provement can be obtained by using nonuniform knot distributions for the second
test function. The difference between QBS

3 (y) and HC3(y) is evident only when few
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knots are used but QBS
3 produces a C2 approximation while HC3 a C1 one. The com-

putational cost of our scheme is linear with respect to N , as well as that of HC3, and
the explicit functional expressions reported in Table 3 can be used in this case. Con-
cerning Q3(y), we can see from Tables 5 and 6 that for the same value of N , QBS

3 is
more accurate than such scheme. On the other hand, considering that Qd doesn’t use
the derivative information, in order to perform an honest comparison, our error εBS

d
related to N should be compared to εd related to 2N . If we take this point into ac-
count, our results in Table 5 and in Table 6 show that Qd (which can be specifically
used for the uniform case) produces little better results. However, we would like to
remark that there are important applications where the derivatives at the mesh points
are available, while this is not true for the function information at refined meshes. Fi-
nally, Tables 5–7 show that a little better accuracy is obtained in this case by H3(y).
These results are however encouraging because, when the degree of the spline in-
creases the computation of Hd(y) is more expensive, since the scheme is global.
Tables 8–10 relate to the case d = 4 and analogous comments can be done. Finally,
Tables 11–13 relate to the case d = 6 and they show that, if d is suitably increased,
Q

(BS)
d can produce smooth function approximations with a very high accuracy, even

with a relatively low number of knots. In Tables 11–13 we report also the errors for
the approximation of the first derivative (denoted by ε′ with the corresponding sub
and superscripts) and the numerically computed approximation order (denoted as r ′
with the corresponding sub and superscripts). We note that the convergence order is
respected and in many cases, even if the error for QBS

6 is higher than the error for HI6,
the approximation of the derivative is more accurate. Another interesting behavior is
that, with high N , the HI scheme is unstable for the geometric mesh distribution;
this is mainly due to the global nature of the scheme. On the other hand, QBS

6 has no
problem because of its locality.

6 Conclusion

We have presented a new class of spline quasi-interpolants which can be easily used
also in case of nonuniform knot distribution. Such class is of (first order) differential
type and is based on the BS linear multistep collocation methods for the numerical
solution of ordinary differential equations. Results concerning the convergence of the
schemes have been proved and some numerical experiments related to function ap-
proximation have been presented. These formulas are particularly interesting when
dealing with the numerical solution of differential problems because in this case ap-
proximations of both the solution and of its derivative at the mesh points are available.
For applications of this quasi-interpolant to the numerical solution of Ordinary Dif-
ferential Equations, see [9, 12, 13].
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