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1 Introduction

The study of second order differential equations

F(t, y, y′, y′′) = 0

has a huge bibliography covering several applicative fields, from chemistry to physics and engineer-
ing. Even if any high order ODE may be recast as a first order one, this transformation increases
the size of the original problem and should make its numerical solution more complicated since
it requires the computation of both solution and derivatives (which have different slopes) at the
same time.

The most interesting and studied second order problems are two-point boundary value problems
(see [7] and the reference therein). Among these, two-point singular perturbation problems (see
[11])

ǫy′′ = f(t, y, y′), 0 < ǫ ≪ 1,

have a great appeal since they are stiff, and hence several numerical techniques have been considered
for their solution. Among these we recall, for example, collocation methods (see [6]), largely used
in the codes.

1Corresponding author. E-mail: amodio@dm.uniba.it
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Most of the initial value problems arise from celestial mechanics and lack of the first derivative
term. For such problems (called conservative) ad hoc methods have been developed that preserve
some properties of the solution [1, 14]. In this paper we are rather interested in initial value
problems with nonnull derivative terms since they are not integrated with classical linear multistep
formulae. A wide class of such problems arises from singular problems (not defined at some points
of the domain, see, for example, [13]) that however will not be considered in this paper. Moreover,
some of these are involved in the solution of the nonlinear Schrödinger equation which forms the
envelope equation for many physical processes and also for the transverse modulation of a water
wave [9, 10].

The idea carried on through this paper is largely used to solve partial differential equations
on regular domains. In fact, when it is possible to subdivide the domain with regular grids, each
derivative term can be separately approximated. The main gap of this approach is the order of
the obtained approximation which is at most 2.

In [4] it is suggested how to overcome this problem for BVPs. As a matter of fact, by using
the typical approach of BVMs [8] (initial, main and final formulae), it is possible to obtain stable
formulae of arbitrary high order. In [5] a generalization of the first order upwind method has been
derived for scalar singular perturbation problems. A code based on these formulae is proposed in
[2, 3].

Here we apply the same idea to general second order initial value problems. The paper is
organized as follows: in the next section we introduce high order finite differences to approximate
each derivative of the second order problem. Section 3 concerns with the additional schemes that
must be considered in order to use the known value of the first derivative at the initial point.
Finally, the last section is devoted to various test examples that are solved by means of both
constant and variable meshes.

2 High order finite difference approximations

Let us analyze the following second-order initial value problem:

{

f(t, y, y′, y′′) = 0,

y(t0) = y0, y′(t0) = y′0,
(1)

where y0 and y′0 are known values. Let us assume that f is a Lipschitz continuous function in
order there exists a unique solution y(t) of the above problem.

Let

t0 < t1 < · · · < tn (2)

be a discretizazion covering all the time-interval or a part of it. The idea proposed in [2, 4, 5] for

the solution of BVPs is that of computing the numerical solution Y = (y0, y1, . . . , yn)
T
of (1) at

the meshpoints (2) by approximating y′(ti) and y′′(ti), for i = 1, . . . , n−1, by means of appropriate
finite difference schemes

y(ν)(ti) ≈ y
(ν)
i =

1

hν
i

k−s
∑

j=−s

α
(ν)
j+syi+j , ν = 1, 2, (3)

where hi = ti − ti−1 and the coefficients α
(ν)
0 , . . . , α

(ν)
k are computed such that the formulae have

maximum order. In (3) the index k depends on ν and the order of the formula (an order p
approximation for y(ν)(ti) is in general defined on p + ν points), 0 ≤ s ≤ k and the coefficients
depend on k, s, and ν.

c© 2006 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



Finite difference schemes for the solution of second order IVPs 3

For Boundary Value Problems, this kind of approach uses variable meshes to discretize the
whole time interval. Here, it is preferable to discretize recursively small parts of it by using (for
simplicity) constant stepsize inside each subinterval. For this reason, the coefficients of the methods
(computed by solving Vandermonde linear systems with integer coefficients) are exactly derived.

With respect to the formulae suggested in [2, 4, 5] we have to note that the initial condition
y′(t0) in (1) is not used in (3) which only works with the values yi ≈ y(ti). Possible approaches
to make use of y′(t0) will be considered in the next section. For the moment, we recall that the
methods approximating the derivatives are based on the idea of Boundary Value Methods [8]. For
each derivative we fix the order and derive the set of finite difference schemes (3) by changing
conveniently the number s and k − s of initial and final conditions, respectively. Among these
formulae, we emphasize the main scheme which will be used when possible on the points of the
mesh (2). The other formulae (or some of them) will be used once in the extreme points of the
mesh. For example, to approximate y′(tn) and y′(t1) it is necessary to use a final method with only
initial conditions and an initial method with at most 1 initial condition, respectively. In vector
form the overall approximations for the ν-th derivative can be cast as

Y (ν) =
1

hν
Aν · Y, ν = 1, 2,

where Aν is a (n − 1) × (n + 1) coefficient matrix, whereas Y , containing the n− 1 unknowns of
Y , is the solution of the nonlinear system of equations

f(Y , Y (1), Y (2)) = 0. (4)

In the linear case, (4) is a linear system

M · Y = b (5)

with the coefficient matrix M having essentially a band structure.
We examine only main schemes with approximatively the same number of initial and final con-

ditions. According to several previous papers (see, for example, [4] and the references therein), we
call extended central (EC) differences those having the same number of initial and final conditions.
The coefficients of EC schemes are symmetric for the second derivative and skew-symmetric for
the first derivative. On the contrary, if s again denotes the number of initial conditions, we call
generalized backward (GB) and generalized forward (GF) differences those having s − 1 or s − 2
and s + 1 or s + 2 final conditions, respectively, depending on the order of the method. In the
following, a subscript after the acronym suggests the derivative to which the scheme is applied.
For the second derivative, we consider three possible choices depending on the overall order p. For
even orders, we use a symmetric scheme EC2 (defined for k = p and s = k

2 ) while for odd orders
we choose between generalized forward GF2 or backward differences GB2 (defined for k = p + 1
and s = k

2 − 1 or s = k
2 + 1, respectively). For the first derivative, we have k = p and s may be

chosen between k−1
2 and k+1

2 if k is odd, and among k
2 − 1, k2 ,

k
2 + 1 if k is even. These formulae

will be called GF1, EC1 and GB1 according to what said previously. The combination of such
formulae gives rise to 7 couple of main schemes (it is not possible to define symmetric schemes of
odd order): EC2EC1, EC2GF1 and EC2GB1 of even order which were already used for BVPs (see
[2, 4, 5]) where it is important to consider a symmetric approximation for the second derivative,
and GB2GB1, GB2GF1, GF2GB1 and GF2GF1 of odd order. In the section devoted to the nu-
merical tests, we only consider couple of methods with the same approximation for the derivatives,
namely EC2EC1, GB2GB1, and GF2GF1.

As an example, the following are main schemes of order 5 and 6 for the approximation of y′

and y′′. The coefficients of the GB2 (GB1) schemes are symmetric (skew-symmetric) with respect

c© 2006 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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to those of the GF2 (GF1) schemes.

Order 5

GF2 : h2 y′′(ti) ≈ − 13

180
yi−2 +

19

15
yi−1 −

7

3
yi +

10

9
yi+1 +

1

12
yi+2 −

1

15
yi+3 +

1

90
yi+4

GF1 : h y′(ti) ≈
1

20
yi−2 −

1

2
yi−1 −

1

3
yi + yi+1 −

1

4
yi+2 +

1

30
yi+3

Order 6

EC2 : h2 y′′(ti) ≈
1

90
yi−3 −

3

20
yi−2 +

3

2
yi−1 −

49

18
yi +

3

2
yi+1 −

3

20
yi+2 +

1

90
yi+3

EC1 : h y′(ti) ≈ − 1

60
yi−3 +

3

20
yi−2 −

3

4
yi−1 +

3

4
yi+1 −

3

20
yi+2 +

1

60
yi+3

GF1 : h y′(ti) ≈
1

30
yi−2 −

2

5
yi−1 −

7

12
yi +

4

3
yi+1 −

1

2
yi+2 +

2

15
yi+3 −

1

60
yi+4

To investigate the stability properties of the main schemes for the two derivatives, let us analyze
their behavior on scalar linear problems of the form

y′′ + γy′ + µy = 0, (6)

where γ and µ are real numbers independent of t. If associated to initial conditions, (6) is well
conditioned only when γ and µ are non negative values. In particular, the general solution of (6),

y(t) = c1e
r1t + c2e

r2t,

where c1 and c2 depend on the initial conditions and r1 and r2 are roots (supposed distinct) of the
equation r2 + γr + µ = 0, is monotone decreasing when γ > 0 and bounded for γ = 0. Depending
on the initial conditions, y(t) may be strictly positive on all the time interval.

Supposing for the moment that the size n of the grid is large, then the effect of the additional
methods on the solution may be considered negligible. Therefore, it is sufficient to study the roots
of the characteristic polynomial

π(z) = ρ(z) + hγσ(z) + h2µzs̄, s̄ = max(s1, s2)

where ρ and σ are the polynomials associated to the main schemes discretizing, respectively, the
second and the first derivative term in (6), and sν , ν = 1, 2, is the value of s in (3) associated to the
ν-th derivative. We require that the number of upper off-diagonals of the coefficient matrix in (5)
matches the number of roots of π outside the open unit disk [8]. Since γ and µ are real numbers,
essentially this means that in the quarter of the plane with hγ ≥ 0 and h2µ ≥ 0 we have to draw
the boundary locus defined by the the straight lines π(1) = 0 and π(−1) = 0, and by the curve
π(z) = 0 with |z| = 1 and Im(z) 6= 0. Since z = 1 is always a root of both ρ and σ, the first straight
line coincides with the abscissa h2µ = 0. The condition π(−1) = 0 corresponds to the straight
line σ1hγ + h2µ ≤ ρ1, where σ1 and ρ1 are summarized in Tables 1 and 2 for different methods
and orders. Since ρ1 > 0, the straight lines corresponding to GB1, GF1 and EC1 schemes are
decreasing (σ1 > 0), increasing (σ1 < 0) and parallel to the hγ-axis (σ1 = 0), respectively. Hence,
the use of GF1 schemes give rise to the largest stability domain. Finally, the curve corresponding
to the complex values of z of unitary modulus starts from the origin and it is quite near to the
h2µ-axis (it coincides with the segment 0 ≤ h2µ ≤ ρ1 in case of EC1 schemes).

We observe that any combination of formulae does not give stable methods for every value of
h (following [8] we say that there is no As,k−s-stable method). As an example, we plot in Figure
1 the stability domains for the GF2GF1 and GB2GB1 schemes of order 5 and 7. We note that the
higher order methods have a larger stability domain.

c© 2006 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Table 1: Coefficients σ1 and ρ1 of the straight line σ1hγ + h2µ = ρ1 corresponding to π(−1) = 0.
Even order approximations.

order
4 6 8 10

EC2 ρ1 16/3 272/45 2048/315 512/75
GF1 σ1 −8/3 −32/15 −64/35 −512/315
GB1 σ1 8/3 32/15 64/35 512/315
EC1 σ1 0 0 0 0

Table 2: Coefficients σ1 and ρ1 of the straight line σ1hγ + h2µ = ρ1 corresponding to π(−1) = 0.
Odd order approximations.

order
3 5 7 9

GF2/GB2 ρ1 8/3 208/45 352/63 9278/1575
GF1 σ1 −4/3 −16/15 −32/35 −256/315
GB1 σ1 4/3 16/15 32/35 256/315

The case γ = 0 is not efficiently solved by this approach when the time interval is very large.
In fact, as already known, second order IVPs y′′ = f(t, y) are properly solved by symmetric linear
multistep methods that do not fall in this class of methods.

3 Additional formulae

From the number of roots greater than 1 in modulus inside the boundary locus we obtain that,
despite the continuous problem has initial conditions, each main scheme (3) requires s − 1 initial
and k − s − 1 final formulae. Hence, for example, the EC schemes must always be joined to the
same number of initial and final formulae.

This section just concerns with the additional schemes we have to use in order to approximate
y′ and y′′ at both the extreme points of (2). In general we consider formulae in the family (3) with
a reduced number of initial or final conditions. Anyway, for second order initial value problems
(1), the function f is not approximated at t0 and, hence, the initial value y′(t0) is not used. Then,
we may follow two strategies: the first one is to consider a formula approximating y′(t0) as an
additional equation, thus obtaining the following system



















y0 given,

1

h

k
∑

j=0

αjyj = y′0,

f(ti, yi, y
′

i, y
′′

i ) = 0, for i = 1, . . . , n− 1,

(7)

which provides a unique solution Y = (y0, y1, . . . , yn)
T
of the discrete problem.

The second strategy is based on the new initial formulae

y(ν)(ti) ≈
1

hν



ᾱ
(ν,i)
0 hy′0 +

k
∑

j=1

α
(ν,i)
j yj−1



 , ν = 1, 2, (8)
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Figure 1: Stability regions for the GF2GF1 (left) and GB2GB1 (right) schemes of order 5 and 7.

that use the prescribed value y′0. Then Y = (y′0, y0, y1, . . . , yn)
T is computed by means of

{

y0, y
′

0 given,
f(ti, yi, y

′

i, y
′′

i ) = 0, for i = 0, . . . , n− 1.
(9)

Both the approaches are applicable to the first block of approximations, corresponding to the
initial subinterval. If tn is not the end-point of the time interval (we need other blocks to cover the
time domain), from the second block on we could use the last two points as known initial values

of the new block and formulae (3) to uniquely compute Y = (y−1, y0, y1, . . . , yn)
T
from

{

y0, y−1 given,
f(ti, yi, y

′

i, y
′′

i ) = 0, for i = 0, . . . , n− 1.
(10)

In case the stepsize is changed, the initial value y−1 is computed by means of interpolation tech-
niques from the points in the previous block. As an alternative, it is possible to define a formula
analogous to that in (7) to compute an approximation to y′(tn) and then use the same set of
formulae considered for the first block.

Concerning the approach in (9), for symmetry reason it is more convenient to set Y = (y′0, y0,

y1, . . . , yn, y
′

n)
T
and use (9) (for i = 0, . . . , n) with schemes analogous to (8),

y(ν)(tn−i) ≈
(−1)ν

hν



−ᾱ
(ν,i)
0 hy′n +

k
∑

j=1

α
(ν,i)
j yn−j+1



 , ν = 1, 2, (11)

as final formulae. We observe that the coefficients in (11) for y(ν)(tn−i) are just the same as those
in (8) for y(ν)(ti).

From a numerical point of view, the last formula, even if it is described in compact form and it
is applicable to any block of the time interval, contains values of y and y′ that could be different in
magnitude. Anyway, the numerical tests show that this approach gives the most accurate results.
The idea of neglecting the value of the derivative after the first block seems to be more natural
for this kind of approach but it requires interpolation formulae that could be ill-conditioned if the
order is high since the used stepsize inside each block is constant. Possibly, a variable stepsize
inside each block could be advantageous, but we shall not consider this issue here.

c© 2006 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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As an example, the following are initial formulae in (8) of order 5 and 6 (we recall that y′(t0) =
y′0).

Order 5

h2 y′′(t0) ≈ −137

30
hy′0 −

12019

1800
y0 + 10y1 − 5y2 +

20

9
y3 −

5

8
y4 +

2

25
y5

h2 y′′(t1) ≈
13

30
hy′0 +

3281

1800
y0 −

41

12
y1 +

11

6
y2 −

5

18
y3 +

1

24
y4 −

1

300
y5

h y′(t1) ≈ −1

4
hy′0 −

37

48
y0 +

1

6
y1 +

3

4
y2 −

1

6
y3 +

1

48
y4

Order 6

h2 y′′(t0) ≈ −49

10
hy′0 −

13489

1800
y0 + 12y1 −

15

2
y2 +

40

9
y3 −

15

8
y4 +

12

25
y5 −

1

18
y6

h2 y′′(t1) ≈
77

180
hy′0 +

2171

1200
y0 −

203

60
y1 +

43

24
y2 −

13

54
y3 +

1

48
y4 +

1

300
y5 −

1

1080
y6

h y′(t1) ≈ −1

5
hy′0 −

197

300
y0 −

1

12
y1 + y2 −

1

3
y3 +

1

12
y4 −

1

100
y5

4 Numerical examples

In this section we compare both the numerical schemes described in Section 2 and the possible
choices for the additional formulae described in Section 3 on two linear and one nonlinear initial
value problems. In our numerical experiments we have used blocks with p+ 4 equidistant points,
where the order p ranges from 3 to 10.

For all the examples we have first considered a constant stepsize implementation (see Tables
3, 4, and 5) in order to estimate the order of convergence and to compare the methods. Then, we
have solved each problem by means of a simple variable stepsize strategy (see Tables 6, 7, 8, and
9) with initial stepsize h0 = 8 ·10−2 and exit tolerance tol = 10−8. As usual for this kind of solvers
(see [2, 3]), the method of order p + 2 allows us to estimate the error for the method of order p
and a new steplength for the successive block by means the formula

hnew = 0.9

(

tol

err

)1/(p+1)

hold.

However, in the tables we list the actual absolute error.

We focus our attention on three methods which differ each other for the considered additional
(initial/final) methods. The first two methods use (7) for the first block. Then the first method
(Method 1) computes an approximation for y′(tn−1) (since the error constant for this formula is
much lower than the analogous at tn, the approximation yn at tn is discarded) and iterates on the
subsequent blocks. The second method (Method 2) uses yn and yn−1 as initial points in order to
apply (10) to the subsequent blocks. Since this approach should require a very carefully interpo-
lation technique, we have not considered it with variable stepsize. The third method (Method 3)
uses (9), the initial formulae (8) and the final formulae (11).

Problem 1. The first linear problem,

y′′(t) + y′(t) = 0, t ∈ [0, 40],

c© 2006 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Table 3: Numerical results for Test problem 1 with y(0) = 1, constant stepsize.

Main Method1 Method2 Method3
Scheme Order Error t : y(t) < 0 Error t : y(t) < 0 Error t : y(t) < 0

h
=

8
·
1
0
−

2
,
5
0
0
p
o
in
ts

GF2GF1 3 4.65e-05 3.90e-06 12.96 3.40e-06
GB2GB1 3 4.49e-05 8.40e-06 11.76 6.21e-06 12.00
EC2EC1 4 3.31e-05 10.32 1.89e-05 10.88 2.88e-07 16.24
GF2GF1 5 2.50e-08 6.70e-08 16.56 9.86e-09 18.48
GB2GB1 5 6.65e-08 2.35e-08 17.60 1.65e-08
EC2EC1 6 1.44e-07 15.76 9.03e-08 16.24 3.57e-09
GF2GF1 7 1.23e-10 23.92 2.68e-10 22.08 1.88e-11
GB2GB1 7 1.23e-10 23.92 2.53e-10 22.16 1.45e-11 24.96
EC2EC1 8 7.05e-10 21.12 4.80e-10 21.52 9.04e-12
GF2GF1 9 1.15e-12 27.76 1.59e-12 27.20 2.00e-14 32.56
GB2GB1 9 6.31e-13 28.40 1.37e-12 27.36 5.28e-14
EC2EC1 10 3.57e-12 26.40 2.60e-12 26.72 3.36e-14

h
=

4
·
1
0
−

2
,
1
0
0
0
p
o
in
ts

GF2GF1 3 1.54e-05 1.73e-07 5.13e-07
GB2GB1 3 1.51e-05 8.06e-07 14.04 6.89e-07 14.20
EC2EC1 4 3.94e-06 12.48 1.72e-06 13.28 1.78e-08 18.96
GF2GF1 5 5.36e-09 1.57e-09 20.28 3.64e-10 21.76
GB2GB1 5 6.90e-09 3.31e-10 21.96 4.69e-10
EC2EC1 6 4.36e-09 19.28 2.06e-09 20.04 5.65e-11
GF2GF1 7 2.82e-12 1.40e-12 27.32 1.62e-13
GB2GB1 7 3.02e-12 1.43e-12 27.28 8.20e-14 30.16
EC2EC1 8 5.24e-12 26.00 2.71e-12 26.64 6.20e-14
GF2GF1 9 1.90e-13 6.79e-14 7.33e-15
GB2GB1 9 4.30e-13 28.60 3.75e-13 1.48e-14
EC2EC1 10 2.30e-13 1.17e-13 30.20 5.53e-14 30.56

h
=

2
·
1
0
−

2
,
2
0
0
0
p
o
in
ts

GF2GF1 3 4.31e-06 4.92e-08 6.96e-08
GB2GB1 3 4.27e-06 8.36e-08 16.30 8.06e-08 16.34
EC2EC1 4 4.79e-07 14.56 1.69e-07 15.60 1.11e-09 21.74
GF2GF1 5 4.66e-10 3.90e-11 23.98 1.21e-11 25.14
GB2GB1 5 5.14e-10 3.72e-12 27.56 1.41e-11
EC2EC1 6 1.34e-10 22.74 4.97e-11 23.74 8.78e-13
GF2GF1 7 3.53e-13 9.57e-14 2.43e-13
GB2GB1 7 3.20e-13 28.80 2.78e-13 1.67e-13
EC2EC1 8 3.74e-14 1.69e-13 29.42 1.40e-13
GF2GF1 9 3.27e-12 1.40e-12 9.58e-14 29.98
GB2GB1 9 7.33e-13 27.96 3.38e-13 2.34e-14 31.70
EC2EC1 10 1.27e-12 1.26e-12 1.41e-13 29.60

h
=

1
·
1
0
−

2
,
4
0
0
0
p
o
in
ts

GF2GF1 3 1.13e-06 8.23e-09 9.04e-09
GB2GB1 3 1.13e-06 9.32e-09 18.50 9.73e-09 18.45
EC2EC1 4 5.90e-08 16.65 1.81e-08 17.83 6.99e-11 24.58
GF2GF1 5 3.36e-11 9.73e-13 3.17e-13
GB2GB1 5 3.46e-11 1.45e-12 1.10e-12
EC2EC1 6 4.64e-12 26.10 1.05e-12 27.58 3.03e-13 28.83
GF2GF1 7 8.91e-13 27.75 2.93e-13 28.89 6.06e-13
GB2GB1 7 1.14e-12 27.51 4.40e-13 28.46 7.39e-13
EC2EC1 8 4.22e-13 28.57 3.62e-13 28.65 7.77e-13
GF2GF1 9 1.13e-11 3.48e-12 4.14e-14 33.80
GB2GB1 9 1.83e-12 1.61e-12 27.64 2.39e-13 29.07
EC2EC1 10 7.58e-12 4.30e-12 9.27e-13 27.71

c© 2006 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Table 4: Numerical results for Test problem 2, constant stepsize.

Main Error
Scheme Order Method1 Method2 Method3

h
=

8
·
1
0
−

2
,
2
3
6
p
o
in
ts

GF2GF1 3 7.63e-03 1.73e-03 2.99e-03
GB2GB1 3 7.31e-04 6.64e-03 3.30e-03
EC2EC1 4 2.46e-03 3.83e-03 6.58e-05
GF2GF1 5 1.34e-04 3.05e-04 3.27e-06
GB2GB1 5 1.12e-04 2.77e-04 1.38e-05
EC2EC1 6 7.66e-05 3.35e-04 8.27e-06
GF2GF1 7 5.08e-06 2.50e-05 9.96e-07
GB2GB1 7 5.04e-06 2.52e-05 9.32e-07
EC2EC1 8 5.15e-06 2.59e-05 1.19e-06
GF2GF1 9 1.57e-05 1.17e-06 3.03e-07
GB2GB1 9 1.55e-05 1.23e-06 3.28e-07
EC2EC1 10 1.62e-05 9.85e-07 3.28e-07

h
=

4
·
1
0
−

2
,
4
7
1
p
o
in
ts

GF2GF1 3 9.63e-04 4.06e-04 3.78e-04
GB2GB1 3 1.32e-04 6.11e-04 4.00e-04
EC2EC1 4 4.03e-04 1.82e-04 4.42e-06
GF2GF1 5 4.86e-06 4.11e-06 1.20e-07
GB2GB1 5 4.12e-06 3.42e-06 3.39e-07
EC2EC1 6 1.34e-06 4.30e-06 1.10e-07
GF2GF1 7 7.10e-08 5.31e-08 3.88e-10
GB2GB1 7 6.95e-08 5.43e-08 5.25e-10
EC2EC1 8 5.18e-08 5.15e-08 1.67e-10
GF2GF1 9 8.22e-10 9.95e-11 7.58e-12
GB2GB1 9 6.06e-10 6.65e-11 2.09e-11
EC2EC1 10 6.62e-10 4.85e-10 1.10e-11

h
=

2
·
1
0
−

2
,
9
4
2
p
o
in
ts

GF2GF1 3 1.12e-04 6.39e-05 4.78e-05
GB2GB1 3 2.27e-05 6.13e-05 4.91e-05
EC2EC1 4 5.56e-05 3.69e-06 2.81e-07
GF2GF1 5 2.50e-07 6.00e-08 5.90e-09
GB2GB1 5 2.27e-07 4.01e-08 9.14e-09
EC2EC1 6 2.93e-08 5.99e-08 1.76e-09
GF2GF1 7 7.51e-10 1.91e-10 3.63e-12
GB2GB1 7 8.50e-10 1.88e-10 6.02e-11
EC2EC1 8 3.95e-10 1.82e-10 8.24e-11
GF2GF1 9 9.16e-10 4.12e-10 1.57e-11
GB2GB1 9 9.70e-10 1.59e-10 6.85e-12
EC2EC1 10 3.97e-10 1.57e-10 1.34e-10

h
=

1
·
1
0
−

2
,
1
8
8
5
p
o
in
ts GF2GF1 3 1.17e-05 8.81e-06 6.01e-06

GB2GB1 3 5.79e-06 6.70e-06 6.09e-06
EC2EC1 4 7.26e-06 7.76e-07 1.70e-08
GF2GF1 5 1.49e-08 1.85e-09 6.59e-10
GB2GB1 5 1.37e-08 1.10e-09 2.17e-10
EC2EC1 6 5.10e-10 1.09e-09 1.67e-10
GF2GF1 7 3.98e-10 1.28e-10 3.38e-10
GB2GB1 7 9.65e-11 3.56e-10 3.04e-10
EC2EC1 8 3.32e-10 3.25e-10 3.30e-10
GF2GF1 9 3.68e-09 2.43e-09 6.34e-11
GB2GB1 9 3.95e-10 1.57e-09 1.77e-10
EC2EC1 10 2.76e-09 7.96e-10 4.53e-10

c© 2006 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



10 P. Amodio, G. Settanni

Table 5: Numerical results for Test problem 3, constant stepsize.

Main Error
Scheme Order Method1 Method2 Method3

h
=

8
·
1
0
−

2
,
1
2
5
p
o
in
ts

GF2GF1 3 5.20e-05 6.97e-05 1.42e-05
GB2GB1 3 3.23e-05 3.63e-05 6.13e-06
EC2EC1 4 1.10e-04 9.47e-05 3.71e-06
GF2GF1 5 7.00e-06 7.29e-06 7.35e-07
GB2GB1 5 6.50e-06 6.83e-06 6.34e-07
EC2EC1 6 9.29e-06 8.91e-06 7.17e-07
GF2GF1 7 1.16e-06 1.17e-06 5.32e-08
GB2GB1 7 1.11e-06 1.12e-06 5.57e-08
EC2EC1 8 1.36e-06 1.35e-06 6.95e-08
GF2GF1 9 2.39e-07 2.40e-07 1.11e-08
GB2GB1 9 2.34e-07 2.35e-07 1.12e-08
EC2EC1 10 2.68e-07 2.68e-07 1.24e-08

h
=

4
·
1
0
−

2
,
2
5
0
p
o
in
ts

GF2GF1 3 4.54e-06 7.11e-06 1.75e-06
GB2GB1 3 3.23e-05 2.57e-06 1.23e-06
EC2EC1 4 1.31e-05 9.19e-06 2.51e-07
GF2GF1 5 1.92e-07 2.27e-07 1.80e-08
GB2GB1 5 1.77e-07 2.15e-07 1.20e-08
EC2EC1 6 3.31e-07 2.85e-07 1.58e-08
GF2GF1 7 1.31e-08 1.36e-08 4.06e-10
GB2GB1 7 1.25e-08 1.30e-08 4.62e-10
EC2EC1 8 1.68e-08 1.59e-08 5.54e-10
GF2GF1 9 1.10e-09 1.12e-09 3.52e-11
GB2GB1 9 1.07e-09 1.09e-09 3.53e-11
EC2EC1 10 1.29e-09 1.26e-09 3.96e-11

h
=

2
·
1
0
−

2
,
5
0
0
p
o
in
ts

GF2GF1 3 2.75e-06 6.92e-07 2.12e-07
GB2GB1 3 3.40e-06 1.38e-07 1.79e-07
EC2EC1 4 1.56e-06 8.35e-07 1.61e-08
GF2GF1 5 2.54e-09 5.54e-09 3.70e-10
GB2GB1 5 2.26e-09 5.34e-09 1.58e-10
EC2EC1 6 1.03e-08 7.19e-09 2.70e-10
GF2GF1 7 9.15e-11 1.03e-10 6.75e-12
GB2GB1 7 8.59e-11 9.82e-11 6.46e-12
EC2EC1 8 1.46e-10 1.21e-10 5.62e-12
GF2GF1 9 1.08e-11 7.93e-12 1.93e-11
GB2GB1 9 5.48e-12 6.21e-12 1.92e-11
EC2EC1 10 8.68e-12 5.87e-12 1.79e-11

h
=

1
·
1
0
−

2
,
1
0
0
0
p
o
in
ts GF2GF1 3 9.03e-07 6.97e-08 2.58e-08

GB2GB1 3 9.85e-07 7.78e-09 2.37e-08
EC2EC1 4 1.89e-07 7.82e-08 1.01e-09
GF2GF1 5 2.11e-10 1.24e-10 7.95e-12
GB2GB1 5 2.22e-10 1.22e-10 5.75e-12
EC2EC1 6 3.11e-10 1.66e-10 4.63e-12
GF2GF1 7 3.93e-12 1.67e-12 3.48e-12
GB2GB1 7 3.51e-12 2.29e-12 4.38e-12
EC2EC1 8 5.28e-12 2.29e-12 2.72e-12
GF2GF1 9 3.60e-11 2.16e-11 1.88e-12
GB2GB1 9 5.38e-12 1.41e-11 2.13e-12
EC2EC1 10 1.38e-11 1.18e-11 3.63e-12
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Table 6: Numerical results for Test problem 1 with y(0) = 1, variable stepsize.

Main Method1 Method3

Scheme Order Error Mesh Error Mesh

GF2GF1 3 5.35e-06 751 3.03e-07 593
GB2GB1 3 3.92e-06 898 1.88e-07 817
EC2EC1 4 4.91e-07 1038 8.10e-09 809
GF2GF1 5 1.69e-08 407 1.61e-08 291
GB2GB1 5 2.94e-08 407 1.49e-08 331
EC2EC1 6 3.36e-08 434 4.40e-09 321
GF2GF1 7 1.11e-09 288 4.93e-10 217
GB2GB1 7 7.49e-10 288 1.54e-09 193
EC2EC1 8 3.20e-09 288 5.48e-10 217
GF2GF1 9 3.45e-10 223 5.39e-11 183
GB2GB1 9 2.74e-10 223 7.83e-11 183
EC2EC1 10 5.88e-10 223 8.99e-11 183

Table 7: Numerical results for Test problem 1 with y(0) = 2, variable stepsize.

Main Method1 Method3

Scheme Order Error Mesh Error Mesh

GF2GF1 3 9.36e-06 240 7.84e-07 169
GB2GB1 3 6.89e-06 275 5.62e-07 209
EC2EC1 4 1.38e-06 268 1.75e-08 177
GF2GF1 5 1.25e-08 137 3.93e-08 101
GB2GB1 5 5.35e-08 137 4.34e-08 121
EC2EC1 6 1.20e-07 146 1.64e-08 111
GF2GF1 7 1.04e-08 112 4.31e-09 97
GB2GB1 7 7.13e-09 112 6.83e-09 85
EC2EC1 8 1.47e-08 112 2.74e-09 97
GF2GF1 9 1.82e-09 106 1.66e-09 85
GB2GB1 9 1.38e-09 106 3.18e-09 85
EC2EC1 10 2.23e-09 106 2.32e-09 85
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Table 8: Numerical results for Test problem 2, variable stepsize.

Main Method1 Method3

Scheme Order Error Mesh Error Mesh

GF2GF1 3 9.09e-05 1311 2.88e-05 1113
GB2GB1 3 1.70e-04 1206 2.88e-05 1113
EC2EC1 4 1.98e-05 1199 2.94e-06 761
GF2GF1 5 1.52e-06 542 4.27e-07 421
GB2GB1 5 1.29e-06 560 2.52e-06 351
EC2EC1 6 8.14e-07 542 5.56e-07 371
GF2GF1 7 1.08e-06 343 1.10e-07 253
GB2GB1 7 1.04e-06 343 9.34e-08 265
EC2EC1 8 7.58e-06 343 1.80e-07 253
GF2GF1 9 1.45e-07 275 1.22e-06 197
GB2GB1 9 1.56e-07 275 2.16e-06 197
EC2EC1 10 3.42e-07 275 1.09e-06 197

Table 9: Numerical results for Test problem 3, variable stepsize.

Method1 Method3

Method Order Error Mesh Error Mesh

GF2GF1 3 2.57e-06 233 2.25e-07 193
GB2GB1 3 2.68e-06 247 3.58e-07 153
EC2EC1 4 7.42e-07 240 1.72e-08 185
GF2GF1 5 2.65e-08 119 7.94e-09 101
GB2GB1 5 2.00e-08 119 5.62e-09 101
EC2EC1 6 6.55e-08 128 6.15e-09 101
GF2GF1 7 1.60e-08 90 1.74e-09 73
GB2GB1 7 1.43e-08 90 2.07e-09 73
EC2EC1 8 1.84e-08 101 2.13e-09 85
GF2GF1 9 1.18e-08 80 2.67e-09 71
GB2GB1 9 1.10e-08 80 2.77e-09 71
EC2EC1 10 1.32e-08 80 2.72e-09 71
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has been solved with initial conditions y(0) = 1 and y′(0) = −1 or y(0) = 2 and y′(0) = −1. The
roots of z2 + z = 0 are −1 and 0 and, therefore, the exact solution is

ye(t) = e−t + c2,

where c2 = y(0) − 1. Tables 3, 6 and 7 are devoted to this example. Tables 3 and 6 solve the
problem with the first choice of initial conditions while Table 7 makes use of the second choice.

Even if the numerical solution is monotone decreasing, it might tend to a negative value when
c2 = 0. For this reason, in Table 3 we also indicate when the numerical solution eventually becomes
negative. With constant stepsize we have not observed differences between the two problems (for
this reason we have discarded the table associated to the second choice of initial conditions). Vice
versa, with variable stepsize, the problem with the second choice of initial conditions has required
a much lower number of points.

Problem 2. The second linear problem,

y′′(t)− cos t y′(t) + sin t y(t) = 0, t ∈ [0, 6π],

has initial conditions y(0) = 1 and y′(0) = 1. The exact solution,

ye(t) = esin t,

has an oscillating solution with period 2π.

Problem 3. The nonlinear problem

(y(t) + 1) y′′(t)− 3(y′(t))2 = 0, t ∈ [1, 10],

has initial conditions y(1) = 0 and y′(1) = −1

2
. The exact solution is

ye(t) =
1√
t
− 1.

From all these examples we obtain that the higher order methods compute a more accurate
solution also when a large stepsize is used. On the contrary, due to the large size of the systems,
with the smallest constant stepsize considered it is not always possible to achieve the best accuracy
(see the last block of Tables 3, 4 and 5). Method 2 gives always the worst results. Moreover, its
solution for the first problem always gives a negative solution when the stepsize h = 8 · 10−2.
Anyway, the main drawback of all these methods seems to be just that they do not preserve the
sign of the solution.

5 Conclusions

In this paper we propose to solve second order ordinary differential equations with initial con-
ditions approximating each derivative by means of a set of finite difference schemes. We have
derived several methods depending on the choice of the main scheme and the additional formulae.
Concerning this last aspect, we have obtained the best results by considering the first derivative
at the extreme points (the left one is a known value) inside each block of unknowns. Vice versa we
have not observed differences among the possible choices of the main scheme. The choice of the
Generalized Forward methods for the first derivative gives larger stability domains and could be
more convenient for the most difficult problems.

c© 2006 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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