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Introduction

The numerical solution of conservative problems is a relevant issue of research since many years. In
fact, a numerical method introduces a small perturbation in the original system which, in general,
destroys some of its fundamental properties. It is then of interest to be able to reproduce such
properties in the discrete vector �eld induced by a numerical method. The �eld of investigation
having the �nal goal to reproduce, in the discrete setting, a number of geometric properties shared
by the original continuous problem, is known as geometric integration. The very �rst attempt to
perform geometrical integration can be led back to the early work of G. Dalquist, where it is required
that the numerical methods are able to reproduce the asymptotic stability of equilibria.

The most famous class of problems dealt within geometrical integration is given by Hamiltonian
problems of ordinary di�erential equations (ODEs) which are encountered in many real-life applica-
tions, ranging from the nano-scale of molecular dynamics to the macro-scale of celestial mechanics.
Hamiltonian problems satisfy two fundamental features: the symplecticity of the �ow in the phase
space and the conservation of a number of �rst integrals, among which the most important is the
Hamiltonian function itself which is also referred to as the energy, since for isolated mechanical
systems it has the physical meaning of total energy.

Although a wide literature exists about the analytic treatment of Hamiltonian systems, their
study from a numerical point of view is relatively recent due to the lack of appropriate means of
investigation and to the di�culties in determining methods able to reproduce on a computer the
correct behaviour of their solution.

This di�culty is due to the fact that Hamiltonian systems are not structurally stable against
non-Hamiltonian perturbations. Therefore, the use of an ordinary numerical method introduces a
perturbation which, in general, destroys the qualitative properties of the original solution, such as,
in particular, the symplecticity of the �ow and the conservation of the �rst integrals. Moreover, it
has been proved that it is impossible to de�ne a numerical method satisfying, in general, both of
these two relevant properties.

As a consequence, concerning the numerical integration of Hamiltonian problems, two main lines
of investigation have led to the de�nition of symplectic methods and energy-conserving methods,
respectively.

At the time when the research on this topic was started, there were no available numerical
methods possessing such conservation features, whereas the study of their symplecticity properties
seemed certainly more manageable to handle. This partly explains the development of a number of
symplectic methods.

Symplectic methods are obtained by imposing that the discrete map, associated with a given
numerical method, is symplectic as is the continuous one. Although for the continuous map sym-
plecticity implies energy-conservation, this is no more true for the discrete map. In particular, even
though the numerical solution generated by a symplectic method shows interesting long-time be-
haviour [3, 49], it was observed that symplecticity can assure, at most, the conservation of only
quadratic Hamiltonian functions. In the general case conservation cannot be assured and, conse-
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2 INTRODUCTION

quently, it makes sense to look for energy-conserving methods able to exactly satisfy the conservation
property of the Hamiltonian along the numerical trajectory.

The very �rst attempts to face this problem were based on projection techniques coupled with
standard non conservative numerical methods. However, it is well-known that this approach su�ers
from many drawbacks, in that this is usually not enough to correctly reproduce the dynamics (see,
e.g. [49, p. 111] ).

A di�erent approach is represented by discrete gradient methods introduced and studied in the
pioneering work [46] and later in [64]. These methods are based upon the de�nition of a discrete
counterpart of the gradient operator, and are able to assure energy conservation of the numerical
solution at each step and for any choice of the integration stepsize.

A further approach is based on the concept of time �nite element methods [54], where one �nds
local Galerkin approximations on each subinterval of a �xed mesh for the given equation. This, in
turn, has led to the de�nition of energy-conserving Runge-Kutta methods [4, 5, 73, 74].

A partially related approach is given by discrete line integral methods [55, 56, 57], where the key
idea is to exploit the relation between the method itself and the discrete line integral, i.e. the discrete
counterpart of the line integral in conservative vector �elds. This tool yields exact conservation for
polynomial Hamiltonians of arbitrarily high-degree, and results in the class of methods later named
Hamiltonian Boundary Value Methods (HBVMs), which have been developed in a series of papers
[11, 18, 19, 20, 21, 22, 24, 25, 26].

Another approach, strictly related to the latter one, is given by the Averaged Vector Field method
[36, 67] and its generalizations [48], which have been also analysed in the framework of B-series
[37, 51] (i.e., methods admitting a Taylor expansion with respect to the stepsize).

In the last decades there has been also a growing interest in the numerical treatment of Hamil-
tonian partial derivative equations (PDEs) arising in many application �elds, such as meteorology
and weather prediction, quantum mechanics and nonlinear optics [8]. As a direct extension, the
ideas and tools related to geometric integration of ODEs has led to the de�nition and analysis of
various structure preserving algorithms for PDEs. Two main lines of investigation are based on a
multisymplectic reformulation of the equations and their semi-discretization by means of the method
of lines (MOL), respectively.

Multisymplectic structures generalize the classical Hamiltonian structure of a Hamiltonian ODE
by assigning a distinct symplectic operator for each unbounded space direction and time [7]. A
clear advantage of this approach is that it allows for an easy generalization from symplectic to
multisymplectic integration. Multisymplectic integrators are numerical methods which precisely
conserve a discrete space-time symplectic structure of Hamiltonian PDEs [8, 43, 44, 59, 63] (a
backward error analysis of such schemes may be found in [60, 61, 66]).

When the method of lines approach is used, the spatial derivatives are usually approximated by
�nite di�erences [12, 13, 34] or by discrete Fourier transforms [6, 12, 14, 35, 42, 65, 70, 71, 75] and
the resulting system is then integrated in time by some standard integrator, usually symplectic or
energy-conserving.

With these premises, the thesis is organized as follows. In Chapter 1 we discuss the basic issues
about geometric integration, in particular of symplectic methods, and we give a concrete motivation
to look for energy-conserving methods for the numerical solution of Hamiltonian problems. In
particular, we focus on the so-called discrete line integral methods that are the basis which led to
the de�nition and the development of HBVMs.

Chapter 2 is devoted to a few preliminary results concerning Legendre polynomials and pertur-
bation results for di�erential equations.

In Chapter 3 HBVMs methods are introduced and all their main features are investigated. In
particular we show that HBVMs are A-stable, symmetric and energy conserving in the case of poly-
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nomial Hamiltonians. This latter property results also in a practical numerical energy conservation
for any problem de�ned by a suitably regular Hamiltonian.

In Chapter 4 we introduce two di�erent procedures for the e�cient implementation of HBVMs:
the �rst one is based on a blended implementation of the methods, the latter, which is one of the
two main results of the research developed in this thesis, is based on a particular splitting of the
Butcher matrix de�ning the methods. We also provide a linear analysis of convergence for these
two procedures and a few numerical tests in order to make a comparison between di�erent types of
implementation.

The developed research addresses another main topic which is discussed in Chapter 5, where we
move to the �eld of PDEs. In particular, we consider a problem for the semilinear wave equation
and we use a method of lines approach, consisting of a spatial discretization obtained by means of a
�nite di�erence approximation and a full discretization in time accomplished by means of a method
in the family of the HBVMs. We consider the di�erent cases when the di�erential problem presents
periodic, Dirichlet or Neumann boundary conditions and we focus our attention on the fact that
the proposed methods are able to numerically reproduce the variation of the energy density which,
integrated over an interval, depends only on the net �ux through its endpoints. In the particular
case of periodic boundary conditions, we study also a di�erent strategy for the spatial discretization,
obtained by means of a spectral method. Finally, we give evidence of the e�ectiveness of the proposed
methods by showing signi�cant numerical tests where a not negligible error in the reproduction of
the energy variation (which is null in the particular case of periodic boundary conditions), due to
the use of non energy-conserving methods in time, results in a wrong dynamics for the obtained
approximation, whereas the use of energy-conserving methods in time makes it possible to obtain
the correct portrait of the solution.





Chapter 1

Geometric Integration

Geometric integration is a recent branch of numerical analysis and computational mathematics.
The philosophy of geometric integration is that numerical methods should preserve relevant

qualitative attributes of the original problem (in particular its geometric properties) to the extent
it is possible.

The motivation for developing structure-preserving algorithms arises in di�erent areas of research
such as celestial mechanics, molecular dynamics, control theory and particle accelerators physics.

The qualitative nature of the phenomena studied in all these areas strongly depends on the
conservation of some geometric structure of the underlying system. By introducing these properties
into the numerical method, geometric integration allows for an improved qualitative behaviour of
the method.

In the �rst part of this thesis, we shall deal, in particular, with Hamiltonian problems of ODEs
having the following general form,

y′ = J∇H(y), y(0) = y0 ∈ R2m, (1.1)

where J> = −J = J−1 is a constant, orthogonal and skew-symmetric matrix. Problem (1.1) is in
canonical form if

J =

(
0 I
−I 0

)
, (1.2)

where I is the identity matrix of dimension m. The scalar function H(y) is the Hamiltonian or the
energy of the problem and its value is constant during the motion, namely

H(y(t)) ≡ H(y0), ∀t ≥ 0,

for the solution of (1.1). Indeed, one has:

d

dt
H(y(t)) = ∇H(y(t))>y′(t) = ∇H(y(t))>J∇H(y(t)) = 0 ∀t ≥ 0, (1.3)

due to the fact that J> = −J . For isolated mechanical systems the Hamiltonian H has the physical
meaning of total energy and, for this reason, its conservation is deeply important in the simulation
of these problems.

A di�erent way to write problem (1.1) is obtained by splitting the state vector of the Hamiltonian
system in two m-length components

y =

(
q
p

)
,

5



6 GEOMETRIC INTEGRATION

where q and p are the vectors of generalized positions and conjugate momenta, respectively. Conse-
quently, (1.1)�(1.2) becomes

q′ = ∇pH(q, p), p′ = −∇qH(q, p).

Depending on the case, we shall use either one or the other notation.

1.1 Symplectic vs energy-conserving methods

In order to introduce another important feature of Hamiltonian dynamical system we need a couple
of ingredients:

- The �ow of the system: it is the map acting on the phase space R2m as

φt : y0 ∈ R2m → y(t) ∈ R2m,

where y(t) is the solution at time t of (1.1) originating from the initial condition y0. Di�eren-
tiating both sides of (1.1) with respect to y0, and observing that

∂y(t)

∂y0
=
∂φt(y0)

∂y0
≡ φ′t(y0),

we see that the Jacobian matrix of the �ow φt is the solution of the variational equation
associated with (1.1), namely

d

dt
A(t) = J∇2H(y(t))A(t), A(0) = I, (1.4)

where ∇2H(y) is the Hessian matrix of H(y).

- The de�nition of a symplectic transformation: a map u : (q, p) ∈ R2m 7→ u(q, p) ∈ R2m, is said
to be symplectic if its Jacobian matrix u′(q, p) ∈ R2m×2m is a symplectic matrix, that is

u′(q, p)>Ju′(q, p) = J, ∀q, p ∈ Rm.

With these notions it is not di�cult now to prove that, under regularity assumptions on H(q, p),
the �ow associated to a Hamiltonian system is symplectic. Indeed, setting

A(t) =
∂φt
∂y0

,

and considering (1.4), one has that

d

dt
(A(t)>JA(t)) =

(
d

dt
A(t)

)>
JA(t) +A(t)>J

(
d

dt
A(t)

)
= A(t)>∇2H(y(t)) J>J︸︷︷︸

=I

A(t) +A(t)> JJ︸︷︷︸
=−I

∇2H(y(t))A(t) = 0.

Therefore
A(t)>JA(t) ≡ A(0)>JA(0) = J.

The converse of this property is also true, namely, if the �ow associated with a dynamical system
ẏ = f(y) de�ned on R2m is symplectic, then necessarily there exists a scalar function H(y) such
that f(y) = J∇H(y). Because of (1.3) one also has that H(y) is conserved during the motion.

Among the most important implications of symplecticity on the dynamics of Hamiltonian systems
there are:
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(i) Canonical transformations. A change of variable z = ψ(y) is canonical, namely it preserves
the structure of (1.1), if and only if it is symplectic. Canonical transformations were known
from Jacobi and used to recast (1.1) in simpler form.

(ii) Volume preservation. The �ow φt of a Hamiltonian system is volume preserving in the phase
space. Recall that if V is a (suitable) domain of R2m, we have:

vol(V ) =

∫
V

dy ⇒ vol(φt(V )) =

∫
φt(V )

dy =

∫
V

∣∣∣∣det
∂φt(y)

∂y

∣∣∣∣dy.
Since ∂φt(y)/∂y ≡ A(t) is a symplectic matrix, fromA(t)>JA(t) = J it follows that det(A(t))2 =
1 for any t and hence vol(φt(V )) = vol(V ).

More in general, the Liouville theorem states that the �ow φt associated with a divergence-free
vector �eld f : Rn → Rn is volume preserving. We recall that the divergence of a vector �eld
f : Rn → Rn is the trace of its Jacobian matrix:

divf(y) =
∂f1

∂y1
+
∂f2

∂y2
+ . . .+

∂fn
∂yn

,

and f is divergence-free if
div f(y) = 0, ∀y.

This is the case of the vector �eld J∇H associated with a Hamiltonian system, in fact, con-
sidering that J∇H = [ ∂H/∂p1, . . . , ∂H/∂pm, −∂H/∂q1, . . . , −∂H/∂qm ]>, we obtain

div J∇H =
∂2H

∂q1∂p1
+ . . .+

∂2H

∂qm∂pm
− ∂2H

∂p1∂q1
− . . .− ∂2H

∂pm∂qm
= 0,

since the partial derivatives commute.

The above properties and the fact that symplecticity is a characterizing property of Hamiltonian
systems, somehow reinforce the search for symplectic methods for their numerical integration. A
one step method

y1 = Φh(y0),

is per se a transformation of the phase space. Therefore the method is symplectic if Φh is a symplectic
map, i.e. if

∂Φh(y0)

∂y0

>
J
∂Φh(y0)

∂y0
= J.

Symplectic methods can be found in the early work of Gröbner (see, e.g, [47]). Symplectic Runge-
Kutta methods have been then studied by Feng [41], Sanz Serna [68], and Suris [72]. Such methods
are obtained by imposing that the numerical �ow of the given numerical method is symplectic as
is the continuous one. In particular, in [68] an easy criterion for symplecticity is provided for an
s-stage Runge-Kutta method with tableau given by

c A

b>
(1.5)

where, as usual, c = (ci) ∈ Rs is the vector of the abscissae, b = (bi) ∈ Rs is the vector of the
weights and A = (aij) ∈ Rs×s is the corresponding Butcher matrix.
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Theorem 1.1.1 ([68]). The Runge-Kutta method (1.5) is symplectic if and only if

BA+A>B = bb>, where B = diag(b). (1.6)

Moreover, in [68] is also proved the existence of in�nitely many symplectic Runge-Kutta methods,
due to the fact that all Gauss-Legendre Runge-Kutta collocation methods satisfy (1.6).

An important consequence of symplecticity in Runge-Kutta methods is the conservation of all
quadratic �rst integrals of a Hamiltonian system.

A �rst integral for system (1.1) is a scalar function I(y) which is constant if evaluated along any
solution y(t) of (1.1): I(y(t)) = I(y0), or equivalently,

d

dt
I(y(t)) = ∇I(y(t))>y′(t) = ∇I(y(t))>J∇H(y(t)) = 0, ∀y.

A quadratic �rst integral is in the form I(y) = y>Cy, with C a symmetric matrix.
As previously seen, the most noticeable �rst integral of a Hamiltonian system is the Hamiltonian

function itself. But, though in the continuous setting the property of symplecticity of the �ow implies
energy conservation (see, e.g., [45]), the same is no longer true in the discrete setting: a symplectic
integrator is not able to yield energy conservation in general.

Nevertheless one could still expect that at least an approximate conservation holds for the discrete
map. As a matter of fact, under suitable assumptions, it can be proved that the numerical solution
obtained by using a symplectic method with constant stepsize satis�es a perturbed Hamiltonian
problem, thus providing a quasi-conservation property over an �exponentially� long time [3, 49].
Even though this is an interesting feature, nonetheless, it constitutes a somewhat weak stability
result since, in general, it does not extend to in�nite intervals.

Moreover the perturbed dynamical system could be not �so close� to the original one, meaning
that, if the stepsize h is not small enough, the perturbed Hamiltonian could not correctly approximate
the exact one. As an example, let us consider the problem de�ned by the Hamiltonian

H(q, p) = (p/β)2 + (βq)2 + α(q + p)2n. (1.7)

The corresponding dynamical system has exactly one (marginally stable) equilibrium at the origin.
Let us set

β = 50, α = 1, n = 5, (1.8)

and suppose we are interested in approximating the level curves of the Hamiltonian (shown in
Figure 1.1) passing from the points

(q0, p0) = (i,−i), i = 1, 2. (1.9)

This can be done by integrating the trajectories starting at such initial points, for the corresponding
Hamiltonian system.

By using a symplectic 2-stage Gauss method with stepsize h = 10−4, we obtain the phase portrait
depicted in Figure 1.2 which is clearly wrong.1

A way to get rid of this problem is to directly look for energy-conserving methods, able to provide
an exact conservation of the Hamiltonian function along the numerical trajectory. In this thesis we
shall consider, in particular, a class of energy-conserving Runge-Kutta methods named Hamiltonian
Boundary Value Methods (HBVMs) and in the present chapter we focus on the basic idea these
methods rely on, i.e. the de�nition of discrete line integrals.

1Additional examples may be found in [18].
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Figure 1.1: Level curves for problem (1.7)�(1.9).

1.2 Discrete line integral methods

In order to present the quite straightforward idea at the basis of such methods, we shall �rst sketch
the simplest case, as was done in [55] and then we will generalize the arguments. Assume that in
problem (1.1) the Hamiltonian is a polynomial of degree ν. Starting from the initial condition y0,
our goal is to produce a new approximation at time t = h, say y1, such that the Hamiltonian is
conserved. Let us consider the simplest possible path joining y0 and y1, i.e. the segment

σ(ch) = cy1 + (1− c)y0, c ∈ [0, 1], (1.10)

one obtains

H(y1)−H(y0) = H(σ(h))−H(σ(0)) =

∫ h

0
∇H(σ(t))>σ′(t)dt

= h

∫ 1

0
∇H(σ(ch))>σ′(ch)dc = h

∫ 1

0
∇H(cy1 + (1− c)y0)>(y1 − y0)dc

= h

[∫ 1

0
∇H(cy1 + (1− c)y0)dc

]>
(y1 − y0) = 0,

provided that

y1 = y0 + hJ

∫ 1

0
∇H(cy1 + (1− c)y0)dc. (1.11)

In fact, due to the fact that J is skew-symmetric, one obtains:[∫ 1

0
∇H(cy1 + (1− c)y0)dc

]>
(y1 − y0)

= h

[∫ 1

0
∇H(cy1 + (1− c)y0)dc

]>
J

[∫ 1

0
∇H(cy1 + (1− c)y0)dc

]
= 0.
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Figure 1.2: 2-stage Gauss method, h = 10−4, for approximating problem (1.7)�(1.9).

Therefore, in the discrete setting, we can obtain energy conservation by imposing only that the
�rst and the last point of the path (1.10) are on the manifold where the Hamiltonian is constant
although, unlike the continuous setting, in general, our path does not lies entirely on this manifold.

Moreover, being H ∈ Πν , the integrand at the right hand side in (1.11) is a polynomial of degree
ν − 1 and therefore can be exactly computed by using, say, a Newton-Cotes formula based at ν
equidistant abscissae in [0, 1]. By setting, hereafter,

f(·) = J∇H(·), (1.12)

one obtains

y1 = y0 + h

ν∑
i=1

bif(ciy1 + (1− ci)y0) ≡ y0 + h

ν∑
i=1

bif(Yi), (1.13)

where
ci =

i− 1

ν − 1
, Yi = σ(cih) ≡ ciy1 + (1− ci)y0, i = 1, . . . , ν, (1.14)

and {bi} are the quadrature weights:

bi =

∫ 1

0

ν∏
j=1, j 6=i

t− cj
ci − cj

dt, i = 1, . . . , ν.

Some examples:

• when ν = 2, one obtains the usual trapezoidal method,

y1 = y0 +
h

2
(f(y0) + f(y1)),

• when ν = 3, one obtains the following formula:

y1 = y0 +
h

6

(
f(y0) + 4f

(
y0 + y1

2

)
+ f(y1)

)
,
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• when ν = 5, one obtains the formula:

y1 = y0 +
h

90

(
7f(y0) + 32f

(
3y0 + y1

4

)
+ 12f

(
y0 + y1

2

)
+ 32f

(
y0 + 3y1

4

)
+ 7f(y1)

)
.

In [55], the above formulae are named s-stage trapezoidal methods. They provide exact conservation
for polynomial Hamiltonian functions of degree no larger than 2dν2e, for all ν ≥ 1. Their order of
accuracy can be easily determined by recasting (1.13)�(1.14) as a ν-stage Runge-Kutta method,

c cb>

b>
with c = (c1, . . . , cν)> and b = (b1, . . . , bν)>. (1.15)

The order conditions for an ν-stage Runge-Kutta method are established in the following theorem.

Theorem 1.2.1 (Butcher, [33]). If a Runge-Kutta method with coe�cients bi, ci, aij , i, j = 1, . . . , ν,
satis�es the following conditions:

B(p) :
s∑
i=1

bic
q−1
i =

1

q
, q = 1, . . . p,

C(η) :
ν∑
j=1

aijc
q−1
i =

cqi
q
, q = 1, . . . , η, i = 1, . . . , ν,

D(ζ) :
s∑
i=1

bic
q−1
i aij =

bj
q

(1− cqj), q = 1, . . . , ζ, j = 1, . . . , ν,

with
p ≤ min{η + ζ + 1, 2(η + 1)},

then it has order p.

As a matter of facts, (1.15) satis�es conditions B(2) and C(1), thus resulting in a second order
method. In fact:

• the quadrature is exact for polynomials of degree 1, so that B(2) holds true;

• by setting e = (1, . . . , 1)> ∈ Rν , one has

cb>e = c ⇔ C(1).

Remark 1.2.1. It is worth noticing that, even though (1.15) is formally a ν-stage implicit Runge-
Kutta method, nevertheless the actual size of the generated discrete problem, consists of only one
nonlinear equation, in the unknown y1, as the above examples clearly show. This peculiarity is due
to the fact that the Butcher matrix of these methods (i.e. cb>), has rank one.

1.3 Generalizing the approach

In this section we are going to generalize the above approach by considering a polynomial path σ of
degree s ≥ 1. Let us expand the derivative of σ along a suitable basis for Πs−1, call it {P0, . . . , Ps−1},
as

σ′(ch) =
s−1∑
j=0

Pj(c)γj , c ∈ [0, 1], (1.16)
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for a certain set of coe�cient {γj} to be determined. By integrating both sides and imposing the
initial condition

σ(0) = y0,

one formally obtains

σ(ch) = y0 + h
s−1∑
j=0

∫ c

0
Pj(x)dxγj , c ∈ [0, 1], (1.17)

with the new approximation given by y1 ≡ σ(h). Energy conservation may be obtained by following
a similar computation as before, namely,

H(y1)−H(y0) = H(σ(h))−H(σ(0)) =

∫ h

0
∇H(σ(t))>σ′(t)dt

= h

∫ 1

0
∇H(σ(ch))>σ′(ch)dc = h

∫ 1

0
∇H(σ(ch))>

s−1∑
j=0

Pj(c)γjdc

= h
s−1∑
j=0

[∫ 1

0
∇H(σ(ch))Pj(c)dc

]>
γj = 0,

provided that the unknown coe�cients γj satisfy

γj = ηjJ

∫ 1

0
∇H(σ(ch))Pj(c)dc = ηj

∫ 1

0
f(σ(ch))Pj(c)dc, j = 0, . . . , s− 1, (1.18)

for a suitable set of nonzero scalars η0, . . . , ηs−1. The new approximation is obtained by plugging
(1.18) into (1.17):

y1 ≡ σ(h) = y0 + h

s−1∑
j=0

ηj

∫ 1

0
Pj(x)dx

∫ 1

0
Pj(τ)f(σ(τh))dτ. (1.19)

Assuming, as before, H ∈ Πν , the integrands in (1.18) and (1.19) are polynomials of degree at
most (ν − 1)s + s − 1 ≡ νs − 1. Therefore, by means of a quadrature formula such that it is exact
for polynomials of degree νs − 1, the integrals in (1.18) and (1.19) may be exactly evaluated. Let
0 ≤ c1 < . . . < ck ≤ 1 and {b1, . . . , bk} denote, respectively, the abscissae and the weights of the
chosen quadrature formula. We obtain

γj = ηj

k∑
i=1

bif(σ(cih))Pj(ci), j = 0, . . . , s− 1,

and

y1 ≡ σ(h) = y0 + h
s−1∑
j=0

ηj

∫ 1

0
Pj(x)dx

k∑
i=1

biPj(ci)f(σ(cih)),

respectively. By setting, as before,

Yi = σ(cih), i = 1, . . . , k,
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one has:

Yi = y0 + h
k∑
j=1

=aij︷ ︸︸ ︷[
bj

s−1∑
`=0

η`P`(cj)

∫ ci

0
P`(x)dx

]
f(Yj) ≡ y0 + h

k∑
j=1

aijf(Yj), (1.20)

i = 1, . . . , k,

y1 = y0 + h

k∑
i=1

[
bi

s−1∑
`=0

η`P`(ci)

∫ 1

0
P`(x)dx

]
︸ ︷︷ ︸

=b̂i

f(Yi) ≡ y0 + h
k∑
i=1

b̂if(Yi). (1.21)

What we have obtained is the k-stage Runge-Kutta method

c A ≡ (aij) ∈ Rk×k

b̂>
with c = (c1, . . . , ck)

>, b̂ = (b̂1, . . . , b̂k)
>, (1.22)

with aij , b̂i de�ned according to (1.20) and (1.21), respectively.
In so doing, under the assumption that the Hamiltonian is a polynomial, we can always achieve

energy conservation, provided that the quadrature has a suitable high order. As we will see, the
best choice is placing the k abscissae {ci} at the k Gauss-Legendre nodes on [0, 1] thus obtaining the
maximum order 2k. In such a case, energy conservation is guaranteed for polynomial Hamiltonians
of degree ν such that

ν ≤ 2k

s
.

However, it is quite di�cult to discuss the order of accuracy and the properties of the k-stage
Runge-Kutta method (1.22), when a generic polynomial basis is considered. In fact, di�erent choices
of the basis provide di�erent methods and having di�erent orders. As an example, fourth-order
energy-conserving Runge-Kutta methods were derived in [56, 57], by using the Newton polynomial
basis. We shall see that things will greatly simplify, by choosing an orthonormal polynomial basis.

Remark 1.3.1. It is worth noticing that the Butcher tableau of the k-stage Runge-Kutta method
(1.22) can be cast in matrix form by introducing the matrices:

Ps =

 P0(c1) . . . Ps−1(c1)
...

...
P0(ck) . . . Ps−1(ck)

 ∈ Rk×s,

Is =


∫ c1

0 P0(x)dx . . .
∫ c1

0 Ps−1(x)dx
...

...∫ ck
0 P0(x)dx . . .

∫ ck
0 Ps−1(x)dx

 ∈ Rk×s,

Λs =

 η0

. . .

ηs−1

 ∈ Rs×s, Ω =

 b1
. . .

bk

 ∈ Rk×k,

and the row vector

I1
s =

( ∫ 1
0 P0(x)dx . . .

∫ 1
0 Ps−1(x)dx

)
. (1.23)
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In fact, one easily checks that (1.22) becomes

c IsΛsP>s Ω

I1
sΛsP>s Ω

which will be further studied later.



Chapter 2

Background results

In the present chapter we sketch some results about Legendre polynomials and perturbation of ODEs
that will be useful in the sequel.

2.1 Legendre polynomials

In the following we will denote by Pi the Legendre polynomials shifted on the interval [0, 1] and
scaled in order to be orthonormal:

degPi = i,

∫ 1

0
Pi(x)Pj(x)dx = δij , ∀i, j ≥ 0, (2.1)

where δij is the Kronecker symbol. As any family of orthogonal polynomials, these polynomials
satisfy a 3-terms recursive formula, given by:

P0(x) ≡ 1, P1(x) =
√

3(2x− 1),

Pi+1(x) = (2x− 1)
2i+ 1

i+ 1

√
2i+ 3

2i+ 1
Pi(x)− i

i+ 1

√
2i+ 3

2i− 1
Pi−1(x), i ≥ 1.

The roots {c1, . . . , ck} of Pk(x) are all distinct and belong to the interval (0, 1), thus we can identify
them via the following conditions:

Pk(ci) = 0, with 0 < c1 < . . . < ck < 1. (2.2)

Moreover it is known that they are symmetrically distributed in the interval [0, 1]:

ci = 1− ck−i+1, i = 1, . . . , k. (2.3)

They are referred to as the Gauss-Legendre abscissae on [0, 1] and generate the Gauss-Legendre
quadrature formula with quadrature weights

bi =

∫ 1

0

k∏
j=1,j 6=i

x− cj
ci − cj

dx =
4(2k − 1)ci(1− ci)

[kPk−1(ci)]2
, i = 1, . . . , k. (2.4)

Concerning the Gauss-Legendre quadrature formula, the following theorem holds true.

Theorem 2.1.1. The Gauss-Legendre formula (ci, bi) (see (2.2) and (2.4)) has order 2k, namely it
is exact for polynomials of degree no larger than 2k − 1.

15
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Proof. Given a generic polynomial p(x) ∈ Π2k−1, it can be written as

p(x) = q(x)Pk(x) + r(x), with q(x), r(x) ∈ Πk−1.

Integrating both sides, since Pk(x) is orthonormal to polynomials of degree less than k (see (2.1)),
we have ∫ 1

0
p(x)dx =

∫ 1

0
[q(x)Pk(x) + r(x)]dx

=

∫ 1

0
q(x)Pk(x)dx︸ ︷︷ ︸

=0

+

∫ 1

0
r(x)dx =

∫ 1

0
r(x)dx.

On the other hand, for our quadrature formula (ci, bi) one obtains:

k∑
i=1

bip(ci) =
k∑
i=1

bi

q(ci) =0︷ ︸︸ ︷
Pk(ci) +r(ci)

 =
k∑
i=1

bir(ci) =

∫ 1

0
r(x)dx,

where the last equality is due to the fact that any quadrature based at k distinct abscissae is exact
for polynomial of degree no larger than k − 1.

As a matter of facts, for the Gauss-Legendre formula and for any function f ∈ C2k([0, 1]), one
has ∫ 1

0
f(x)dx =

k∑
i=1

bif(ci) + ∆k, ∆k = ρkf
(2k)(ζ),

for a suitable ζ ∈ (0, 1) and with ρk independent of f . Actually, this result holds in general: if the
quadrature had order q ≤ 2k, for any f ∈ Cq([0, 1]), one would obtain,∫ 1

0
f(x)dx =

k∑
i=1

bif(ci) + ∆k ∆k = ρkf
(q)(ζ), (2.5)

with ζ and ρk de�ned similarly as above.
In the sequel, we shall need to discuss, in particular, the case where the integrand in (2.5) has

the following form,
f(τ) = Pj(τ)G(τh), τ ∈ [0, 1], (2.6)

with Pj the Legendre polynomial of degree j. The following result then holds true.

Lemma 2.1.1. Let G ∈ C(q)([0, 1]), being q the order of the given quadrature formula (ci, bi) over
the interval [0, 1]. Then∫ 1

0
Pj(τ)G(τh)dτ −

k∑
i=1

biPj(ci)G(cih) = O(hq−j), j = 0, . . . , q.

Proof. Our claim easily follows from (2.5), by considering that

dq

dτ q
Pj(τ)G(τh) ≡ [Pj(τ)G(τh)](q) =

q∑
i=0

(
q
i

)
P

(i)
j (τ)G(q−i)(τh)hq−i

=

j∑
i=0

(
q
i

)
P

(i)
j (τ)G(q−i)(τh)hq−i = O(hq−j),

since P (i)
j (τ) ≡ 0, for i > j.
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We also need a further result concerning integrals with integrands in the form (2.6), which is
stated below.

Lemma 2.1.2. Let G : [0, h]→ V , with V a suitable vector space, a function which admits a Taylor
expansion at 0. Then ∫ 1

0
Pj(τ)G(τh)dτ = O(hj), j ≥ 0.

Proof. One obtains, by expanding G(τh) at τ = 0:∫ 1

0
Pj(t)G(τh)dτ =

∫ 1

0
Pj(t)

∑
k≥0

G(k)(0)

k!
(τh)kdτ =

∑
k≥0

G(k)(0)

k!
hk
∫ 1

0
Pj(τ)τkdτ

=
∑
k≥j

G(k)(0)

k!
hk
∫ 1

0
Pj(τ)τkdτ = O(hj),

where the last but one equality follows from the fact that∫ 1

0
Pj(τ)τkdτ = 0, for k < j.

because of (2.1).

2.2 Matrices de�ned by the Legendre polynomials

The integrals of the Legendre polynomials are related to the polynomial themselves as follows. For
all c ∈ [0, 1]:∫ c

0
P0(x)dx = ξ1P1(c) +

1

2
P0(c),

∫ c

0
Pi(x)dx = ξi+1Pi+1(c)− ξiPi−1(c), i ≥ 1, (2.7)

with ξi =
1

2
√

4i2 − 1
. (2.8)

Remark 2.2.1. From the orthogonality conditions (2.1), and taking into account that P0(x) ≡ 1,
one obtains: ∫ 1

0
P0(x)dx = 1,

∫ 1

0
Pj(x)dx = 0, ∀j ≥ 1.

Moreover, since the Legendre polynomials satisfy the following symmetry property:

Pj(c) = (−1)jPj(1− c), c ∈ [0, 1], j ≥ 0, (2.9)

then their integrals share a similar symmetry:∫ τ2

τ1

Pj(x)dx = (−1)j
∫ 1−τ1

1−τ2
Pj(x)dx, ∀τ1, τ2 ∈ [0, 1], j ≥ 0. (2.10)

In the sequel, we shall use the following matrices, de�ned by means of the Legendre polynomials
evaluated at the k ≥ s abscissae (2.2):1

Ps =

 P0(c1) . . . Ps−1(c1)
...

...
P0(ck) . . . Ps−1(ck)

 ∈ Rk×s, (2.11)

1Such matrices have been formally introduced, for a generic polynomial basis, at the end of Chapter 1.
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and

Is =


∫ c1

0 P0(x)dx . . .
∫ c1

0 Ps−1(x)dx
...

...∫ ck
0 P0(x)dx . . .

∫ ck
0 Ps−1(x)dx

 ∈ Rk×s. (2.12)

Because of (2.7), one obtains the following relation:

Is = Ps+1X̂s, X̂s =



1
2 −ξ1

ξ1 0
. . .

. . . . . . −ξs−1

ξs−1 0

ξs

 ≡
(

Xs

0 . . . 0 ξs

)
. (2.13)

We also set

Ω =

 b1
. . .

bk

 ∈ Rk×k, (2.14)

the diagonal matrix with the corresponding Gauss-Legendre weights. The following simple properties
then hold true [9].

Lemma 2.2.1.

det(Xs) =


∏ s

2
i=1 ξ

2
2i−1 , if s is even,

1
2

∏b s
2
c

i=1 ξ
2
2i , if s is odd.

Proof. Our claim easily follows from the Laplace expansion, by considering that, from (2.13),
det(X1) = 1

2 and det(X2) = ξ2
1 .

Theorem 2.2.1. Matrices (2.11) and (2.12) have full column rank, for all s = 1, . . . , k. Moreover,

P>s ΩPs+1 = (Is 0). (2.15)

Proof. By considering any set of s ≤ k rows of Ps, the resulting sub-matrix is the Gram matrix of the
s linearly independent polynomials P0, . . . , Ps−1 de�ned at the corresponding s (distinct) abscissae.
It is, therefore, nonsingular and, then, Ps has full column rank. Moreover, when s = k, one has

Pk+1 = (Pk 0), (2.16)

since the entries in last column are Pk(ci) = 0, i = 1, . . . , k. As a consequence, because of (2.13),
for matrix Is one obtains:

• when s < k, then both Ps+1 and X̂s have full column rank and so has Is;

• when s = k, then from (2.16) it follows that

Ik = Pk+1X̂k = PkXk,

and both Pk and Xk are nonsingular (see Lemma 2.2.1).
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Concerning (2.15), by considering that the quadrature formula (ci, bi) is exact for polynomials of
degree no larger than 2k − 1 ≥ 2s − 1, and setting ei ∈ Rs and êj ∈ Rs+1 the i-th and j-th unit
vectors, one has:

e>i P>s ΩPs+1êj =
k∑
`=1

b`Pi−1(c`)Pj−1(c`) =

∫ 1

0
Pi−1(x)Pj−1(x)dx = δij ,

∀i = 1, . . . , s, and j = 1, . . . , s+ 1,

so that (2.15) is veri�ed.

From the previous theorem, the following result easily follows.

Corollary 2.2.1. When k = s, then P−1
s = P>s Ω.

2.3 Additional preliminary results

To conclude this chapter, we present some perturbation results, that will be useful in order to carry
out a complete analysis of the methods, concerning the initial value problem for ordinary di�erential
equations

y′(t) = f(y(t)), t ≥ t0, y(t0) = y0. (2.17)

We denote the solution of (2.17) by y(t; t0, y0), in order to emphasize the dependence on the initial
condition.

Associated with this problem is the corresponding fundamental matrix, Φ(t, t0), satisfying the
variational problem (see also (1.4))

Φ′(t, t0) = Jf (y(t; t0, y0))Φ(t, t0), t ≥ t0, Φ(t0, t0) = I,

where the derivative (i.e.,′) is with respect to t, and Jf is the Jacobian matrix of f(y).
The following result then holds true.

Lemma 2.3.1. With reference to the solution y(t; t0, y0) of problem (2.17), one has:

(i)
∂

∂y0
y(t; t0, y0) = Φ(t, t0); (ii)

∂

∂t0
y(t; t0, y0) = −Φ(t, t0)f(y0).

Proof. Let us consider a perturbation δy0 of the initial condition, and let y(t; t0, y0 + δy0) be the
corresponding solution. Consequently,

y′(t; t0, y0 + δy0) = f(y(t; t0, y0 + δy0))

= f(y(t; t0, y0))︸ ︷︷ ︸
= y′(t;t0,y0)

+Jf (y(t; t0, y0)) [y(t; t0, y0 + δy0)− y(t; t0, y0)]

+ O
(
‖y(t; t0, y0 + δy0)− y(t; t0, y0)‖2

)
.

Therefore, by setting
z(t) = y(t; t0, y0 + δy0)− y(t; t0, y0),

one obtains that, at �rst order (as is the case, when we let δy0 → 0),

z′(t) = Jf (y(t; t0, y0))z(t), z(t0) = δy0.
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The solution of this linear problem is easily seen to be

z(t) = Φ(t, t0)δy0,

and, consequently,
∂

∂y0
y(t; t0, y0) =

∂

∂(δy0)
z(t) = Φ(t, t0),

i.e., (i) is proved.
Concerning the part (ii), let us consider a scalar ε ≈ 0 and observe that, by setting, y(t) =

y(t; t0, y0), then
y(t; t0 + ε, y0) ≡ y(t− ε).

Consequently, the solution of the perturbed problem

y′(t) = f(y(t)), t ≥ t0 + ε, y(t0 + ε) = y0,

coincides, at �rst order, with that of the problem

y′(t) = f(y(t)), t ≥ t0, y(t0) = y0(ε) ≡ y0 − εf(y0).

Letting ε→ 0, one then obtains:

∂

∂t0
y(t; t0, y0) =

∂

∂y0
y(t; t0, y0)︸ ︷︷ ︸

= Φ(t,t0)

=−f(y0)︷ ︸︸ ︷
∂

∂ε
y0(ε) = −Φ(t, t0)f(y0).

This concludes the proof.



Chapter 3

A framework for HBVMs

In this chapter we introduce a new class of methods for the numerical solution of canonical Hamil-
tonian systems, named Hamiltonian Boundary Value Methods (HBVMs). The main feature of these
methods is that they are able to exactly preserve, in the numerical solution, the value of the Hamil-
tonian function when it is a polynomial. We will see that this property also implies a practical
conservation of any analytical Hamiltonian function. The basic idea which HBVMs rely on is the
discrete line integral, already sketched in Chapter 1, i.e., the discrete counterpart of the line integral
associated with a conservative vector �eld.

In this chapter we provide a novel framework for discussing the order, the linear stability and
conservation properties of HBVMs, based on a local Fourier expansion of the vector �eld de�ning
the dynamical systems.

3.1 Local Fourier expansion

In Chapter 2 we introduced the Legendre polynomials which constitute an orthonormal basis for
the functions de�ned on the interval [0, 1]. Therefore, by using the notation (1.12), we can formally
expand, over the interval [0, h], the right hand side of the di�erential equation in (1.1), as follows:

f(y(ch)) =
∑
j≥0

Pj(c)γj(y), c ∈ [0, 1], (3.1)

where

γj(y) =

∫ 1

0
Pj(τ)f(y(τh))dτ, j ≥ 0. (3.2)

The expansion (3.1)�(3.2) is known as the Neumann expansion of an analytic function [76, p. 322],
and converges uniformly provided that the function g(c) = f(y(ch)) has continuous derivative [58,
p. 206]. However, for sake of simplicity, hereafter we shall assume g(c) to be analytic.

In so doing, we are transforming the initial value problem

y′(t) = f(y(t)), t ∈ [0, h], y(0) = y0, (3.3)

into the equivalent integro-di�erential problem

y′(ch) =
∑
j≥0

Pj(c)

∫ 1

0
Pj(τ)f(y(τh))dτ, c ∈ [0, 1], y(0) = y0. (3.4)

21
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In order to obtain a polynomial approximation of degree s to (3.3)�(3.4), we just truncate the in�nite
series to a �nite sum. The resulting initial value problem is (see (3.2))

σ′(ch) =

s−1∑
j=0

Pj(c)

∫ 1

0
Pj(τ)f(σ(τh))dτ ≡

s−1∑
j=0

Pj(c)γj(σ), c ∈ [0, 1], (3.5)

σ(0) = y0,

whose solution is a polynomial σ ∈ Πs. In fact, by integrating both sides of (3.5) and taking into
account the initial condition, we have

σ(ch) = y0 + h
s−1∑
j=0

∫ c

0
Pj(x)dxγj(σ), c ∈ [0, 1]. (3.6)

One easily recognizes that (3.5)�(3.6) de�ne the very same expansion (1.16)�(1.18) with all ηj = 1.
Consequently, such a method is energy-conserving, if we are able to exactly compute the integrals
providing the coe�cients γj(σ) at the right-hand side in (3.2). From (3.6) one obtains that

σ(h) = y0 +

∫ h

0
f(σ(τ))dτ.

In order to discuss the order of the approximation σ(h) ≈ y(h), we state the following result whose
proof is a direct consequence of (3.2) and Lemma 2.1.2.

Lemma 3.1.1. Let γj(σ) be de�ned according to (3.2). Then γj(σ) = O(hj).

We are now able to prove the following result.

Theorem 3.1.1. σ(h)− y(h) = O(h2s+1).

Proof. Denoting by y(t; t0, y0) the solution of problem (2.17) and considering that σ(0) = y0, by
virtue of (3.1), (3.5), and Lemmas 2.1.2, 2.3.1, and 3.1.1, one has:

σ(h)− y(h) = y(h;h, σ(h))− y(h; 0, y0) ≡ y(h;h, σ(h))− y(h; 0, σ(0))

=

∫ h

0

d

dt
y(h; t, σ(t))dt =

∫ h

0

(
∂

∂θ
y(h; θ, σ(t))

∣∣∣
θ=t

+
∂

∂ω
y(h; t, ω)

∣∣∣
ω=σ(t)

σ′(t)

)
dt

=

∫ h

0

[
−Φ(h, t)f(σ(t)) + Φ(h, t)σ′(t)

]
dt =

∫ h

0
Φ(h, t)[−f(σ(t)) + σ′(t)]dt

= h

∫ 1

0
Φ(h, τh)[−f(σ(τh)) + σ′(τh)]dτ

= −h
∫ 1

0
Φ(h, τh)

∑
j≥0

Pj(τ)γj(σ)−
s−1∑
j=0

Pj(τ)γj(σ)

dτ

= −h
∫ 1

0
Φ(h, τh)

∑
j≥s

Pj(τ)γj(σ)dτ = −h
∑
j≥s

∫ 1

0

≡G(τh)︷ ︸︸ ︷
Φ(h, τh) Pj(τ)dτ


︸ ︷︷ ︸

=O(hj)

=O(hj)︷ ︸︸ ︷
γj(σ)

= h
∑
j≥s

O(h2j) = O(h2s+1).
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We observe, however, that (3.5) is not yet an operative method, but rather a formula since,
quoting Dahlquist and Björk [38], �as is well known, even many relatively simple integrals cannot be
expressed in �nite terms of elementary functions, and thus must be evaluated by numerical methods�.
In other words, in order to obtain an actual numerical method, we need to approximate the integrals
appearing in (3.5) by means of a suitable quadrature formula. We assume to use a quadrature
(ci, bi) over k distinct abscissae, and, as a consequence, in place of σ de�ned by (3.5) or (3.6), we
shall compute the new polynomial u ∈ Πs such that

u′(ch) =

s−1∑
j=0

Pj(c)

k∑
`=1

b`Pj(c`)f(u(c`h)), c ∈ [0, 1],

(3.7)
u(0) = y0,

or, equivalently,

u(ch) = y0 + h
s−1∑
j=0

∫ c

0
Pj(x)dx

k∑
`=1

b`Pj(c`)f(u(c`h)), c ∈ [0, 1], (3.8)

with the new approximation given by

y1 ≡ u(h) = y0 + h
k∑
i=1

bif(u(cih)). (3.9)

If the quadrature formula (ci, bi) has order q ≥ s, then, by virtue of Lemma 2.1.1 and taking into
account (3.2), one obtains

γj(u) ≡
∫ 1

0
Pj(τ)f(u(τh))dτ =

k∑
`=1

b`Pj(c`)f(u(c`h)) + ∆j(h),

(3.10)
∆j(h) = O(hq−j), j = 0, . . . , s− 1.

Consequently, we can rewrite the �rst equation in (3.7) in the following equivalent form:

u′(ch) =
s−1∑
j=0

Pj(c) [γj(u)−∆j(h)] , c ∈ [0, 1].

This allows us to derive the following result.

Theorem 3.1.2. y1 − y(h) = O(hp+1), where p = min{q, 2s}.
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Proof. The proof proceeds on the same line as that of Theorem 3.1.1:

y1 − y(h) = u(h)− y(h) = y(h;h, u(h))− y(h; 0, u(0))

=

∫ h

0

d

dt
y(h; t, u(t))dt =

∫ h

0

(
∂

∂θ
y(h; θ, u(t))

∣∣∣
θ=t

+
∂

∂ω
y(h; t, ω)

∣∣∣
ω=u(t)

u′(t)

)
dt

=

∫ h

0
Φ(h, t)[−f(u(t)) + u′(t)]dt = h

∫ 1

0
Φ(h, τh)[−f(u(τh)) + u′(τh)]dτ

= −h
∫ 1

0
Φ(h, τh)

∑
j≥0

Pj(τ)γj(u)−
s−1∑
j=0

Pj(τ) (γj(u)−∆j(h))

dτ

= −h
∫ 1

0
Φ(h, τh)

s−1∑
j=0

Pj(τ)∆j(h)dτ − h
∫ 1

0
Φ(h, τh)

∑
j≥s

Pj(τ)γj(u)dτ

= −h
s−1∑
j=0

∫ 1

0

≡G(τh)︷ ︸︸ ︷
Φ(h, τh) Pj(τ)dτ


︸ ︷︷ ︸

=O(hj)

=O(hq−j)︷ ︸︸ ︷
∆j(h) −h

∑
j≥s

∫ 1

0

≡G(τh)︷ ︸︸ ︷
Φ(h, τh) Pj(τ)dτ


︸ ︷︷ ︸

=O(hj)

=O(hj)︷ ︸︸ ︷
γj(u)

= O(hq+1) + h
∑
j≥s

O(h2j) = O(hp+1), p = min{q, 2s}.

De�nition 3.1.1. The method (3.7)�(3.9) is named Hamiltonian Boundary Value Method (HBVM)
with k stages and degree s, in short HBVM(k, s).

On the basis of the result of Theorem 3.1.2, it appears natural to choose the k abscissae as the
k ≥ s Gauss-Legendre abscissae on [0, 1] de�ned in (2.2), so that the order of the quadrature is
maximized. As we have seen in Chapter 2, the Gauss-Legendre quadrature formula with k points
has order q = 2k. As a consequence, the following result holds true.

Corollary 3.1.1. By choosing the k abscissae {ci} as in (2.2), a HBVM(k, s) method has order 2s,
for all k ≥ s.

For this reason, we shall always consider in the sequel a k-points Gauss-Legendre formula for the
quadrature of the integrals de�ning the coe�cients γj(σ) in (3.2).

3.2 Runge-Kutta form of HBVMs

In this section we show that a HBVM(k, s) method admits a Runge-Kutta formulation. The basic
fact is that, at right hand side of equations (3.8)�(3.9), one only needs to know the value of the
polynomial u at the abscissae {cih}. By setting

Yi = u(cih), i = 1, . . . , k,
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one obtains:

Yi = y0 + h

k∑
j=1

aij︷ ︸︸ ︷[
bj

s−1∑
`=0

P`(cj)

∫ ci

0
P`(x)dx

]
f(Yj) ≡ y0 + h

k∑
j=1

aijf(Yj), (3.11)

i = 1, . . . , k,

y1 = y0 + h
k∑
i=1

bif(Yi). (3.12)

In such a way, we have de�ned the following k-stage Runge-Kutta method:

c A ≡ (aij)

b>
(3.13)

with (see (3.11)),

c = (c1, . . . , ck)
>, b = (b1, . . . , bk)

>, A = (aij) ∈ Rk×k.

The Butcher tableau (3.13) de�nes the Runge-Kutta shape of a HBVM(k,s) method. The Butcher
matrix A in (3.13) can be easily written in a more compact form.

Theorem 3.2.1. A = IsP>s Ω, with the matrices Is, Ps and Ω de�ned according to (2.11)�(2.14).

Proof. By setting ei, ej ∈ Rk the i-th and j-th unit vectors, respectively, one obtains:

e>i IsP>s Ωej =
( ∫ ci

0 P0(x)dx . . .
∫ ci

0 Ps−1(x)dx
) P0(cj)

...
Ps−1(cj)

 bj

= bj

s−1∑
`=0

P`(cj)

∫ ci

0
P`(x)dx ≡ aij = e>i Aej ,

according to (3.11).

Consequently, the Butcher tableau (3.13) can be rewritten as:

c IsP>s Ω

b>
(3.14)

or, equivalently, by taking into account (2.13),

c Ps+1X̂sP>s Ω

b>
. (3.15)

Remark 3.2.1. We observe that the Runge-Kutta form (3.14) of a HBVM(k, s) method is the same
obtained in Remark 1.3.1 for a discrete line-integral method de�ned by using a general polynomial
basis, but with the diagonal matrix Λs now automatically �xed in order to maximize the order of
accuracy of the method. Moreover, the vector of the quadrature weights coincides with that used for
approximating the integrals involved in the coe�cients of the polynomial u.
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3.3 HBVM(s, s)

In the particular case k = s the matrices Is,Ps,Ω ∈ Rs×s. From Theorem 2.2.1 and Corollary 2.2.1
one has:

Is = PsXs, P>s Ω = P−1
s .

Consequently, we can write the Butcher tableau (3.14) as that of the following s-stage method,

c PsXsP−1
s

b>
(3.16)

resulting in the W-transformation de�ning the s-stage Gauss-Legendre Runge-Kutta collocation
method [50, p. 79] which has order 2s. In this sense, in the case k ≥ s, HBVM(k, s) can be regarded
as low-rank generalizations of the s-stage Gauss method. Indeed, the following result, known as
isospectrality of HBVMs [23], holds true.

Theorem 3.3.1. For all k ≥ s the rank of the matrix A = Ps+1X̂sP>s Ω is s. Moreover, the non-zero
eigenvalues of A coincide with those of the underlying s-stage Gauss method.

Proof. The rank of the matrix Ps+1 is s or s+1 (when k > s), whereas the rank of the matrices X̂s,Ps
is s and Ω is nonsingular. Therefore, the rank of A cannot exceed s. Moreover, from Theorem 2.2.1,
one has

P>s ΩAPs = P>s ΩPs+1X̂sP>s ΩPs = (Is 0)X̂sIs = Xs ∈ Rs×s,

which is known to be nonsingular (see Lemma 2.2.1). Consequently, rank(A) = s. Concerning the
second part of the proof, taking into account the result of Theorem 2.2.1, one has

P>s ΩA = P>s ΩPs+1X̂sP>s Ω = (Is 0)X̂sP>s Ω = XsP>s Ω.

This means that the columns of ΩPs span an s-dimensional left invariant subspace of A. Therefore,
the eigenvalues of Xs will coincide with the non-zero eigenvalues of A. On the other hand, from
(3.16) one obtains immediately that the eigenvalues of Xs are the eigenvalues of the Butcher matrix
of the s-stage Gauss method.

3.4 Energy conservation

We now consider the issue of energy conservation for HBVM(k, s) methods. From (3.7)�(3.9) with
f = J∇H, one obtains:

H(y1)−H(y0) = H(u(h))−H(u(0)) =

∫ h

0
∇H(u(t))>u′(t)dt

= h

∫ 1

0
∇H(u(τh))>u′(τh)dτ

= h

∫ 1

0
∇H(u(τh))>

s−1∑
j=0

Pj(τ)

k∑
i=1

biPj(ci)J∇H(u(cih))dτ

= h

s−1∑
j=0

[∫ 1

0
Pj(τ)J∇H(u(τh))dτ

]>
J

[
k∑
i=1

biPj(ci)J∇H(u(cih))

]
≡ EH ,

where in the last but one equality we have exploited the orthogonality of matrix J . At this point,
two possibilities may occur:
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•
∫ 1

0
Pj(τ)J∇H(u(τh))dτ =

k∑
i=1

biPj(ci)J∇H(u(cih)), that is, the Gauss-Legendre quadrature

formula is exact for the integral appearing in γj(u). This is the case of a polynomial Hamilto-
nian of degree ν no larger than 2k/s. In this case, EH = 0, so that energy is exactly conserved;

•
∫ 1

0
Pj(τ)J∇H(u(τh))dτ =

k∑
i=1

biPj(ci)J∇H(u(cih)) + ∆j(h), that is, the Gauss-Legendre

quadrature formula of order q = 2k is not exact for the integral in the expression of γj(u), but,
provided that the Hamiltonian H is suitably regular, as we have assumed, and according to
(3.10), it gives an error ∆j(h) = O(h2k−j). In such a case, by taking into account the result
of Lemma 2.1.2 and the skew-symmetry of J , one has:

EH = h

s−1∑
j=0

[∫ 1

0
Pj(τ)J∇H(u(τh))dτ

]>
J

[∫ 1

0
Pj(τ)J∇H(u(τh))dτ −∆j(h)

]

= −h
s−1∑
j=0

[∫ 1

0
Pj(τ)J∇H(u(τh))dτ

]>
︸ ︷︷ ︸

O(hj)

J ∆j(h)︸ ︷︷ ︸
O(h2k−j)

= O(h2k+1).

We have then proved the following result.

Theorem 3.4.1. HBVM(k, s) is energy-conserving for all polynomial Hamiltonians of degree

ν ≤ 2k

s
. (3.17)

In any other case, even though the method has order s and provided that the Hamiltonian is suitably
regular, H(y1)−H(y0) = O(h2k+1).

Remark 3.4.1. As a consequence of Theorem 3.4.1, one can observe that

• for polynomials Hamiltonian of any degree, energy conservation can always be obtained, by
choosing k large enough so that (3.17) is satis�ed;

• even in the case of non polynomial, but suitably regular, Hamiltonians, energy conservation
can still be practically gained by choosing k large enough, so that |EH |, which is O(h2k+1),
falls within round-o� errors.

As we will see in the next chapter, choosing k large enough is not a drawback from a computational
point of view since, as a consequence of the isospectrality property of HBVMs, the computational cost
for the implementation of these methods essentially depends on s rather than on k.

To show the validity of our results and the potential advantage of using energy-conserving meth-
ods, we consider, as a �rst example, the Hamiltonian problem with Hamiltonian (1.7) and parameters
(1.8). For this problem we have plotted in Figure 1.1 the level curves passing through the points
de�ned in (1.9) and in Figure 1.2 the wrong phase portrait that one obtains by using the symplectic
2-stage Gauss method (fourth-order), with stepsize h = 10−4, corresponding to the error in the nu-
merical Hamiltonian shown in Figure 3.1. Indeed, even though no drift in the Hamiltonian occurs,
nevertheless such error is not negligible for the problem at hand.
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Figure 3.1: Hamiltonian error for problem (1.7)�(1.9), 2-stage Gauss method, h = 10−4.

However, if we use the HBVM(3,2) method (fourth-order) with the same stepsize, the error in the
Hamiltonian is of sixth-order: this is enough to have a smaller error in the numerical Hamiltonian,
as is shown in Figure 3.2, resulting in a correct phase portrait, as is shown in Figure 3.3.

At last, by using the HBVM(10,2) method (fourth-order) with the same stepsize, the Hamiltonian
error is within roundo� errors, as is shown in Figure 3.4, thus allowing a perfect reconstruction of
the phase portrait, depicted in Figure 3.5.

For sake of completeness, in Figure 3.6 we also plot the mean error in the numerical Hamiltonian
for HBVM(k, 2) methods (all of order 4), used with the stepsize h = 10−4, for k = 2, . . . , 10. As one
can see for k ≥ 6 the error is essentially due to roundo�.

As a second example we consider the problem de�ned by the following polynomial Hamiltonian:

H(q, p) = (q2 + p2)2 − 10(q2 − p2). (3.18)

The level curves for this problem are the Cassini ovals and in Figure 3.7 we plot the one passing at

(q0, p0) = (0, 10−5). (3.19)

By using the 2-stage Gauss method with stepsize h = 10−2, the obtained phase portrait is �almost�
correct, at a �rst sight, as one can see in Figure 3.8. This portrait is, actually, qualitatively wrong
as one can realize by zooming around the origin (see Figure 3.10), due to the error in the Hamil-
tonian displayed in Figure 3.14. Moreover, comparing the correct pro�le of component q and the
approximated one, as shown in Figure 3.12 (similar results are obtained for p), one can observe that
the error in the Hamiltonian results in the loss of periodicity for the numerical solution.

By using the HBVM(4, 2) method with the same stepsize, since the Hamiltonian (3.18) is a
polynomial of degree 4, according to (3.17), the error on the Hamiltonian is of the order of roundo�
errors, as is con�rmed by the plot in Figure 3.15. This makes it possible to obtain a phase portrait
(see Figure 3.9) qualitatively correct, as is con�rmed by the zoom in Figure 3.11. Moreover, one
also obtains that the periodicity of the solution is maintained, resulting in a pro�le of the numerical
approximation of the component q (similarly for p) which well matches the correct one, as is shown
in Figure 3.13.
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Figure 3.2: Hamiltonian error for problem (1.7)�(1.9), HBVM(3,2) method, h = 10−4.

Figure 3.3: Numerical level curves for problem (1.7)�(1.9), HBVM(3,2) method, h = 10−4.
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Figure 3.4: Hamiltonian error for problem (1.7)�(1.9), HBVM(10,2) method, h = 10−4.

Figure 3.5: Numerical level curves for problem (1.7)�(1.9), HBVM(10,2) method, h = 10−4.
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Figure 3.6: Mean Hamiltonian error for problem (1.7)�(1.9), HBVM(k, 2) method, k = 2, . . . , 10,
by using a stepsize h = 10−4.

Figure 3.7: Level curve for problem (3.18)�(3.19).
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Figure 3.8: Numerical level curve for problem (3.18)�(3.19), 2-stage Gauss method, h = 10−2.

Figure 3.9: Numerical level curve for problem (3.18)�(3.19), HBVM(4,2) method, h = 10−2.
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Figure 3.10: Zoom of the numerical level curve for problem (3.18)�(3.19) around (0, 0), 2-stage Gauss
method, h = 10−2.

Figure 3.11: Zoom of the numerical level curve for problem (3.18)�(3.19) around (0, 0), HBVM(4,2)
method, h = 10−2.
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Figure 3.12: Component q (solid line) and its numerical approximation (circles) by using the 2-stage
Gauss method, h = 10−2, for problem (3.18)�(3.19).

Figure 3.13: Component q (solid line) and its numerical approximation (circles) by using the
HBVM(4,2) method, h = 10−2, for problem (3.18)�(3.19).
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Figure 3.14: Hamiltonian error for problem (3.18)�(3.19) by using the 2-stage Gauss method, h =
10−2.

Figure 3.15: Hamiltonian error for problem (3.18)�(3.19) by using the HBVM(4,2) method, h =
10−2.
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3.5 Symmetry

We here prove that, provided that the abscissae {ci} are symmetrically distributed in the interval
[0, 1], as is the case for the Gauss-Legendre nodes (see (2.3)), a HBVM(k, s) method is symmetric.
In more details [32], if applied to the initial value problem

y′ = f(y), y(0) = y0,

yielding the approximation y1 ≈ y(h), then it will provide the same discrete solution, as well as the
same internal stages, though in reversed order, when applied to the initial value problem

z′ = −f(z), z(0) = y1. (3.20)

In order to prove this property, let us introduce the following matrices:

Jr =


1

···
1

 ∈ Rr×r, r = k, k + 1, k + 2,

L =


1
−1 1

. . . . . .
−1 1

 ∈ Rk+1×k+1, D =


1
−1

. . .
(−1)s−1

 ∈ Rs×s,

and, by recalling the vector I1
s ≡ e>1 de�ned in (1.23) and the matrix Is de�ned at (2.12),

Îs =

(
Is
I1
s

)
∈ Rk+1×s.

Moreover, by setting
0 ≡ c0 < c1 < · · · < ck < ck+1 ≡ 1, (3.21)

we need to de�ne the matrix

L Îs ≡ ∆Is =

(∫ ci

ci−1

Pj−1(x)dx

)
i = 1, . . . , k + 1
j = 1, . . . , s

.

If the abscissae are symmetrically distributed in the interval [0, 1] than, by taking into account
(3.21), we have ci = 1− ck−i+1, i = 0, . . . , k + 1 and the following properties hold true:

(i) J>r = J−1
r = Jr;

(ii) JkΩJk = Ω ⇒ ΩJk = JkΩ;

(iii) Jk+1∆Is = ∆IsD;

(iv) JkPs = PsD;
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where the last two points follow from the properties (2.10) and (2.9) of Legendre polynomials,
respectively. The discrete solution generated by a HBVM(k, s) method can then be cast in vector
form as (

−ê Ik+1

)
⊗ I Ŷ = h[0 ÎsP>s Ω 0]⊗ I f(Ŷ ), (3.22)

where ê ∈ Rk+1 is the unit vector, and

Ŷ =

 y0

Y
y1

 , Y =

 Y1
...
Yk

 .

Left-multiplication of (3.22) by L⊗ I then gives

Â⊗ I Ŷ = hB̂ ⊗ I f(Ŷ ), (3.23)

with

Â =

 −1 1
. . . . . .

−1 1

 , B̂ =
(
0 ∆IsP>s Ω 0

)
∈ Rk+1×k+2,

and one easily realizes that

Jk+1ÂJk+2 = −Â. (3.24)

Moreover, exploiting the properties (i)�(iv) listed above, one also has:

Jk+1B̂Jk+2 =
(
0 Jk+1∆IsP>s ΩJk 0

)
=
(
0 ∆IsDP>s JkΩ 0

)
(3.25)

=
(
0 ∆IsD(JkPs)>Ω 0

)
=
(
0 ∆IsD2P>s Ω 0

)
= B̂.

Now, by observing that

Ẑ ≡ Jk+2 ⊗ I Ŷ =

 y1

Jk ⊗ I Y
y0

 , (3.26)

is the reversed-time discrete solution, left multiplication of (3.23) by Jk+1 ⊗ I then gives:

0 = Jk+1Â⊗ I Ŷ − hJk+1B̂ ⊗ I f(Ŷ ) = Jk+1ÂJ
2
k+2 ⊗ I Ŷ − hJk+1B̂J

2
k+2 ⊗ I f(Ŷ )

= −Â⊗ IẐ − hB̂ ⊗ I f(Ẑ),

where in the last equality (3.24), (3.25) and (3.26) have been used. What we have found is that the
reversed-time vector satis�es the equation

Â⊗ IẐ = −hB̂ ⊗ If(Ẑ),

which consists in applying the HBVM(k, s) method to problem (3.20), thus providing the approxi-
mation z1 = y0, by using the stages Z = Jk ⊗ IY . In other words, we have proved that the HBVMs
are symmetric methods.
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3.6 Linear stability analysis

We end this chapter providing a linear stability analysis of HBVM(k, s): indeed, such methods can
be de�ned independently from the problem of energy conservation, by considering a general function
f in (3.7). Let us, then, apply our method to the celebrated test equation

y′ = λy, y(0) = y0 6= 0, Re(λ) < 0.

Setting
λ = α+ iβ, y = x1 + ix2,

with α, β, x1, x2 ∈ R and i the imaginary unit, the test equation becomes:

x′ ≡
(
x1

x2

)′
=

(
α −β
β α

)(
x1

x2

)
≡ Ax, x(0) = x0 6= 0. (3.27)

The application of a HBVM(k, s) method for solving (3.27) de�nes the polynomial u such that
u(0) = x0 and, moreover,

u′(ch) =

s−1∑
j=0

Pj(c)

k∑
i=1

biPj(ci)Au(cih) = A

s−1∑
j=0

Pj(c)

k∑
i=1

biPj(ci)u(cih)

= A
s−1∑
j=0

Pj(c)

∫ 1

0
Pj(τ)u(τh)dτ

where the last equality follows from the fact that the quadrature is exact for polynomials of degree
2s− 1.

Since independently of the value of k ≥ s we obtain the same polynomial u, and for k = s this
is the one provided by the s-stage Gauss-Legendre method, one has that all HBVM(k, s) methods,
with k ≥ s, have the same linear stability properties of the s-stage Gauss-Legendre method. I.e,
their absolute stability region coincides with C−.



Chapter 4

Implementation of the methods

In this chapter we deal with the implementation of HBVM(k, s) methods. First, we will make
clear that their computational cost depends essentially on s, as we have already mentioned in Re-
mark 3.4.1, in the sense that for all k ≥ s, the discrete problem turns out always to have block-
dimension s. On the basis of this interesting property, we sketch two di�erent e�cient imple-
mentations of the methods: one based on a blended implementation, the remaining one based on
a triangular splitting procedure. At the end of the chapter, we provide some numerical tests for
comparing the di�erent procedures.

4.1 Fundamental and silent stages

From (3.14)�(3.15), by considering the isospectrality property of a HBVM(k, s), with k ≥ s, proved
in Theorem 3.3.1, we have that such a method is de�ned by a Butcher matrix of rank s. Therefore,
we can express k − s of the stages of the method as a linear combination of the remaining s stages.
We shall name fundamental stages the latter ones and silent stages the former ones and suppose, for
simplicity, that the fundamental stages are the �rst s-ones.1 We partition the stage vector Y as

Y =

(
Y (1)

Y (2)

)
,

with

Y (1) =

 Y1
...
Ys

 , Y (2) =

 Ys+1
...
Yk

 ,

the vectors with the fundamental and the silent stages, respectively. Similarly, we partition matrices
Is and Ps as

Is =

(
I(1)
s

I(2)
s

)
, Ps =

(
P(1)
s

P(2)
s

)
, I(1)

s ,P(1)
s ∈ Rs×s, I(2)

s ,P(2)
s ∈ Rk−s×s,

containing the corresponding rows as those of Y (1) and Y (2), respectively. Finally we consider the
partition

Ω =

(
Ω1

Ω2

)
, Ω1 ∈ Rs×s, Ω2 ∈ Rk−s×k−s.

1Indeed, this can be always achieved, by using a permutation of the abscissae.

39
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Consequently, by setting e(1) and e(2) the unit vectors of length s and k − s, respectively, one has:

Y (1) = e(1) ⊗ y0 + hI(1)
s P>s Ω⊗ I

(
f(Y (1))

f(Y (2))

)
, (4.1)

Y (2) = e(2) ⊗ y0 + hI(2)
s P>s Ω⊗ I

(
f(Y (1))

f(Y (2))

)
. (4.2)

From (4.1), one then obtains that

P>s Ω⊗ I
(
f(Y (1))

f(Y (2))

)
=
(
hI(1)

s

)−1
⊗ I

[
Y (1) − e(1) ⊗ y0

]
,

which substituted into (4.2) gives:

Y (2) = e(2) ⊗ y0 + I(2)
s

(
I(1)
s

)−1
⊗ I

[
Y (1) − e(1) ⊗ y0

]
=

[
e(2) − I(2)

s

(
I(1)
s

)−1
e(1)

]
︸ ︷︷ ︸

≡a

⊗ y0 + I(2)
s

(
I(1)
s

)−1
⊗ I Y (1)

≡ a⊗ y0 + I(2)
s

(
I(1)
s

)−1
⊗ I Y (1).

Consequently, we can rewrite (4.1)-(4.2) as:

Y (1) = e(1) ⊗ y0 + hI(1)
s P>s Ω⊗ I

(
f(Y (1))

f
(
a⊗ y0 + I(2)

s (I(1)
s )−1 ⊗ I Y (1)

) )
≡ e(1) ⊗ y0 + h

[
I(1)
s (P(1)

s )>Ω1 ⊗ I f(Y (1)) +

I(1)
s (P(2)

s )>Ω2 ⊗ I f
(
a⊗ y0 + I(2)

s (I(1)
s )−1 ⊗ I Y (1)

)]
,

involving only the fundamental stages, thus con�rming that the actual discrete problem, to be solved
at each time step, amounts to a set of s (generally) nonlinear equations, each having the same size
as that of the continuous problem. For solving such a problem, one could use, e.g., a �xed-point
iteration,

Y
(1)
`+1 = e(1) ⊗ y0 + hI(1)

s P>s Ω⊗ I

(
f(Y

(1)
` )

f
(
a⊗ y0 + I(2)

s (I(1)
s )−1 ⊗ I Y (1)

`

) ) , ` = 0, 1, . . . , (4.3)

or, if the case, a simpli�ed-Newton iteration. In more details, setting

F (Y (1)) = Y (1) − e(1) ⊗ y0 − h
[
I(1)
s (P(1)

s )>Ω1 ⊗ I f(Y (1)) +

I(1)
s (P(2)

s )>Ω2 ⊗ I f
(
a⊗ y0 + I(2)

s (I(1)
s )−1 ⊗ I Y (1)

)]
,

one then solves,

[I − hC ⊗ J0] ∆` = −F (Y
(1)
` ), Y

(1)
`+1 = Y

(1)
` + ∆`, ` = 0, 1, . . . , (4.4)

where J0 = Jf (y0) and matrix C is de�ned as follows:

C = I(1)
s

[
(P(1)

s )>Ω1 + (P(2)
s )>Ω2I(2)

s (I(1)
s )−1

]
. (4.5)

The following result holds true.
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Theorem 4.1.1. The eigenvalues of matrix C, as de�ned in (4.5), coincide with those of matrix
Xs de�ned in (2.13), that is the eigenvalues of the Butcher matrix of the s-stage Gauss method.

Proof. One has:

C = I(1)
s

[
(P(1)

s )>Ω1 + (P(2)
s )>Ω2I(2)

s (I(1)
s )−1

]
= I(1)

s

[
(P(1)

s )>Ω1I(1)
s + (P(2)

s )>Ω2I(2)
s

]
(I(1)
s )−1 = I(1)

s

[
P>s ΩIs

]
(I(1)
s )−1

∼ P>s ΩIs = P>s ΩPs+1X̂s = [Is 0]X̂s = Xs.

Consequently, matrix C has always the same spectrum, independently of the choice of the fun-
damental and silent abscissae.2 This, in turn, coincides with the set of the nonzero eigenvalues of
the corresponding Butcher array (see Theorem 3.3.1). Nevertheless, its condition number is greatly
a�ected from this choice. Clearly, a badly conditioned matrix C would a�ect the convergence of
both the iterations (4.3) and (4.4). As an example, in Figures 4.1 and 4.2 we plot the condition
number of matrix C corresponding to the following choices of the fundamental abscissae, in the case
k ≥ s = 3:

• the �rst s abscissae of the k ones (Figure 4.1);

• s approximately evenly spaced abscissae among the k ones (Figure 4.2).

As one may see, in the �rst case the condition number κ(C) grows exponentially with k, whereas it
is uniformly bounded in the second case. Because of this reason, we shall consider a more favourable
formulation of the discrete problem, which will be independent of the choice of the fundamental
abscissae.

4.2 Alternative formulation of the discrete problem

In order to overcome the previous drawback, the basic idea it to reformulate the discrete problem
by considering as unknowns the coe�cients, say

γ̂j =
k∑
`=1

b`Pj(c`)f(u(c`h)), j = 0, . . . , s− 1, (4.6)

of the polynomial approximation de�ning the given HBVM(k, s) method (see (3.8)). In more details,
recalling (3.11), we have

Yi ≡ u(cih) = y0 + h
s−1∑
j=0

γ̂j

∫ ci

0
Pj(x)dx, i = 1, . . . , k,

which, substituted into (4.6), gives us the following formulation of the discrete problem:

γ̂ ≡

 γ̂0
...

γ̂s−1

 = P>s Ω⊗ If(e⊗ y0 + hIs ⊗ Iγ̂), (4.7)

2I.e., the abscissae corresponding to the fundamental and silent stages, respectively.
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Figure 4.1: Condition number of matrix (4.5), fundamental abscissae �xed as the �rst s (= 3) ones.

Figure 4.2: Condition number of matrix (4.5), with s (= 3) fundamental abscissae approximately
evenly spaced.



4.2 Alternative formulation of the discrete problem 43

being e ∈ Rk the unit vector and with the new approximation given by (see (3.9))

y1 = y0 + hγ̂0. (4.8)

We observe that (4.7) has always (block) dimension s, whatever is the value of k considered. For
solving such a problem, one can still use a �xed-point iteration,

γ̂`+1 = P>s Ω⊗ I f
(
e⊗ y0 + hIs ⊗ I γ̂`

)
, ` = 0, 1, . . . , (4.9)

whose implementation is straightforward. One can also consider a simpli�ed-Newton iteration. Set-
ting

F (γ̂) = γ̂ − P>s Ω⊗ I f (e⊗ y0 + hIs ⊗ I γ̂) , (4.10)

and, as before, J0 = Jf (y0), it takes the form

[I − hC ⊗ J0] ∆` = −F (γ̂`), γ̂`+1 = γ̂` + ∆`, ` = 0, 1, . . . , (4.11)

where matrix C is now de�ned as follows:

C = P>s ΩIs = P>s ΩPs+1X̂s = (Is 0)X̂s = Xs. (4.12)

Consequently, the iteration (4.11) becomes:

[I − hXs ⊗ J0] ∆` = −F (γ̂`), γ̂`+1 = γ̂` + ∆`, ` = 0, 1, . . . . (4.13)

Remark 4.2.1. It is worth noticing that (4.13) holds independently of the choice of the k abscissae
{ci}, the only requirement being the order 2s of the quadrature, so that the property P>s ΩPs+1 =
(Is 0) holds true.

Remark 4.2.2. We observe that both matrices (4.5) and (4.12) share the same eigenvalues which,
in turn, are the nonzero eigenvalues of the Butcher array of the given HBVM(k, s) method (see
Theorem 3.3.1).

Remark 4.2.3. Even though, usually, by using the �xed point iteration (4.9) one is able to solve
(4.7) quite inexpensively, when dealing with the solution of a sti� oscillatory problem, this procedure
could require a stepsize h so small as to be not practical. In such a case, the simpli�ed-Newton
iteration (4.11) would be more appropriate and this is the procedure that we shall consider in the
sequel.

We observe that, remarkably enough, at each step of the simpli�ed-Newton iteration we have to
solve a linear system of dimension sm× sm of the form

[I − hXs ⊗ J0]x = η, (4.14)

whose coe�cient matrix is thus independent of k and of the choice of the abscissae. Its cost is then
approximately given by

2

3
(sm)3 �ops,

due to the cost of the LU factorization of the coe�cient matrix. We shall now consider alternative
iterative procedures, able to reduce the cost for the factorization to approximately

2

3
m3 �ops.
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4.3 Blended HBVMs

The iterative procedure that we shall introduce in this section in order to solve (4.14), has been
already successfully implemented in the computational codes BiM [28] and BiMD [31] for the numerical
solution of sti� ODE-IVPs and linearly implicit DAEs up to order 3.

In order to provide a linear analysis of convergence [30, 52], we consider the classical test equation,

y′ = λy, Re(λ) < 0. (4.15)

In such a case, by setting as usual q = hλ, problem (4.14) becomes the linear system, of dimension
s,

(I − qXs)x = η. (4.16)

By means of a left-multiplication by ζX−1
s , where ζ > 0 is a free parameter to be chosen later, we

obtain the following equivalent formulation of (4.16):

ζ(X−1
s − qI)x = ζX−1

s η ≡ η1. (4.17)

Let us de�ne the weighting function

θ(q) = I(1− ζq)−1, (4.18)

satisfying the following properties:

• θ(q) is well de�ned for all q ∈ C−, since ζ > 0;

• θ(0) = I;

• θ(q)→ O, as q →∞.

Then, we can derive a further equivalent formulation of problem (4.16), as the blending, with weights
θ(q) and I − θ(q) of the two equivalent formulations (4.16) and (4.17), thus obtaining

M(q)x = η(q), (4.19)

with:

M(q) = θ(q)(I − qXs) + ζ(I − θ(q))(X−1
s − qI),

(4.20)
η(q) = θ(q)η + ζ(I − θ(q))X−1

s η.

Equations (4.19)-(4.20) de�ne the blended formulation of the original problem (4.16). The next step
is now to devise an iterative procedure, de�ned by a suitable splitting for solving (4.19)-(4.20). To
this end we observe that, due to the properties of the weighting function θ(q) de�ned in (4.18), one
has:

M(q) ≈ I, q ≈ 0,

M(q) ≈ −ζqI, |q| � 1.

Consequently, N(q) ≡ I(1 − ζq) ≈ M(q), both for q ≈ 0, and |q| � 1. It is then natural to de�ne
the following iterative procedure for solving (4.19):

N(q)xr+1 = (N(q)−M(q))xr + η(q), r = 0, 1, . . . .
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That is, by observing that N(q)−1 = θ(q):

xr+1 = (I − θ(q)M(q))xr + θ(q)η(q), r = 0, 1, . . . . (4.21)

Equation (4.21) de�nes the blended iteration associated with the blended formulation (4.19) of the
problem.
By considering that the solution, say x∗, of (4.19) satis�es also (4.21), by setting

er = xr − x∗, (4.22)

the error at the r-th iteration, one then obtains the error equation

er+1 = (I − θ(q)M(q))er ≡ Z(q)er, r = 0, 1, . . . , (4.23)

with Z(q) the corresponding iteration matrix. Consequently, the iteration (4.21) will converge to
the solution x∗ of the problem i� the spectral radius of Z(q),

ρ(q) = max
ξ∈σ(Z(q))

|ξ|,

is less than 1, where σ(·) denotes the spectrum of the matrix in argument. The set

D = {q ∈ C : ρ(q) < 1} ,

is the region of convergence of the iteration (4.21). The iteration will be said to be:

• A-convergent if C− ⊆ D;

• L-convergent if, in addition, ρ(q)→ 0, as q →∞.

Remark 4.3.1. A-convergent iterations are then appropriate when the underlying method is A-
stable. Similarly, L-convergent iterations are appropriate in the case of L-stable methods.

We observe that, for the matrix Z(q) de�ned at (4.23),

• Z(0) = O ⇒ ρ(0) = 0;

• Z(q)→ O ⇒ ρ(q)→ 0, as q →∞;

• Z(q) is well-de�ned for all q ∈ C−, since ζ > 0.

Consequently, for the blended iteration (4.21) A-convergence and L-convergence are equivalent to
each other. From the maximum-modulus theorem, in turn, it follows that this is equivalent to
requiring that the maximum ampli�cation factor of the iteration,

ρ∗ = sup
Re(q)=0

ρ(q) = sup
x∈R

ρ(ix),

satis�es
ρ∗ ≤ 1.

For the blended iteration, due to the fact that ρ(q)→ 0, as q →∞, and since the matrix Xs is real,
so that ρ(q̄) = ρ(q), one has actually to prove that

ρ∗ = max
x>0

ρ(ix) ≤ 1. (4.24)

We shall choose the free positive parameter ζ, in order to minimize ρ∗, so that (4.24) turns out to
be ful�lled for all s ≥ 1. The following result holds true.
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Theorem 4.3.1. µ ∈ σ(Xs) ⇔ q(µ− ζ)2

µ(1− qζ)2 ∈ σ(Z(q)).

Proof. From (4.23), (4.20), (4.18), and (2.13), one obtains:

Z(q) = I − θ(q)M(q) = I − θ(q)
[
θ(q)(I − qXs) + ζ(I − θ(q))(X−1

s − qI)
]

= I − θ(q)2
[
(I − qXs)− ζ2q(X−1

s − qI)
]

= θ(q)2
[
(1 + ζ2q2 − 2ζq)I − I + qXs + ζ2qX−1

s − ζ2q2I
]

= qθ(q)2X−1
s

[
X2
s − 2ζXs + ζ2I

]
= qθ(q)2X−1

s (Xs − ζI)2

≡ q(Xs − ζI)2
[
Xs(1− ζq)2I

]−1
,

from which our assertion easily follows.

As a consequence, one obtains the following result.

Corollary 4.3.1. The maximum ampli�cation factor (4.24) of the blended iteration (4.21) is given
by:

ρ∗ = max
µ∈σ(Xs)

|µ− ζ|2

2ζ|µ|
.

Proof. One has:

ρ∗ = max
x>0

max
µ∈σ(Xs)

x|µ− ζ|2

|µ| |1− ixζ|2
= max

x>0

x

1 + ζ2x2
max

µ∈σ(Xs)

|µ− ζ|2

|µ|
.

The proof is completed by considering that

max
x>0

x

1 + ζ2x2
=

1

2ζ
,

which is obtained at x = ζ−1.

We are now in the position to choose the positive parameter ζ in order for ρ∗ to be minimized. This
clearly will depend on the eigenvalues of matrix Xs. Since this matrix is real, the complex ones
occur as complex-conjugate pairs. Consequently, if we set

µj = |µj |eiφj , j = 1, . . . , s,

we can sort them by decreasing arguments:

π

2
> φ1 > φ2 > · · · > φs > −

π

2
,

due to the fact that
Re(µj) > 0, j = 1, . . . , s.

Moreover, we can neglect the complex conjugate ones, thus obtaining:

π

2
> φ1 > · · · > φ` ≥ 0, ` =

⌈s
2

⌉
.

In addition to this, it turns out that the eigenvalues of matrix Xs also satisfy:

0 < |µ1| < · · · < |µ`|,

as is shown in Figures 4.3 and 4.4, in the cases s = 6 and s = 7, respectively. In such a case, the
following result holds true.
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Table 4.1: Blended iteration of HBVM(k, s) methods.

s ζ ρ∗ ρ̃

2 0.2887 0.1340 0.0774
3 0.1967 0.2765 0.1088
4 0.1475 0.3793 0.1119
5 0.1173 0.4544 0.1066
6 0.0971 0.5114 0.0993
7 0.0827 0.5561 0.0919

Theorem 4.3.2. ρ∗ is minimized by choosing

ζ = |µ1| ≡ min
µ∈σ(Xs)

|µ|, (4.25)

resulting in

ρ∗ =
1

2ζ

|µ1 − ζ|2

|µ1|

∣∣∣∣
ζ=|µ1|

. (4.26)

In such a case, one obtains:
ρ∗ = 1− cosφ1 < 1. (4.27)

Proof. For (4.25)-(4.26), see [27]. Concerning (4.27), one has:

ρ∗ =
1

2|µ1|
|µ1 − |µ1||2

|µ1|
=
|µ1|2

[
(1− cosφ1)2 + (sinφ1)2

]
2|µ1|2

=
1 + (cosφ1)2 + (sinφ1)2 − 2 cosφ1

2
=

2− 2 cosφ1

2
= 1− cosφ1.

Consequently, the blended implementation of HBVM(k, s) methods is always A-convergent and,
therefore, L-convergent.

We can also characterize the speed of convergence when q ≈ 0, by considering that, from Theo-
rem 4.3.1 and Theorem 4.3.2, it follows that

ρ(q) =
|q| |µ1 − |µ1||2

|µ1| |1− q|µ1||2
=
|µ1 − |µ1||2

|µ1|
|q|+O(|q|2) ≈ ρ̃|q|,

where the parameter

ρ̃ =
|µ1 − |µ1||2

|µ1|
,

is called the non-sti� ampli�cation factor. In Table 4.1 we list the relevant information for the
blended iteration (4.21) of HBVM(k, s) methods.

4.4 Actual blended implementation

Let us now sketch the blended implementation of HBVMs, when applied to a general, nonlinear
system, also analyzing its complexity. In the case of the initial value problem

y′ = f(y), y(0) = y0 ∈ Rm, (4.28)
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Figure 4.3: Eigenvalues of matrix X6.

Figure 4.4: Eigenvalues of matrix X7.
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the previous arguments can be generalized in a straightforward way, by considering that now the
weighting function becomes

θ = Is ⊗ Γ−1, with Γ = I − hζJ0 ∈ Rm×m, (4.29)

where h is the stepsize, ζ is the optimal parameter speci�ed in the second column in Table 4.1, and
J0 is the Jacobian of f evaluated at y0 (clearly, we are speaking about the very �rst step in the
numerical integration).

From (4.10) and (4.13), we have to solve the outer-inner iteration described in Table 4.2 (where
e ∈ Rk denotes the unit vector).

Table 4.2: Outer-inner iteration for the blended implementation of HBVMs.

µ = hζ, Zs = (Xs/ζ)−1, Hs = hXs, Ts = hIs, Ws = P>s Ω

Γ = I − µJ0

θ = Is ⊗ Γ−1 % actually,Γ is factored LU

γ̂0 given % e.g., γ̂0 = 0

for ` = 0, 1, . . .

Y ` = e⊗ y0 + Ts ⊗ I γ̂`

f ` = f(Y `)

η` = γ̂` −Ws ⊗ I f ` % F (γ̂`)

∆`,0 = 0

for r = 0, 1, . . .

if r > 0

z`,r = [Is ⊗ J0]∆`,r

t`,r = ∆`,r + η`

u`,r = [Zs ⊗ I]t`,r − µz`,r

w`,r = t`,r − [Hs ⊗ I]z`,r

else

u`,0 = [Zs ⊗ I]η`

w`,0 = η`

end

∆`,r+1 = ∆`,r − θ
[
u`,r + θ(w`,r − u`,r)

]
end ⇒ returns ∆`

γ̂`+1 = γ̂` + ∆`

end

Let us analyze its computational complexity, by denoting, as 1 �op, an elementary (binary)
algebraic �oating-point operation. One obtains:
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• Γ: 1 Jacobian evaluation plus 2m �ops (we multiply the function f(y0) by µ before computing
its Jacobian);

• θ: 2
3m

3 − 1
2m

2 − 1
6m �ops for computing the LU factorization of Γ;

• Y `: km+ 2ksm �ops;

• f `: k function evaluations;

• η`: sm+ 2ksm �ops;

• z`,r: 2sm2 �ops;

• t`,r: sm �ops;

• u`,r: 2s2m+ 2sm �ops;

• w`,r: 2s2m+ sm �ops;

• ∆`,r+1: 4sm2 + 3sm �ops;

• γ̂`+1: sm �ops.

Consequently, this algorithm has a �xed computational cost of 1 Jacobian evaluation and 2
3m

3 −
1
2m

2+ 11
6 m �ops, plus, assuming that ν inner iterations are performed, a cost of k function evaluations

and 4ksm+ km+ 2sm+ ν(6sm2 + 4s2m+ 7sm) �ops per outer iteration.

Table 4.3: Nonlinear iteration for the blended implementation of HBVMs.

Zs = (Xs/ζ)−1, Ts = hIs, Ws = P>s Ω

Γ = I − (hζ)J0

θ = Is ⊗ Γ−1 % actually,Γ is factored LU

γ̂0 given % e.g., γ̂0 = 0

for ` = 0, 1, . . .

Y ` = e⊗ y0 + Ts ⊗ I γ̂`

f ` = f(Y `)

η` = γ̂` −Ws ⊗ I f ` % F (γ̂`)

u` = [Zs ⊗ I]η`

∆` = θ
[
θ(u` − η`)− u`

]
γ̂`+1 = γ̂` + ∆`

end

A simpli�ed (and sometimes more e�cient) procedure is that of performing a nonlinear iteration
obtained by executing exactly 1 inner iteration (i.e., setting r = 0 in the inner cycle in Table 4.2)
in the above procedure, thus obtaining the algorithm depicted in Table 4.3. In such a case, the
resulting computational cost is obtained as follows:
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• Γ: 1 Jacobian evaluation plus 2m �ops (we multiply the function f(y0) by hζ before computing
its Jacobian);

• θ: 2
3m

3 − 1
2m

2 − 1
6m �ops for computing the LU factorization of Γ;

• Y `: km+ 2ksm �ops;

• f `: k function evaluations;

• η`: sm+ 2ksm �ops;

• u`: 2s2m �ops;

• ∆`: 4sm2 + 2sm �ops;

• γ̂`+1: sm �ops.

Consequently, this latter algorithm has a �xed computational cost of 1 Jacobian evaluation and
2
3m

3− 1
2m

2 + 11
6 m �ops, plus a cost of k function evaluations and 4sm2 + 4ksm+ 2s2m+km+ 4sm

�ops per iteration.

4.5 The triangular splitting procedure

For the e�cient implementation of the simpli�ed-Newton method, additional iterative procedures
have been also devised: some of them are based on suitable triangular splittings [1, 17, 52, 53].
However, the iteration de�ned in [52, 53], as well as its modi�ed version de�ned in [1], result to be
not e�ective for (4.13), due to the particular structure of the matrix Xs (see (2.13)).

The blended implementation of HBVM(k, s) methods, as already shown in Section 4.4, turns out
more appropriate for solving (4.13), but we now shall describe a new procedure, introduced in [9],
based on a particular triangular splitting, which appears to be even more favourable. The basic
idea is similar to that introduced in [17] for the e�cient implementation of RadauIIA collocation
methods, but the framework, the general details and results are completely di�erent.

With reference to (4.13), we then start by introducing a set of s auxiliary abscissae (whose actual
choice will be explained in the sequel),

c̃1 < · · · < c̃s, (4.30)

the polynomial (see (4.6))

γ̃(c) =

s−1∑
j=0

Pj(c)γ̂j , c ∈ R, (4.31)

and a new set of (block) unknowns,

γ̃i ≡
s−1∑
j=0

Pj(c̃i)γ̂j , i = 1, . . . , s, (4.32)

that are the evaluations of (4.31) at the auxiliary abscissae (4.30). Introducing the (block) vector

γ̃ =

 γ̃1
...
γ̃s

 ,
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and the matrix
P̃ = (Pj−1(c̃i) ) ∈ Rs×s, (4.33)

we can recast (4.32) in vector form as
γ̃ = P̃ ⊗ Iγ̂. (4.34)

Left-multiplication of (4.13) by P̃ ⊗ I, allows to recast the problem in terms of γ̃ as:

M̃0∆̃` ≡ [I − hÃ⊗ J0]∆̃` = η`, γ̃`+1 = γ̃` + ∆̃`, ` = 0, 1, . . . , (4.35)

where
Ã = P̃XsP̃−1, ∆̃` = P̃ ⊗ I∆`, η` = −P̃ ⊗ IF (P̃−1 ⊗ Iγ̃`).

Remark 4.5.1. We stress that the matrix Ã is independent of k, but it only depends on s whatever
is k ≥ s. Consequently the following approach applies also in the particular case of k = s, that is,
to the s-stage Gauss method.

With these premises, the choice of the auxiliary abscissae (4.30) will be done in such a way that
the matrix Ã in (4.35) can be factored as

Ã = L̃Ũ , (4.36)

with Ũ upper triangular with unit diagonal entries, and L̃ lower triangular with constant diagonal
entries. In such a case, by following the approach of van der Houwen et al. [52, 53], we replace the
iteration (4.35) with the inner-outer iteration

[
I − hL̃⊗ J0

]
∆̃`,r+1 = hL̃(Ũ − I)⊗ J0∆̃`,r + η`, r = 0, 1, . . . , µ− 1,

(4.37)
γ̃`+1 = γ̃` + ∆̃`,µ, ` = 0, 1, . . . .

In particular, since ∆̃`,0 = 0, the choice µ = 1 corresponds to the approach used by van der
Houwen et al. to devise PTIRK methods [52], whereas, by choosing µ large enough to obtain full
convergence of the inner-iteration (the one on r), one has that the outer iteration is equivalent to
(4.35). Clearly, all the intermediate possibilities can be suitably considered. After the convergence
of (4.37), the new approximation is computed as in (4.8), where γ̂0 is retrieved from (4.34).

We observe that, since the diagonal entries of the factor L̃ are all equal to a given value, say ds,
then, for performing the inner-outer iteration (4.37) one only needs to factorize the matrix

I − hdsJ0 ∈ Rm×m, (4.38)

having the same size as that of the continuous problem (4.28).

Remark 4.5.2. Actually, in a computational code this matrix can be kept constant until one needs to
compute again the Jacobian matrix J0 and/or to choose a di�erent stepsize h. Here, we deliberately
do not take into account this issue, which requires a further analysis (see, e.g., [29] for the code
described in [28]). Consequently in the numerical tests we shall use a constant stepsize and evaluate
the Jacobian matrix at each integration step.

Concerning ds the following result holds true.
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Theorem 4.5.1. Assume that the factorization (4.36) is de�ned and that the diagonal entries of
the factor L̃ are all equal to ds. Then, with reference to (2.8), one has:

ds =


s

√∏ s
2
i=1 ξ

2
2i−1, if s is even,

s

√
1
2

∏b s
2
c

i=1 ξ
2
2i, if s is odd.

(4.39)

Proof. Since, by hypothesis (4.36) holds true, we have

det(Xs) = det(P̃XsP̃−1) = det(Ã) = det(L̃Ũ) = det(L̃) = dss,

since both Ũ and L̃ are triangular matrix and Ũ has unit diagonal entries whereas the diagonal
entries of L̃ are all equal to ds. Consequently

ds = s
√

det(Xs),

and (4.39) follows from Lemma 2.2.1.

By virtue of the previous result, we have computed the auxiliary abscissae (4.30) by symbolically
solving the following set of equations, which is equivalent to requiring that L̃ has constant diagonal
entries:

det(Ã`+1) = ds det(Ã`), ` = 1, . . . , s− 1, (4.40)

where Ã` denotes the principal leading submatrix of order ` of Ã and ds is given by (4.39).
We observe that the auxiliary abscissae (4.30) are s whereas the algebraic conditions (4.40) are

s− 1. This means that we can express s− 1 abscissae as a function of the remaining free abscissa.
We shall choose such free abscissa in order to optimize the convergence properties of the iteration.
To this end, according to a linear analysis of convergence similar to that done in Section 4.3, we
apply the splitting procedure (4.37) to the test equation (4.15). Since the problem is linear, the
iteration (4.37) consists in solving only the inner iteration (the one with index r), so that we can
skip the index ` of the outer iteration. By setting, as is usual, q = hλ one obtains that the error
equation associated with (4.37) is given by

er+1 = q(I − qL̃)−1L̃(Ũ − I)er ≡ Z(q)er, r = 0, 1, . . . , µ− 1, (4.41)

where er is the error vector at step r (see (4.22)), and Z(q) is the iteration matrix induced by the
splitting procedure. This latter will converge if and only if the spectral radius of Z(q), ρ(q), is less
than 1. According to the de�nitions given in Section 4.3, in our case, since

Z(q)→ (I − Ũ), q →∞,

which is a nilpotent matrix of index s, the iteration is L-convergent if and only if it is A-convergent.
Since the iteration is well de�ned for all q ∈ C− (due to the fact that the diagonal entries of L̃ are
all equal to ds, which is a positive number as shown in (4.39)) and ρ(0) = 0, from the maximum-
modulus theorem it follows immediately that A-convergence is, in turn, equivalent to require that
the maximum ampli�cation factor of the iteration,

ρ∗ = max
x∈R

ρ(ix), (4.42)

is not larger than 1. Similarly to what seen for the blended implementation, the non-sti� ampli�ca-
tion factor, which is now given by

ρ̃ = ρ(L̃(Ũ − I)), (4.43)
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governs the convergence of the iteration for small values of q, since

ρ(q) ≈ ρ̃|q|, for q ≈ 0.

Consequently, the smaller ρ∗ and ρ̃, the better the convergence properties of the iteration. For this
reason, we choose the free auxiliary abscissa in order to (approximately) minimize the maximum
ampli�cation factor ρ∗ of the iteration (see (4.42)), while ful�lling the conditions (4.40).

In Table 4.4 we list the obtained values for the auxiliary abscissae (4.30) and the diagonal entry
ds of the corresponding factor L̃ (see (4.39)), for a generic HBVM(k, s) with k ≥ s and s = 2, . . . , 6.
One can see that in all cases the abscissae are distinct and inside the interval [0, 1].

We emphasize that, for a given s, the distribution of the auxiliary abscissae {c̃i} and the fac-
torization (4.36) of the matrix Ã are both independent of k. Consequently, when one is going to
implement this class of methods, it is possible to conjecture a procedure to advance the time that
dynamically selects the most appropriate value of k. In so doing, depending on the speci�c problem
at hand and the con�guration of the system at the given time, one could easily switch, having �xed
s, from a symplectic method (choosing k = s (Gauss method)) to an energy preserving one (choosing
k > s).

For sake of comparison, in Table 4.5 we list the maximum ampli�cation factors and the nonsti�
ampli�cation factors for the following L-convergent iterations applied to the s-stage Gauss-Legendre
methods:

(i) the iteration obtained by the original triangular splitting in [52];

(ii) the iteration obtained by the modi�ed triangular splitting in [1];

(iii) the nonlinear iteration obtained by the blended implementation of the methods, as de�ned in
Table 4.3;

(iv) the iteration de�ned by (4.37).

We recall that the scheme (i) (�rst column) requires s real factorizations per iteration, whereas
(ii)�(iv) only need one factorization per iteration, of a matrix having the same size as that of the
continuous problem. From the parameters listed in the table, one concludes that the proposed
splitting procedure is the most e�ective among all the considered ones.

Remark 4.5.3. For sake of accuracy, we stress that, when dealing with the actual implementation
of HBVM(k, s) methods, only the blended iteration and the one described in (4.37) can be considered,
whereas the triangular splitting de�ned in [52] and its modi�ed version [1] turn out to be not e�ective,
as was pointed out at the beginning of this section. Consequently, in such a case, one has to consider
only the last two groups of columns in Table 4.5.

4.5.1 Averaged ampli�cation factors

The previous ampli�cation factors measure the asymptotic speed of convergence when an in�nite
number of iterations is performed. In the computational practice, however, only a small number of
iterations is usually performed. For this reason, it is useful also to check the averaged ampli�cation
factors over µ iterations, measuring the �average� convergence when µ inner iterations are performed.
They are de�ned as follows:

ρ∗µ = sup
x∈R

µ
√
‖Z(ix)µ‖, ρ̃µ = µ

√∥∥∥[L̃(Ũ − I)
]µ∥∥∥, ρ∞µ =

µ

√
‖(Ũ − I)µ‖, (4.44)
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Table 4.4: Auxiliary abscissae (4.30) for the HBVM(k, s) and s-stage Gauss method, s = 2, . . . , 6,
and the diagonal entry ds (see (4.39)) of the corresponding factor L̃.

s = 2

c̃1 0.26036297108184508789101036587842555
c̃2 1
d2 0.28867513459481288225457439025097873

s = 3

c̃1 0.15636399930006671060146617869938122
c̃2 0.45431868644630821020177903150137523
c̃3 0.948
d3 0.20274006651911333949661483325792675

s = 4

c̃1 0.11004843257056123468614502691988075
c̃2 0.31588689139705398683980065724981436
c̃3 0.53114668286639796587351917750274705
c̃4 0.884
d4 0.15619699684601279005430416526875577

s = 5

c̃1 0.084221784434612320884185541600934218
c̃2 0.248618520588562018051811779022293944
c̃3 0.413725268815220956415498643302145284
c̃4 0.587098748971877116030882436751962384
c̃5 0.9338
d5 0.12702337351164258963093490787943281

s = 6

c̃1 0.20985774196263657630356114041757724
c̃2 0.36816786358152563671526302698797908
c̃3 0.39607328223635472401921951140390213
c̃4 0.62783521091780460858476326939502046
c̃5 0.04580307227138364391540767310611717
c̃6 0.94225
d6 0.10702845478806509529222890981996019
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Table 4.5: Ampli�cation factors for the triangular splitting in [52], the modi�ed triangular splitting
in [1], the nonlinear iteration in Table 4.3 and the splitting (4.37), for the s-stage Gauss-Legendre
formulae. The last two cases coincide with those for the HBVM(k, s) methods, k ≥ s.

(i): triangular (ii): triangular (iii): blended (iv): triangular
splitting in [52] splitting in [1] iteration in Table 4.3 splitting (4.37)

s ρ∗ ρ̃ ρ∗ ρ̃ ρ∗ ρ̃ ρ∗ ρ̃

2 0.1429 0.0833 0.1340 0.0774 0.1340 0.0774 0.1340 0.0774
3 0.3032 0.1098 0.2537 0.0856 0.2765 0.1088 0.2536 0.0870
4 0.4351 0.1126 0.3492 0.0803 0.3793 0.1119 0.3291 0.0859
5 0.5457 0.1058 0.4223 0.0730 0.4544 0.1066 0.3709 0.0654
6 0.6432 0.0973 0.4861 0.0702 0.5114 0.0993 0.4353 0.0650

Table 4.6: Averaged ampli�cation factors (4.44) for the splitting (4.37), used for the HBVM(k, s)
methods, k ≥ s, when performing µ = 1, 2, 3 iterations.

s ρ∗1 ρ̃1 ρ∞1 ρ∗2 ρ̃2 ρ∞2 ρ∗3 ρ̃3 ρ∞3
2 0.1340 0.0774 0.0981 0.1340 0.0774 0 0.1340 0.0774 0
3 0.4492 0.0874 0.2606 0.3423 0.0873 0.1091 0.3087 0.0872 0
4 0.4751 0.1459 0.4751 0.4098 0.1200 0.1757 0.3848 0.1091 0.1294
5 0.8625 0.2045 0.7471 0.6775 0.1385 0.2872 0.5874 0.1154 0.1747
6 3.0797 0.2747 1.4988 1.2780 0.1356 0.4929 0.9451 0.1121 0.2697

where ‖ · ‖ is a suitable matrix norm. Clearly,

lim
µ→∞

ρ∗µ = ρ∗, lim
µ→∞

ρ̃µ = ρ̃,

and
ρ∞µ = 0, ∀µ ≥ s.

In Table 4.6 we list the averaged ampli�cation factors when performing µ = 1, 2, 3 iterations, and
considering the in�nity norm. As one may see, the resulting iteration turns out to be A-convergent
also when using just one inner iteration, unless the case s = 6, which requires at least 3 inner
iterations.

Remark 4.5.4. When performing only µ inner-iterations for solving the discrete problem generated
by (4.15), we have to consider also the outer iteration (i.e., the one on ` in (4.37)), even though
the problem is linear. In such a case, by setting E` the error at the `-th outer iteration, it is quite
straightforward to see that the error equation is now given by:

E`+1 = Z(q)µE`, ` = 0, 1, . . . .

Consequently, the convergence analysis made for (4.41) also applies to the present case.

4.6 Computational cost of the triangular splitting implementation

We now analyze the computational complexity of the triangular splitting procedure described in
Section 4.5 when the method is applied for approximating the initial value problem (4.28), having
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dimension m, by using the stepsize h. In order to reduce the computational cost of the procedure,
we �rst multiply both sides of (4.37) by

h−1L̃−1 ⊗ I,

as done in [17]. Considering that
L̃−1 = d−1

s I − S,

with S strictly lower triangular, system (4.37) then takes the form[
1

hds
I − I ⊗ J0

]
∆̃`,r+1 =

1

h
(S ⊗ I)∆̃`,r+1 + (C ⊗ J0)∆̃`,r +R`, r = 0, 1, . . . , µ− 1, (4.45)

where
C = Ũ − I and R` =

1

h
(L̃−1 ⊗ I)η`.

As a consequence we have now to factor only the matrix

1

hds
I − J0 ∈ Rm×m, (4.46)

in place of (4.38). We now show that in the computation of

(C ⊗ J0)∆̃`,r,

at the right-hand side of (4.45), one can completely eliminate any O(m2) complexity term (that
would be the leading one since, usually, m � s). This is true at the very �rst step, since by
de�nition,

∆̃`,0 = 0.

By setting
wr = (C ⊗ J0)∆̃`,r +R`, and vr+1 = h−1(S ⊗ I)∆̃`,r+1 +wr,

we have that w0 = R` and, after solving the �rst step of (4.45), which reads[
1

hds
I − I ⊗ J0

]
∆̃`,1 =

1

h
(S ⊗ I)∆̃`,1 +w0 ≡ v1,

for the unknown ∆̃`,1, we are able to compute the term

(I ⊗ J0)∆̃`,1 = (hds)
−1∆̃`,1 − v1,

at a cost of O(ms) operations. It follows that

(C ⊗ J0)∆̃`,1 = (C ⊗ I)
[
(I ⊗ J0)∆̃`,1

]
= (C ⊗ I)

[
(hds)

−1∆̃`,1 − v1

]
.

and thus w1 = (C ⊗ J0)∆̃`,1 + R` can be computed with O(s2m) �ops. The same procedure can
then be repeated in the subsequent steps, as shown in Table 4.7 (where, as above, e denotes the unit
vector in Rk), thus avoiding the O(sm2) complexity term.

Let us now analyze the computational cost of each step of the procedure in Table 4.7, in terms
of �ops:

• θ: 1 Jacobian evaluation plus 2
3m

3 − 1
2m

2 + 11
6 m �ops (2m operations plus those required to

compute a LU factorization);
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Table 4.7: Outer-inner iteration for the triangular splitting implementation of HBVMs.

Ts = hIs, Ws = P>s Ω, Ã = P̃XsP̃
−1 ≡ L̃Ũ , C = Ũ − I, H =

1

h
L̃−1 ≡ (Hi,j),

µs = hds

γ̂0 given % e.g., γ̂0 = 0

θ = (µ−1
s I − J0)−1

for ` = 0, 1, . . .

Y ` = e⊗ y0 + Ts ⊗ Iγ̂`

f ` = f(Y `)

η` = [P̃ ⊗ I]
[
(Ws ⊗ I)f ` − γ̂`

]
R` = (H ⊗ I)η`

∆̃`,0 = 0

w`,0 = R`

for r = 0, 1, . . .

for i = 1, . . . , s % resolution of the block-triangular system by solving

% s systems of dimension m

v`,r+1
i = (w`,r(i−1)m+1, . . . , w

`,r
im)

if i > 1

for j = 1, . . . , i− 1

v`,r+1
i = v`,r+1

i +Hi,j∆
`,r+1
j

end

end

∆`,r+1
i = v`,r+1

i θ>

end

∆̃`,r+1 = (∆`,r+1
1 , . . . ,∆`,r+1

s )>

v`,r+1 = (v`,r+1
1 , . . . , v`,r+1

s )>

w`,r+1 = (C ⊗ I)
[
µ−1
s ∆̃`,r+1 − v`,r+1

]
+R`

end ⇒ returns ∆̃`

γ̂`+1 = γ̂` + [P̃−1 ⊗ I]∆̃`

end
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• Y `: km+ 2ksm �ops;

• f `: k function evaluations;

• η`: 2s2m+ 2ksm+ sm �ops;

• R`: s2m �ops (taking into account that H is lower triangular);

• ∆̃`,r+1: 2sm2 + s2m− sm �ops to solve the block-triangular system;

• w`,r+1: 2s2m+ 3sm;

• γ`+1: 2s2m+ sm �ops;

Consequently, this algorithm has a �xed computational cost of 1 Jacobian evaluation and 2
3m

3 −
1
2m

2+ 11
6 m �ops, plus, assuming that ν inner iterations are performed, a cost of k function evaluations

and 4ksm+ 5s2m+ km+ 2sm+ ν(3s2m+ 2sm2 + 2sm) �ops per outer iteration.

4.7 The triangular splitting procedure for separable Hamiltonian

problems.

We now describe, according to [10], how the triangular splitting procedure can be further improved,
when the method is applied to a separable Hamiltonian problem with Hamiltonian:

H(q, p) =
1

2
p>p+ U(q).

Consequently, the problem assumes the simpli�ed form

q′ = p, p′ = −∇U(q), q(0) = q0, p(0) = p0 ∈ Rm, (4.47)

which we plan to solve on the interval [0, h]. The HBVM method (3.14) provides the approximations
(see (3.12))

q1 = q0 + hb> ⊗ IP ≈ q(h), p1 = p0 − hb> ⊗ I∇U(Q) ≈ p(h),

with stage vectors
Q = (Q>1 , . . . , Q

>
k )>, P = (P>1 , . . . , P

>
k )>,

given by (see (3.11)):

Q = e⊗ q0 + hIsP>s Ω⊗ I P, P = e⊗ p0 − hIsP>s Ω⊗ I∇U(Q), (4.48)

where ∇U(Q) = (∇U(Q1)>, . . . ,∇U(Qs)
>)> and, as in the previous sections, e ∈ Rk is the unit

vector. Substituting the second equation of (4.48) into the �rst one, also considering that IsP>s Ωe =
c, and taking into account (2.13) and (4.12), one has

Q = e⊗ q0 + hc⊗ p0 − h2Ps+1X̂sXsP>s Ω⊗ I∇U(Q). (4.49)

This problem has (block) dimension k. In order to recover a problem of (block) dimension s,
independently of k, similarly to what has been done in Section 4.2, we consider as unknown the
(block) vector with the coe�cients of the underlying polynomial of degree s:

γ̂ = P>s Ω⊗ I∇U(Q). (4.50)
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Substituting (4.49) into (4.50), we then obtain the following discrete problem:

F (γ̂) ≡ γ̂ − P>s Ω⊗ I∇U
(
e⊗ q0 + hc⊗ p0 − h2Ps+1X̂sXs ⊗ I γ̂

)
= 0. (4.51)

By taking into account that

P>s ΩPs+1X̂sXs = [Is 0]X̂sXs = X2
s ,

the application of the simpli�ed-Newton method for solving (4.51) results in the following iteration:[
I + h2X2

s ⊗∇2U(q0)
]

∆` = −F (γ̂`), γ̂`+1 = γ̂` + ∆`, ` = 0, 1, . . . . (4.52)

This is the problem which we now attack by means of a triangular splitting procedure. As done in
Section 4.5, we introduce a set of auxiliary abscissae

c̃1 < · · · < c̃s, (4.53)

with the corresponding matrix P̃ de�ned as in (4.33) and the unknown vector γ̃ in form (4.34).
Similarly as previously done in (4.35), left-multiplication of (4.52) by P̃ ⊗ I allows to recast the
problem in terms of γ̃, thus obtaining the following equivalent linear system,[

I + h2Ã⊗∇2U(q0)
]

∆̃` = η`, (4.54)

where
Ã = P̃X2

s P̃−1, ∆̃` = P̃ ⊗ I∆`, η` = −P̃ ⊗ I F (P̃−1 ⊗ I γ̃`).

According to what has been done in Section 4.5, we choose the auxiliary abscissae (4.53) in such a
way that Ã admits the factorization (4.36) with Ũ upper triangular with unit diagonal entries, and
L̃ lower triangular with diagonal entries all equal to

ds = s
√

detX2
s (4.55)

(this can be proved in a similar way as done in Theorem 4.5.1). As observed in Section 4.5, this
allows one to express s − 1 abscissae as a function of a remaining free abscissa. The free abscissa
will then be chosen in order to (approximately) optimize the convergence properties of the following
inner iteration, coupled with the outer iteration (4.54):[

I + h2L̃⊗∇2U(q0)
]

∆̃`,r+1 = h2
[
L̃− Ã

]
⊗∇2U(q0)∆̃`,r + η`, r = 0, 1, . . . . (4.56)

Similarly as in (4.37), we have now that the coe�cient matrix is lower block triangular, with diagonal
block entries all equal to

I + h2ds∇2U(q0) ∈ Rm×m,

which is a symmetric matrix having the same size as that of the continuous problem (4.47), inde-
pendently of s. According to [30], a linear convergence analysis of the iteration (4.56) is obtained
by considering the scalar problem

y′′ = −ν2y, ν ∈ R.

By setting x = hν one obtains that the corresponding iteration matrix is given by

Z(x2) = x2(I + x2L̃)−1L̃(I − Ũ). (4.57)
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Let ρ(x2) denote the spectral radius of the iteration matrix (4.57). We observe that

ρ(0) = 0 and ρ(x2)→ 0 as x→∞.

Therefore, according to [30], iteration (4.56) is L-convergent if the maximum ampli�cation factor of
the iteration, de�ned as

ρ∗ = max
x≥0

ρ(x2),

is not larger than 1.
Moreover, one has

ρ(x2) ≈ ρ̃x2, for x ≈ 0,

with the non-sti� ampli�cation factor ρ̃ formally still given by (4.43). Clearly, the smaller the
parameters ρ∗ and ρ̃, the better the convergence properties of the iteration.

In addition to this, by repeating similar arguments as those reported in Section 4.5.1, we also
introduce the averaged ampli�cation factors for the iteration (4.56), measuring the �average� con-
vergence when exactly µ iterations are performed. They are de�ned as (see (4.57))

ρ∗µ = sup
x∈R

µ
√
‖Z(x2)µ‖, ρ̃µ = µ

√∥∥∥[L̃(Ũ − I)
]µ∥∥∥, ρ∞µ =

µ

√
‖(Ũ − I)µ‖, (4.58)

where ‖ · ‖ is a suitable matrix norm (compare with (4.44)). These parameters are very useful in
the actual implementation of the methods, where generally only a small number of iterations is
performed. For this reason we choose the free abscissa in order to (approximately) minimize the
values of ρ∗µ, µ = 1, 2, 3, 4: in particular, it is optimized the �rst parameter which turns out to be
less than 1. This is di�erent from what done in [10], where the free abscissa has been chosen in order
to (approximately) minimize the maximum ampli�cation factor ρ∗.

In Table 4.8 we list the computed optimal auxiliary nodes for s = 2, . . . , 6, along with the
corresponding diagonal entry ds, with 36 signi�cant digits: one may see that the auxiliary nodes are
all distinct and inside the interval [0, 1].

Table 4.9 shows the convergence factors for the iteration (4.56), where the in�nite norm has been
used for the computation of (4.58). As one can see, in order to obtain a convergent iteration, one
inner iteration is su�cient for the case s = 2 and s = 3, while two inner iterations are needed in the
cases s = 4 and s = 5. Finally, at least four inner iterations are needed to obtain convergence, in
the case s = 6.

For sake of completeness we also mention that actually, similarly as done at the beginning of
Section 4.6, in order to reduce the computational cost of the procedure, one can solve the following
system obtained by multiplying both sides of (4.56) by h−2L̃−1 ⊗ I:[

1

h2ds
I + I ⊗∇2U(q0)

]
∆̃`,r+1 =

1

h2
(S ⊗ I)∆̃`,r+1 − C ⊗∇2U(q0)∆̃`,r +R`, r = 0, 1, . . . ,

with
S = d−1

s I − L̃−1,

strictly lower triangular and

C = Ũ − I, R` =
1

h2
(L̃−1 ⊗ I)η`.

The remaining details are then similar to those explained in Section 4.6.
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Table 4.8: Auxiliary abscissae (4.30) for the HBVM(k, s) and s-stage Gauss method, s = 2, . . . , 6 for
separable Hamiltonian problems, and the diagonal entry ds (see (4.55)) of the corresponding factor
L̃.

s = 2

c̃1 0.3
c̃2 1
d2 1/12

s = 3

c̃1 0.188387181123606133518951443510024342
c̃2 0.425419221418183478354300546894687888
c̃3 0.87
d3 0.0411035345721745016915268553859098174

s = 4

c̃1 0.138391795460339922933687560800798905
c̃2 0.299213881066515764394157172179892673
c̃3 0.538601190887152357059957104759646036
c̃4 0.895
d4 0.0243975018237133294838596159060025047

s = 5

c̃1 0.264691938290717393441149290368611740
c̃2 0.347126608707596694981834640084200988
c̃3 0.053645598351253598235315059919648661
c̃4 0.499139666641195416249140138508594702
c̃5 0.771
d5 0.0161349374182782642725304938088289256

s = 6

c̃1 0.225985891489598780759040376707958496
c̃2 0.366431891702587296080568861854390364
c̃3 0.439807434205840802684121541913191971
c̃4 0.0405950978377728280720677408200401512
c̃5 0.61582504525880070596908268045894827
c̃6 0.8865
d6 0.0114550901343208942220264712822213470

Table 4.9: Ampli�cation factors for the splitting (4.56), for the HBVM(k, s) methods, k ≥ s, applied
to a separable Hamiltonian problem.

s ρ∗1 ρ∗2 ρ∗3 ρ∗4 ρ̃1 ρ̃2 ρ̃3 ρ̃4 ρ∞1 ρ∞2 ρ∞3 ρ∞4 ρ∗ ρ̃
2 0.25 0.25 0.25 0.25 0.0833 0.0833 0.0833 0.0833 0.2 0 0 0 0.25 0.0833

3 0.630 0.482 0.447 0.433 0.173 0.113 0.0954 0.0873 0.630 0.170 0 0 0.433 0.0668

4 1.065 0.618 0.602 0.588 0.258 0.130 0.0903 0.0718 1.065 0.452 0.220 0 0.556 0.0328

5 2.310 0.993 0.777 0.714 0.423 0.130 0.0789 0.0588 2.310 0.629 0.372 0.0998 0.582 0.0219

6 5.106 1.579 1.0022 0.830 0.304 0.0797 0.0604 0.0478 3.139 1.328 0.515 0.246 0.543 0.0178
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4.8 Numerical Tests

We end this section by showing a couple of numerical examples aimed to put into evidence the
features and e�ectiveness of the methods and of their implementation, as previously described.
For both problems, we list the computational cost for HBVM(k, s) methods, in terms of required
iterations for solving the generated discrete problems with a constant stepsize, when using:

(i) the �xed-point iteration;

(ii) the blended iteration described in Table 4.3;

(iii) the triangular splitting iteration described in Table 4.7, by using 2 inner iterations.

We choose 2 inner iterations for the triangular splitting iteration (iii), so that the cost of one
outer iteration is comparable to that of one blended iteration (ii). We stress that, for all the three
above iterations, the total number of functional evaluations equals the number of iterations times
k. Moreover, for the last two iterations, at each step one also needs to evaluate the Jacobian J0, as
well as to factor a matrix having the same size as that of the continuous problem (i.e., (4.29) for (ii)
and (4.46) for (iii)).

The �rst problem is a nonlinear Hamiltonian problem describing the motion of a charged particle,
with charge e and mass m, in a magnetic �eld with Biot-Savart potential [19]. It is de�ned by the
Hamiltonian:

H(x, y, z, x′, y′, z′) =
1

2m

[(
x′ − α x

ρ2

)2

+

(
y′ − α y

ρ2

)2

+ (z′ + α log ρ)2

]
, (4.59)

with ρ =
√
x2 + y2 and α = eB0, B0 being the intensity of the magnetic �eld. We have used the

values
m = 1, e = −1, B0 = 1,

and the initial values

x = 0.5, y = 10, x′ = −0.1, y′ = −0.3, z = z′ = 0. (4.60)

In Table 4.10 we list the results obtained by applying the HBVM(k, 2) methods, with k =
2, 4, 6, 8, 10, for solving this problem over the interval [0, 103] with stepsize h = 0.1. From the results
in the table, one infers that:

• the relative error on the Hamiltonian monotonically decreases as k is increased and, for k = 10,
one obtains a practical conservation, for the given stepsize (consequently larger values of k
would be useless);

• when using the symplectic 2-stages Gauss method (i.e., HBVM(2,2)) the relative error on the
solution is larger than that obtained when the energy error decreases;

• the triangular splitting procedure (iii) is more e�ective than the blended iteration (ii). In such
a case, however, both iterations turn out to be not very competitive, with respect to the use
of a �xed-point iteration, since this problem is not sti�;

• all iterations provide a total cost which is essentially independent of k.
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Table 4.10: Results when solving problem (4.59)-(4.60) by using the HBVM(k, 2) method with
stepsize h = 0.1 over the interval [0, 103].

Hamiltonian solution �xed-point blended splitting
k error error iterations iterations iterations
2 1.6 · 10−3 7.18 · 10−4 79511 66854 48030
4 8.3 · 10−6 2.42 · 10−5 79846 66884 48252
6 5.9 · 10−9 1.02 · 10−5 79911 66941 48349
8 1.7 · 10−12 1.02 · 10−5 79939 66963 48377
10 4.4 · 10−16 1.02 · 10−5 79962 66976 48402

As a second test problem we consider, on the contrary, a sti� oscillatory problem. It is de�ned as
a slight modi�cation of the Fermi-Pasta-Ulam problem described in [49].3 The Hamiltonian de�ning
this problem is given by:

H(q, p) =
1

2

m∑
i=1

(p2
2i−1 + p2

2i) +
1

4

m∑
i=1

ω2
i (q2i − q2i−1)2 +

m∑
i=0

(q2i+1 − q2i)
4, (4.61)

with q, p ∈ R2m and q0 = q2m+1 = 0. We choose m = 7, so that the problem has dimension 28, and

ωi = ωm−i+1 = 10, i = 1, 2, 3, and ω4 = 104. (4.62)

The starting vector is

pi = 0, qi =
i− 1

4m− 2
, i = 1, . . . , 2m. (4.63)

Since the Hamiltonian function (4.61) is a polynomial of degree 4, the HBVM(2s, s) method
(having order 2s), is able to exactly preserve the Hamiltonian, for all s ≥ 1. As an example, we
�x s = 3 and integrate the problem over the interval [0, 10]. In this case, the �xed-point iteration
cannot be expected to work, when using stepsizes much larger than ‖ω‖−1

∞ = 10−4, as is con�rmed
by the results in Table 4.11.

Similarly, explicit methods, which exist in this speci�c case since the problem is separable (see
[69, Chapter 8]), su�er from a similar restriction on the stepsize because of stability reasons. In
particular we consider a composition method, having order 6, based on the Störmer-Verlet method
(see [49, Chapter II.4] for details), requiring 18 function evaluations per step:4 the results listed in
Table 4.12 clearly con�rm this fact.

Conversely, the use of Newton-type iterations for solving the discrete problems generated by the
HBVM(6,3) method, makes it possible to use much larger stepsizes, thus allowing to approximate
the low frequencies without being hindered by the high ones. By using the blended iteration (ii) and
the triangular splitting iteration (iii), one obtains the �gures in Table 4.13. Even when using very
coarse stepsizes, the approximation of the slowly-oscillating components of the solution (24 out of 28)
is satisfactory: as an example in Figure 4.5 and Figure 4.6 there is the plot of the slowly-oscillating
components q14 and p14, respectively, by using a �ner step, h = 10−4, and a much coarser one,
h = 0.1.5 Last but not least, from the �gures in Table 4.13, one sees that the triangular splitting
procedure (iii) is the most e�ective one, though using only 2 inners iterations.

3The original problem reported in [49] is obtained by setting m = 3 and ωi = 50, i = 1, . . . ,m in (4.61).
4Consequently, each step of this composition method has a cost which is comparable to 3 �xed-point iterations for

HBVM(6, 3).
5By the way, we mention that also the amplitude of the remaining 4 highly-oscillatory components turns out to be

well approximated, when using a stepsize h = 0.1.
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Table 4.11: Fixed-point iterations for solving problem (4.61)-(4.63) on the interval [0, 10], by using
the HBVM(6, 3) method with stepsize h (*** means that the iteration does not converge).

�xed-point
h iterations

10−4 2274586
2 · 10−4 1901907
4 · 10−4 4539930
5 · 10−4 ***

Table 4.12: Relative error on the Hamiltonian, obtained by using a sixth-order explicit composition
method based on the Störmet-Verlet method, for solving problem (4.61)-(4.63) on the interval [0, 10],
by using stepsize h (*** means that the iteration does not converge).

h Hamiltonian error
10−5 9.2 · 10−8

5 · 10−5 1.5 · 10−3

10−4 8.4 · 10−2

2 · 10−4 ***
4 · 10−4 ***
5 · 10−4 ***

Table 4.13: Newton-type iterations for solving problem (4.61)-(4.63), on the interval [0, 10] by using
the HBVM(6, 3) method with stepsize h.

blended splitting
h iterations iterations

10−4 1628149 855119
5 · 10−4 599728 297919

10−3 240486 140558
5 · 10−3 28819 19127

10−2 12616 8839
5 · 10−2 2823 1613

10−1 1738 971
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Figure 4.5: Numerical approximation obtained by using the HBVM(6,3) method with stepsizes
h = 10−4 (continuous line) and h = 0.1 (circles).

Figure 4.6: Numerical approximation obtained by using the HBVM(6,3) method with stepsizes
h = 10−4 (continuous line) and h = 0.1 (circles).



Chapter 5

Energy conserving methods for the

semilinear wave equation

5.1 Introduction to the problem

In the present chapter we discuss energy-conservation issues concerning the well-known semilinear
wave equation. For simplicity, though without loss of generality, we shall consider the 1D case,

utt(x, t) = α2uxx(x, t)− f ′(u(x, t)), (x, t) ∈ (0, 1)× (0,∞),

u(x, 0) = ψ0(x), (5.1)

ut(x, 0) = ψ1(x), x ∈ (0, 1),

coupled with suitable boundary conditions. As usual, subscripts denote partial derivatives. We
assume that the functions f , ψ0 and ψ1 are suitably regular, so that they de�ne a regular solution
u(x, t) (f ′ denotes the derivative of f). The problem is completed by assigning suitable boundary
conditions and we shall consider the di�erent cases of periodic boundary conditions,

u(0, t) = u(1, t), ux(0, t) = ux(1, t), t > 0, (5.2)

Dirichlet boundary conditions,

u(0, t) = ϕ0(t), u(1, t) = ϕ1(t), t > 0, (5.3)

and Neumann boundary conditions,

ux(0, t) = φ0(t), ux(1, t) = φ1(t), t > 0, (5.4)

with ϕ0(t), ϕ1(t), φ0(t) and φ1(t) suitably regular. In all cases, all the functions are assumed to
satisfy suitable compatibility conditions, depending on the considered set of boundary conditions.

Remark 5.1.1. It is worth mentioning that a problem for the semilinear wave equation de�ned
on a generic interval [a, b], could be always transformed to the form (5.1), by means of a linear
transformation of the x variable. In such a case, the leading coe�cient α in (5.1) changes accordingly
(i.e. it becomes (b− a)−1α).

By setting
v = ut, (5.5)

67
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and de�ning the functional1

H[u, v](t) =

∫ 1

0

[
1

2
v2(x, t) +

1

2
α2u2

x(x, t) + f(u(x, t))

]
dx ≡

∫ 1

0
E(x, t)dx, (5.6)

we can rewrite (5.1) as the in�nite-dimensional Hamiltonian system (for brevity, we neglect the
arguments of the functions u and v)

zt = J
δH
δz
, (5.7)

where

J =

(
0 1
−1 0

)
, z =

(
u
v

)
, (5.8)

and
δH
δz

=

(
δH
δu

,
δH
δv

)>
(5.9)

is the functional derivative of H. This latter is de�ned as follows: given a generic functional in the
form

L[q] =

∫ b

a
L(x, q(x), q′(x), . . .)dx,

its functional derivative is given by:

δL
δq

=
∞∑
n=0

(−1)n
dn

dxn
∂L

∂q(n)
, with q(n) =

∂nq

∂xn
. (5.10)

In the particular case when L = L(x, q(x), q′(x)), that is, when the function L does not depend on
q(n) for n > 1, as in the case of (5.6), (5.10) becomes:

δL
δq

=
∂L

∂q
−
(

d

dx

∂L

∂q′

)
. (5.11)

Exploiting (5.11), one can easily verify that (5.7)�(5.9) are equivalent to (5.1). In fact:

zt =

(
ut
vt

)
= J

δH
δz

=

(
δH
δv

− δH
δu

)
=

(
v

α2uxx − f ′(u)

)
,

or

ut(x, t) = v(x, t), (x, t) ∈ (0, 1)× (0,∞),
(5.12)

vt(x, t) = α2uxx(x, t)− f ′(u(x, t)),

that is, the �rst-order formulation of the di�erential equation in (5.1).

Remark 5.1.2. Even if we are considering a problem for the semilinear wave equation, the argu-
ments in this chapter can be extended to a generic Hamiltonian PDE in the form (5.7), such as the
nonlinear wave equation, the nonlinear Schrödinger equation, the nonlinear beam equation, the Euler
equations of hydrodynamics and numerous models that derive from it.

1The domain of integration is the spatial interval on which is de�ned problem (5.1), in our case [0, 1].
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As is well known, an important feature of our problem is that, whatever the boundary conditions,
the rate of change of the energy density integrated over an interval depends only on the net �ux
through its endpoints. In fact,

Et(x, t) = v(x, t)vt(x, t) + α2ux(x, t)uxt(x, t) + f ′(u(x, t))ut(x, t)

= v(x, t)(α2uxx(x, t)− f ′(u(x, t))) + α2ux(x, t)vx(x, t) + f ′(u(x, t))v(x, t)

= α2(v(x, t)uxx(x, t) + ux(x, t)vx(x, t)) = α2(ux(x, t)v(x, t))x ≡ −Fx(x, t).

Consequently, one has (see (5.6))

Ḣ[z](t) =

∫ 1

0
Et(x, t)dx = α2[ux(x, t)v(x, t)]1x=0, (5.13)

where, as usual, the dot denotes the time derivative.
We recast the Hamiltonian functional (5.6) in a more convenient form which will be useful in

the sequel:

H[z](t) =

∫ 1

0
E(x, t)dx =

∫ 1

0

[
1

2
v2(x, t) +

1

2
α2u2

x(x, t) + f(u(x, t))

]
dx

=

∫ 1

0

[
1

2
v2(x, t) +

1

2
α2[(u(x, t)ux(x, t))x − u(x, t)uxx(x, t)] + f(u(x, t))

]
dx

=

∫ 1

0

[
1

2
v2(x, t)− α2

2
u(x, t)uxx(x, t) + f(u(x, t))

]
dx+

α2

2
[u(x, t)ux(x, t)]1x=0. (5.14)

In the present chapter, we shall focus our attention on numerical techniques based on the method of
lines approach, able to provide a full discretization of the original system with the discrete energy
behaving consistently with the energy function associated with (5.1) (see (5.13)). In particular, in
each of the next three sections of this chapter we shall consider problem (5.1) coupled with the
boundary condition (5.2), (5.3), and (5.4), respectively, and we shall consider a �nite di�erence
approach to obtain a semi-discrete model whose full-discretization will be accomplished by means of
an energy-conserving method in the class of HBVMs. In Section 5.5, the case of periodic boundary
conditions is further investigated by considering higher-order �nite di�erence schemes or a Fourier-
Galerkin spectral method for the spatial semi-discretization. In the last section we present a few
numerical tests in order to show the e�ective bene�t in the use of energy-conserving methods also
in the �eld of Hamiltonian PDEs.

5.2 The case of periodic boundary condition

Let us consider problem (5.1) coupled with the periodic boundary conditions (5.2). In this case the
Hamiltonian functional given by (5.14) becomes:

H[z](t) =

∫ 1

0

[
1

2
v2(x, t)− α2

2
u(x, t)uxx(x, t) + f(u(x, t))

]
dx, (5.15)

and from (5.13) one has
Ḣ[z](t) = α2[ux(x, t)v(x, t)]1x=0 = 0,

because of the periodic boundary conditions (5.2), so that (5.15) is a conserved quantity and at time
t = h one has

H[z](h)−H[z](0) = 0.
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5.2.1 Semi-discretization

For numerically solving problem (5.1)-(5.2), let us introduce the following discretization of the spatial
variable,

xi = i∆x, i = 0, . . . , N, ∆x = 1/N,

and the vectors:

x =

 x0
...

xN−1

 , q(t) =

 u0(t)
...

uN−1(t)

 , p(t) =

 v0(t)
...

vN−1(t)

 ∈ RN ,

with
ui(t) ≈ u(xi, t), vi(t) ≈ v(xi, t) ≡ ut(xi, t). (5.16)

Because of the periodic boundary condition (5.2), we also set:

uN (t) ≡ u0(t), u−1(t) ≡ uN−1(t), t ≥ 0.

Approximating the second derivative in (5.12) as

uxx(xi, t) ≈
ui+1(t)− 2ui(t) + ui−1(t)

∆x2
, i = 0, . . . , N − 1, (5.17)

yields the following semi-discrete problem

q̇ = p,
(5.18)

ṗ = − α2

∆x2
TNq− f ′(q), t > 0,

and the following approximation of the Hamiltonian (5.15),

H ≡ H(q,p) = ∆x

[
p>p

2
+ α2q

>TNq

2∆x2
+ e>f(q)

]
, (5.19)

where TN is a symmetric and circulant matrix,2

TN =



2 −1 −1

−1
. . . . . .
. . . . . . . . .

. . . . . . −1
−1 −1 2


∈ RN×N , (5.20)

and
e =

(
1 . . . 1

)> ∈ RN . (5.21)

Problem (5.18) is clearly Hamiltonian. In fact, one has

q̇ =
1

∆x
∇pH, ṗ = − 1

∆x
∇qH,

2Because of the periodic boundary condition (5.2)
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or, by introducing the vector

y =

(
q
p

)
,

one obtains the more compact form

ẏ = JN∇H(y), with JN =
1

∆x

(
IN

−IN

)
, (5.22)

where here and in the sequel we use, when appropriate, the notation H(y) = H(q,p). Consequently,

Ḣ(y) = ∇H(y)>ẏ = ∇H(y)>JN∇H(y) = 0,

since JN is skew-symmetric. One then concludes that the discrete approximation (5.19) to (5.15) is
a conserved quantity for the semi-discrete problem (5.22). By writing (5.19) in componentwise form

H(q,p) = ∆x
N−1∑
i=0

(
1

2
v2
i − α2ui

ui−1 − 2ui + ui+1

2∆x2
+ f(ui)

)
,

one notices that (5.19) is nothing but the approximation of (5.15) via the composite trapezoidal rule
(provided that the second derivative uxx has been previously approximated as indicated in (5.17)).

5.2.2 Full discretization

The Hamiltonian problem (5.22), coupled with the initial condition (see (5.1))

y0 ≡ y(0) =

(
ψ0(x)
ψ1(x)

)
,

can be discretized in time by using a HBVM(k, s) method. Let us then expand the right-hand side
in (5.22) similarly as done in (3.1)�(3.2)

ẏ(ch) =
∑
j≥0

γj(y)Pj(c), c ∈ [0, 1], (5.23)

with

γj(y) =

∫ 1

0
JN∇H(y(τh))Pj(τ)dτ, j ≥ 0, (5.24)

and consider the polynomial approximation of degree s given by (see (3.5)):

σ̇(ch) =

s−1∑
j=0

Pj(c)

∫ 1

0
Pj(τ)JN∇H(σ(τh))dτ ≡

s−1∑
j=0

Pj(c)γj(σ), c ∈ [0, 1],

(5.25)
σ(0) = y0.

In such a case, one obtains energy conservation since

H(σ(h))−H(σ(0)) = h

∫ 1

0
∇H(σ(τh))>σ̇(τh)dτ

(5.26)

= h

∫ 1

0
∇H(σ(τh))>

s−1∑
j=0

Pj(τ)γj(σ)dτ = h∆x2
s−1∑
j=0

γj(σ)>JNγj(σ) = 0,
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being J−>N = ∆x2JN . Consequently, if one is able to exactly compute the integrals by means of a
quadrature rule based at k ≥ s points, with k large enough, energy conservation is gained. In the
sequel we shall consider the quadrature rule based at k ≥ s Gaussian points, so that, according to
Remark 3.4.1, we shall obtain energy conservation in the case when H is a polynomial of degree
ν ≥ 2,3 that is f ∈ Πν , and k is an integer such that (see (3.17))

k ≥ 1

2
νs ⇔ ν ≤ 2k

s
. (5.27)

If f , and then H, is not a polynomial, the use of a Gaussian quadrature formula of order 2k to
approximate the integrals in (5.24) would give (see (3.10))

γj(σ) ≡
∫ 1

0
JN∇H(σ(τh))Pj(τ)dτ

=
k∑
`=1

b`Pj(c`)JN∇H(σ(c`h))︸ ︷︷ ︸
γ̂j(σ)

+ ∆j(h) ≡ γ̂j(σ) + ∆j(h),

(5.28)

with ∆j(h) = O(h2k−j), j = 0, . . . , s− 1.

In such a case, we have a di�erent polynomial u ∈ Πs solution of the problem

u̇(ch) =
s−1∑
j=0

γ̂j(u)Pj(c), c ∈ [0, 1], u(0) = y0, (5.29)

in place of σ solution of (5.25). As a consequence, by taking into account (5.22), (5.28)�(5.29), and
the result of Lemma 2.1.2, the error on the Hamiltonian H, at t = h, is:

H(u(h))−H(u(0)) = h

∫ 1

0
∇H(u(τh))>u̇(τh)dτ

= h

∫ 1

0
∇H(u(τh))>

s−1∑
j=0

Pj(τ) (γj(u)−∆j(h)) dτ

= h∆x2
s−1∑
j=0


=0︷ ︸︸ ︷

γj(u)>JNγj(u)−γj(u)>JN∆j(h)


= h∆x ·N︸ ︷︷ ︸

=1

·O(h2k) ≡ O
(
h2k+1

)
. (5.30)

Consequently, choosing k large enough allows us to approximate the Hamiltonian H within full
machine accuracy.

Summing up all the previous arguments, and taking into account the results in Chapter 3, we
can state the following result.

Theorem 5.2.1. Assume k ≥ s, and de�ne y1 = u(h) as the new approximation to y(h) provided
by a HBVM(k, s) method used with stepsize h. One then obtains:

y1 − y(h) = O(h2s+1),

3Indeed, H contains at least a quadratic term.
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that is the method has order 2s (see Corollary 3.1.1). Moreover, assuming that f is suitably regular:

H(y1)−H(y0) =


0, if f ∈ Πν and ν ≤ 2k/s,

O(h2k+1), otherwise.

As a consequence of Theorem 5.2.1, we can do similar considerations as those in Remark 3.4.1.

5.3 The case of Dirichlet boundary conditions

Let us now consider the case when the considered problem is given by (5.1) with boundary conditions
(5.3). In such a case H[z], given in (5.14), is no more conserved. In fact, from (5.13) one obtains:

Ḣ[z](t) = α2[ux(x, t)v(x, t)]1x=0 = α2[ux(1, t)ϕ′1(t)− ux(0, t)ϕ′0(t)]. (5.31)

Equation (5.31) may be interpreted as the instant variation of the energy which is released or gained
by the system at time t. Thus, the continuous Hamiltonian (5.6), though no more conserved, has a
prescribed variation in time. From (5.31), at time t = h one easily obtains:

H[z](h)−H[z](0) =

∫ h

0
Ḣ[z](t)dt =

∫ h

0
α2[ux(1, t)ϕ′1(t)− ux(0, t)ϕ′0(t)]dt. (5.32)

5.3.1 Semi-discretization

In order for numerically solving problem (5.1)�(5.3), let us introduce the following discretization of
the spatial variable,

xi = i∆x, i = 0, . . . , N + 1, ∆x = 1/(N + 1), (5.33)

and the vectors:

x =

 x1
...
xN

 , q(t) =

 u1(t)
...

uN (t)

 , p(t) =

 v1(t)
...

vN (t)

 ∈ RN , (5.34)

with ui(t) and vi(t) formally de�ned as in (5.16). Approximating the second derivatives in (5.12) as
follows,

uxx(xi, t) ≈
ui+1(t)− 2ui(t) + ui−1(t)

∆x2
, i = 1, . . . , N, (5.35)

and moreover,

ux(1, t) ≈ uN+1(t)− uN (t)

∆x
, ux(0, t) ≈ u1(t)− u0(t)

∆x
, (5.36)

we obtain the following semi-discrete approximation to the Hamiltonian (5.14):

H = ∆x

N∑
i=1

(
1

2
v2
i − α2ui

ui−1 − 2ui + ui+1

2∆x2
+ f(ui)

)
+ α2

[
uN+1

uN+1 − uN
2∆x

+ u0
u0 − u1

2∆x

]
.

(5.37)
Moreover, because of the boundary condition (5.3), we set:

u0(t) = ϕ0(t), uN+1(t) = ϕ1(t), (5.38)
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so that (5.37) becomes:

H = ∆x
N∑
i=1

(
1

2
v2
i − α2ui

ui−1 − 2ui + ui+1

2∆x2
+ f(ui)

)
+ α2

[
ϕ1
ϕ1 − uN

2∆x
+ ϕ0

ϕ0 − u1

2∆x

]
,

which can be rewritten in vector form as

H ≡ H(q,p, t) = ∆x

[
p>p

2
+ α2q

>TNq

2∆x2
+ e>f(q)

]
+ α2

[
ϕ(t)>ϕ(t)

2∆x
− q>ϕ(t)

∆x

]
, (5.39)

where e has been de�ned in (5.21), and moreover:

TN =



2 −1

−1
. . . . . .
. . . . . . . . .

. . . . . . −1
−1 2


∈ RN×N , ϕ(t) =


ϕ0(t)

0
...
0

ϕ1(t)

 ∈ RN . (5.40)

With reference to (5.39), the corresponding semi-discrete problem is then given by:

q̇ = p ≡ 1

∆x
∇pH, t > 0,

(5.41)

ṗ = − α2

∆x2
TNq +

α2

∆x2
ϕ− f ′(q) ≡ − 1

∆x
∇qH,

which is clearly Hamiltonian, though the Hamiltonian (5.39) is now non-autonomous, as a conse-
quence of the boundary conditions (5.3). For this reason, the Hamiltonian (5.39) is not conserved,
in fact one has (compare with (5.31)),

d

dt
H(q,p, t) =

∂

∂t
H(q,p, t) = α2

[
ϕ1(t)− uN (t)

∆x
ϕ′1(t)− u1(t)− ϕ0(t)

∆x
ϕ′0(t)

]
. (5.42)

One then obtains the following semi-discrete analogue of (5.32) (see (5.36) and (5.38)):

H(q(h),p(h), h)−H(q(0),p(0), 0) =

=

∫ h

0
α2

[
ϕ1(t)− uN (t)

∆x
ϕ′1(t)− u1(t)− ϕ0(t)

∆x
ϕ′0(t)

]
dt. (5.43)

In order to conveniently handle problem (5.41), we at �rst transform it into an enlarged au-
tonomous Hamiltonian system, by introducing the following auxiliary conjugate scalar variables,

q̃ ≡ t, p̃, (5.44)

and the augmented Hamiltonian (compare with (5.39)),

H̃(q,p, q̃, p̃) = ∆x

[
p>p

2
+ α2q

>TNq

2∆x2
+ e>f(q)

]
+ α2

[
ϕ(q̃)>ϕ(q̃)

2∆x
− q>ϕ(q̃)

∆x

]
+ p̃,

≡ H(q,p, q̃) + p̃. (5.45)
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The dynamical system corresponding to this new Hamiltonian function is, for t > 0:

q̇ = p ≡ 1

∆x
∇pH̃,

ṗ = − α2

∆x2
TNq +

α2

∆x2
ϕ− f ′(q) ≡ − 1

∆x
∇qH̃,

d

dt
q̃ = 1 ≡ ∂

∂p̃
H̃, (5.46)

d

dt
p̃ = α2

[
u1 − ϕ0(q̃)

∆x
ϕ′0(q̃)− ϕ1(q̃)− uN

∆x
ϕ′1(q̃)

]
≡ − ∂

∂q̃
H̃,

with initial conditions given by (see (5.1))

q(0) = ψ0(x), p(0) = ψ1(x), q̃(0) = p̃(0) = 0. (5.47)

The �rst three equation in (5.46) exactly coincide with (5.41) (considering that q̃ ≡ t), whereas the
last one allows for the conservation of H̃:

H̃(q(t),p(t), q̃(t), p̃(t)) = H̃(q(0),p(0), 0, 0) ≡ H(q(0),p(0), 0), t ≥ 0.

Indeed, by virtue of (5.46), one readily sees that

d

dt
H̃(q,p, q̃, p̃) =

=0︷ ︸︸ ︷
∇qH̃

>q̇ +∇pH̃
>ṗ+

∂

∂q̃
H̃

d

dt
q̃ +

∂

∂p̃
H̃

d

dt
p̃︸ ︷︷ ︸

=0

= 0. (5.48)

Remark 5.3.1. Taking into account that q̃ ≡ t, (5.45) and the last equation in (5.46), one has that
(5.48) is equivalent to (5.42), and thus one concludes that to keep constant H̃(q(t),p(t), t, p̃(t)) along
the solution of (5.46) is equivalent to (5.43). Consequently, by conserving the augmented Hamiltonian
H̃, one obtains that H satis�es a prescribed variation in time which, in turn, is consistent with the
corresponding continuous one (compare (5.42) with (5.31) and (5.43) with (5.32)).

In order to simplify the notation, let us set

y =


q
p
q̃
p̃,

 , J̃N =


1

∆xIN
− 1

∆xIN

1
−1

 , (5.49)

so that (5.46)�(5.47) can be rewritten as

ẏ = J̃N∇H̃(y), t ≥ 0, y(0) = (ψ0(x)>, ψ1(x)>, 0, 0)> ≡ y0. (5.50)

5.3.2 Full discretization

The full discretization of (5.49)�(5.50) follows similar steps as those seen in Section 5.2.2 for (5.22).
By expanding the right-hand side in (5.50) as done in (5.23)�(5.24), and considering σ, the poly-
nomial approximation of degree s given by (5.25) with H formally replaced with H̃ and JN with
matrix J̃N in (5.49), we still obtain energy conservation with similar steps as in (5.26), taking into
account that J̃−>N is skew-symmetric, having the same shape as J̃N given in (5.49), but with 1/∆x
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replaced by ∆x. Consequently, similarly as in the case of periodic boundary conditions, if one is
able to exactly compute the integrals by means of a Gaussian quadrature rule of order 2k, energy
conservation is gained for the augmented problem (5.49)�(5.50). This is the case, provided that H̃
is a polynomial, that is, f ∈ Πν and ϕ0, ϕ1 ∈ Πρ and, moreover k satis�es

k ≥ 1

2
max{νs, 2ρ+ s− 1, ρ+ 2s− 1} (5.51)

(we observe that, in the case ρ = 0, such bound reduces to the bound (5.27) obtained in the case
of periodic boundary conditions). Di�erently, one can approximate the integrals by means of a
Gaussian quadrature of order 2k as in (5.28) but formally replacing H with H̃ and JN with J̃N .
In such a case we have again a di�erent polynomial u ∈ Πs, in place of σ, solution of a problem
formally still given by (5.29). As a consequence, with similar steps as in (5.30), the error in the
Hamiltonian H̃, at t = h, is:

H̃(u(h))− H̃(u(0)) = O(h2k+1).

Consequently, by choosing k large enough, we can approximate the Hamiltonian H̃ within full
machine accuracy.

All the above arguments can be summarized by the following theorem, which generalizes Theo-
rem 5.2.1 to the present case.

Theorem 5.3.1. Assume k ≥ s, and de�ne y1 = u(h) as the new approximation to y(h), solution
of (5.50), provided by a HBVM(k, s) method used with stepsize h. One then obtains:

y1 − y(h) = O(h2s+1),

that is the method has order 2s. Moreover, assuming that f , ϕ0 and ϕ1 in (5.1)-(5.3) are suitably
regular:

H̃(y1)− H̃(y0) =


0, if f ∈ Πν , ϕ0, ϕ1 ∈ Πρ, and (5.51) holds true,

O(h2k+1), otherwise.

Clearly, similar considerations to those stated in Remark 3.4.1 can be repeated in the present situ-
ation.

5.4 The case of Neumann boundary conditions

Let us now discuss the case when the considered problem is given by (5.1) with the Neumann
boundary conditions (5.4). Similarly as in the case of Dirichlet boundary conditions, the Hamiltonian
functional H[z], given in (5.14), is not conserved. In fact, in the present case, (5.13) reduces to:

Ḣ[z](t) = α2[ux(x, t)v(x, t)]1x=0 = α2[φ1(t)v(1, t)− φ0(t)v(0, t)]. (5.52)

As a consequence, similarly as in (5.32), at time t = h one has

H[z](h)−H[z](0) =

∫ h

0
Ḣ[z](t)dt =

∫ h

0
α2[φ1(t)v(1, t)− φ0(t)v(0, t)]dt. (5.53)

In order to numerically solve problem (5.1) with boundary conditions (5.4), we use again the dis-
cretization (5.33) of the spatial variable, as well as the vectors de�ned at (5.34), with ui(t) and vi(t)
formally de�ned as in (5.16). Approximating the derivatives as done in (5.35)-(5.36), one obtains
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the very same semi-discretization (5.39) of the continuous Hamiltonian functional, with TN de�ned
as in (5.40), whereas, by considering the approximation (5.36),

ϕ(t) =
(
u1 − φ0(t)∆x 0 . . . 0 uN + φ1(t)∆x

)>
.

Nevertheless, it is preferable to derive another formulation of the semi-discrete Hamiltonian, as
described below.

Starting from (5.37), one obtains

H = ∆x

N∑
i=1

(
1

2
v2
i − α2ui

ui−1 − 2ui + ui+1

2∆x2
+ f(ui)

)
+
α2

2

[
uN+1

uN+1 − uN
∆x

− u0
u1 − u0

∆x

]

= ∆x

N−1∑
i=2

(
1

2
v2
i − α2ui

ui−1 − 2ui + ui+1

2∆x2
+ f(ui)

)
+
α2

2

[
uN+1

uN+1 − uN
∆x

− u0
u1 − u0

∆x

]
+ ∆x

(
1

2
v2

1 − α2u1
u0 − 2u1 + u2

2∆x2
+ f(u1) +

1

2
v2
N − α2uN

uN−1 − 2uN + uN+1

2∆x2
+ f(uN )

)
= ∆x

N−1∑
i=2

(
1

2
v2
i − α2ui

ui−1 − 2ui + ui+1

2∆x2
+ f(ui)

)
+
α2

2

[
(uN+1 − uN )2

∆x
+

(u1 − u0)2

∆x

]
+ ∆x

(
1

2
v2

1 − α2u1
−u1 + u2

2∆x2
+ f(u1) +

1

2
v2
N − α2uN

uN−1 − uN
2∆x2

+ f(uN )

)
.

The previous equation can be cast, more compactly, in vector form as:

H ≡ H(q,p, t) = ∆x

[
p>p

2
+ α2q

>TNq

2∆x2
+ e>f(q)

]
+ α2w(q, t)>w(q, t)

2∆x
, (5.54)

where e has been de�ned in (5.21) and, moreover,

TN =


1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

 ∈ RN×N , w(q, t) =


u1 − u0(t)

0
...
0

uN+1(t)− uN

 ∈ RN . (5.55)

The semi-discrete Hamiltonian problem corresponding to (5.54) is then given by:

q̇ = p ≡ 1

∆x
∇pH, t > 0,

(5.56)

ṗ = − α2

∆x2
TNq + α2 Θ

∆x2
w(q, t)− f ′(q) ≡ − 1

∆x
∇qH,

with

Θ =


−1

0
. . .

0
1

 ∈ RN×N .
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By considering the Neumann boundary conditions (5.4) and the used approximation (5.36) of the
�rst space derivatives, one has (see (5.55))

Θ

∆x2
w(q, t) =

1

∆x2


u0(t)− u1

0
...
0

uN+1(t)− uN

 =
1

∆x


−φ0(t)

0
...
0

φ1(t)

 ≡
1

∆x
φ(t),

so that one can derive the �nal shape of (5.56):

q̇ = p, t > 0,
(5.57)

ṗ = − α2

∆x2
TNq +

α2

∆x
φ(t)− f ′(q),

which is clearly Hamiltonian, even though, similarly as for (5.41), the Hamiltonian (5.54) is non-
autonomous, as a consequence of the boundary conditions (5.4). Consequently, the Hamiltonian
(5.54) is not conserved, in fact one has (compare with (5.52))

d

dt
H(q,p, t) =

∂

∂t
H(q,p, t) =

α2

∆x
w(q, t)>

∂

∂t
w(q, t) = α2(φ1(t)vN+1(t)− φ0(t)v0(t)). (5.58)

One then obtains the following analogue of (5.53):

H(q(h),p(h), h)−H(q(0),p(0), 0) =

∫ h

0
α2(φ1(t)vN+1(t)− φ0(t)v0(t))dt, (5.59)

which, by taking into account (5.36) and the boundary conditions (5.4), becomes

H(q(h),p(h), h)−H(q(0),p(0), 0) =
(5.60)

=

∫ h

0
α2
[
φ1(t)(vN (t) + ∆xφ′1(t))− φ0(t)(v1(t)−∆xφ′0(t))

]
dt.

As in the case of Dirichlet boundary conditions, we can introduce the couple of auxiliary conjugate
variables (5.44) and the augmented Hamiltonian

H̃(q,p, q̃, p̃) = ∆x

[
p>p

2
+ α2q

>TNq

2∆x2
+ e>f(q)

]
+α2w(q, q̃)>w(q, q̃)

2∆x
+ p̃ ≡ H(q,p, q̃)+ p̃. (5.61)

Consequently, the associated Hamiltonian system, coupled with the initial conditions given in (5.47),
is:

q̇ = p ≡ 1

∆x
∇pH̃, t > 0,

ṗ = − α2

∆x2
TNq +

α2

∆x
φ(t)− f ′(q) ≡ − 1

∆x
∇qH̃,

d

dt
q̃ = 1 ≡ ∂

∂p̃
H̃, (5.62)

d

dt
p̃ = −α2[φ1(q̃)(vN + ∆xφ′1(q̃))− φ0(q̃)(v1 −∆xφ′0(q̃))] ≡ − ∂

∂q̃
H̃,
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where in the last equation (compare with (5.58)) we have considered (5.36). In this way, the �rst
three equations in (5.62) match (5.57) (since q̃ ≡ t), whereas, similarly as in (5.48), the last one
allows for the conservation of H̃:

H̃(q(t),p(t), q̃(t), p̃(t)) = H̃(q(0),p(0), 0, 0) ≡ H(q(0),p(0), 0), t ≥ 0.

Remark 5.4.1. With similar arguments as in Remark 5.3.1, by conserving the augmented Hamil-
tonian H̃, one obtains that H satis�es a prescribed variation in time which, in turn, is consistent
with the corresponding continuous one (compare (5.58) with (5.52) and (5.59) with (5.53)).

By introducing the array y and the matrix J̃N as in (5.49), problem (5.62), with the initial
conditions (5.47), can be rewritten in the form:

ẏ = J̃N∇H̃(y), t ≥ 0, y(0) =
(
ψ0(x)>, ψ1(x)>, 0, 0

)> ≡ y0. (5.63)

Concerning the discretization issue, arguments similar to those in Section 5.3.2 apply to the present
case. In particular, the following result holds true, the proof being similar to that of Theorems 5.2.1
and 5.3.1.

Theorem 5.4.1. Assume k ≥ s, and let de�ne y1 = u(h) the new approximation to y(h), solution
of (5.63), provided by a HBVM(k, s) method used with stepsize h. One then obtains:

y1 − y(h) = O(h2s+1),

that is, the method has order 2s. Moreover, assuming that f , φ0 and φ1 in (5.1)-(5.4) are suitably
regular, one has:

H̃(y1)− H̃(y0) =


0, if f ∈ Πν , φ0, φ1 ∈ Πρ, with

2k ≥ max{νs, 2ρ+ s− 1, 2s+ ρ},

O(h2k+1), otherwise.

As is clear, considerations similar to those stated in Remark 3.4.1 can be repeated also in the present
situation.

5.5 The case of periodic boundary conditions revisited

The case of periodic boundary conditions, i.e. (5.1)�(5.2), deserves to be further investigated.
In fact, the �nite-di�erence discretization considered above, turns out to provide a second-order
spatial accuracy in the used stepsize ∆x. When either Dirichlet or Neumann boundary conditions
are speci�ed, it is not easy to derive higher-order semi-discrete Hamiltonian formulations of the
problem. Conversely, in the case of periodic boundary conditions, the use of higher-order central
�nite-di�erence approximations of the derivatives in (5.1), results in a semi-discrete Hamiltonian
problem de�ned by a Hamiltonian function formally still given by (5.19), but with the matrix
TN de�ned in (5.20) suitably replaced with a di�erent circulant and symmetric band-matrix. As
an example, the following matrix provides a fourth-order spatial approximation (see, e.g., [2] for
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additional examples):

TN =



5
2 −4

3
1
12

1
12 −4

3

−4
3

. . . . . . . . . 1
12

1
12

. . . . . . . . . . . .

. . . . . . . . . . . . . . .
. . . . . . . . . . . . 1

12

1
12

. . . . . . . . . −4
3

−4
3

1
12

1
12 −4

3
5
2


∈ RN×N . (5.64)

An alternative approach, which we shall investigate in the sequel, is that of using a Fourier-Galerkin
expansion to obtain a spatial approximation. Galerkin methods require to expand the solution of
the problem along a basis in which every component satis�es the associated boundary conditions.
When the problem at hand is coupled with the periodic boundary conditions (5.2), a trigonometric
basis is usually preferred (see for example [35, 42, 75]). For this purpose, let us consider the following
complete set of orthonormal functions in [0, 1]:

c0(x) ≡ 1, ck(x) =
√

2 cos(2kπx), sk(x) =
√

2 sin(2kπx), k = 1, 2, . . . , (5.65)

so that ∫ 1

0
ci(x)cj(x)dx =

∫ 1

0
si(x)sj(x)dx = δij ,

∫ 1

0
ci(x)sj(x)dx = 0, ∀i, j, (5.66)

being δij the Kronecker symbol. The following expansion of the solution of (5.1)-(5.2) is a slightly
di�erent way of writing the usual Fourier expansion in space:

u(x, t) = c0(x)β0(t) +
∑
n≥1

[cn(x)βn(t) + sn(x)ηn(t)]

≡ β0(t) +
∑
n≥1

[cn(x)βn(t) + sn(x)ηn(t)] , x ∈ [0, 1], t ≥ 0, (5.67)

with

βn(t) =

∫ 1

0
cn(x)u(x, t)dx, ηn(t) =

∫ 1

0
sn(x)u(x, t)dx,

which is allowed because of the periodic boundary conditions (5.2). Consequently, by taking into
account (5.66), the di�erential equation in (5.1) can be rewritten as:

β̈n(t) = − α2(2πn)2βn(t)

−
∫ 1

0
cn(x)f ′

β0(t) +
∑
n≥1

[cn(x)βn(t) + sn(x)ηn(t)]

 dx, n ≥ 0,

(5.68)
η̈n(t) = − α2(2πn)2ηn(t)

−
∫ 1

0
sn(x)f ′

β0(t) +
∑
n≥1

[cn(x)βn(t) + sn(x)ηn(t)]

dx, n ≥ 1,
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where the double dot denotes, as usual, the second time derivative. The initial conditions are clearly
given by (see (5.1)):

βn(0) =

∫ 1

0
cn(x)ψ0(x)dx, ηn(0) =

∫ 1

0
sn(x)ψ0(x)dx,

(5.69)

β̇n(0) =

∫ 1

0
cn(x)ψ1(x)dx, η̇n(0) =

∫ 1

0
sn(x)ψ1(x)dx.

By introducing the in�nite vectors

ω(x) =
(
c0(x) c1(x) s1(x) c2(x) s2(x) . . .

)>
,

(5.70)
q(t) =

(
β0(t) β1(t) η1(t) β2(t) η2(t) . . .

)>
,

the in�nite matrix
D = diag

(
0 (2π)2 (2π)2 (4π)2 (4π)2 . . .

)
, (5.71)

and considering that (see (5.67))
u(x, t) = ω(x)>q(t), (5.72)

problem (5.68) can be cast in vector form as:

q̇(t) = p(t), t > 0,
(5.73)

ṗ(t) = −α2Dq(t)−
∫ 1

0
ω(x)f ′(ω(x)>q(t))dx,

with the initial conditions (5.69) becoming, more compactly,

q(0) =

∫ 1

0
ω(x)ψ0(x)dx, p(0) =

∫ 1

0
ω(x)ψ1(x)dx. (5.74)

The following result holds true.

Theorem 5.5.1. Problem (5.73) is Hamiltonian, with Hamiltonian

H(q,p) =
1

2
p>p +

α2

2
q>Dq +

∫ 1

0
f(ω(x)>q)dx. (5.75)

This latter is equivalent to the Hamiltonian (5.6), via the expansion (5.67)�(5.72).

Proof. The �rst statement is straightforward, by considering that

∇qf(ω(x)>q)) = f ′(ω(x)>q)ω(x).

The second statement then easily follows, by taking into account (5.72), from the fact that, see (5.5),
(5.66), (5.67), and (5.70):

∫ 1

0
v(x, t)2dx =

∫ 1

0
ut(x, t)

2dx =

∫ 1

0

β̇0(t) +
∑
n≥1

[
β̇n(t)cn(x) + η̇n(t)sn(x)

]2

dx

= β̇0(t)2 +
∑
n≥1

[
β̇n(t)2 + η̇n(t)2

]
= p(t)>p(t),
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and ∫ 1

0
ux(x, t)2dx =

∫ 1

0

∑
n≥1

2πn [ηn(t)cn(x)− βn(t)sn(x)]

2

dx

=
∑
n≥1

(2πn)2
[
ηn(t)2 + βn(t)2

]
= q(t)>Dq(t).

5.5.1 Truncated Fourier approximation

In the computational practice, it is mandatory to truncate the in�nite expansion (5.67) to a �nite
sum:

u(x, t) ≈ β0(t) +

N∑
n=1

[cn(x)βn(t) + sn(x)ηn(t)] ≡ uN (x, t), (5.76)

which converges more than exponentially with N to u, if this latter is an analytical function.4 In
other words, we look for an approximation to u(x, t) belonging to the functional subspace (see (5.65))

VN = span{c0(x), c1(x), . . . , cN (x), s1(x), . . . , sN (x)}.

Clearly, such a truncated expansion will not satisfy problem (5.1)-(5.2). Nevertheless, in the spirit
of Galerkin methods [6], by requiring that the residual

R(uN ) := (uN )tt − (uN )xx + f ′(uN ),

is orthogonal to VN , one obtains the weak formulation of problem (5.1)-(5.2), consisting in the
following 2N + 1 di�erential equations,

β̈n(t) = − α2(2πn)2βn(t)

−
∫ 1

0
cn(x)f ′

(
β0(t) +

N∑
n=1

[cn(x)βn(t) + sn(x)ηn(t)]

)
dx, n = 0, . . . , N,

(5.77)
η̈n(t) = − α2(2πn)2ηn(t)

−
∫ 1

0
sn(x)f ′

(
β0(t) +

N∑
n=1

[cn(x)βn(t) + sn(x)ηn(t)]

)
dx, n = 1, . . . , N,

approximating the leading ones in (5.68). Correspondingly, one de�nes the �nite vectors (compare
with (5.70)) in R2N+1,

ωN (x) =
(
c0(x) c1(x) s1(x) c2(x) s2(x) . . . cN (x) sN (x)

)>
,

qN (t) =
(
β0(t) β1(t) η1(t) β2(t) η2(t) . . . βN (t) ηN (t)

)>
,

and the diagonal matrix (compare with (5.71))

DN = diag
(

0 (2π)2 (2π)2 (4π)2 (4π)2 . . . (2Nπ)2 (2Nπ)2
)
∈ R2N+1×2N+1. (5.78)

Then, considering that (see (5.76))

uN (x, t) = ωN (x)>qN (t), (5.79)

4We refer, e.g., to [35], for a corresponding comprehensive error analysis.
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the equations (5.77), which have to be satis�ed by (5.79), can be cast in vector form as:

q̇N (t) = pN (t), t > 0,
(5.80)

ṗN (t) = −α2DNqN (t)−
∫ 1

0
ωN (x)f ′(ωN (x)>qN (t))dx,

for a total of 4N+2 di�erential equations. Clearly, from (5.69) one obtains that the initial conditions
for (5.80) are given by:

qN (0) =

∫ 1

0
ωN (x)ψ0(x)dx, pN (0) =

∫ 1

0
ωN (x)ψ1(x)dx. (5.81)

The following result then easily follows by means of arguments similar to those used to prove The-
orem 5.5.1.

Theorem 5.5.2. Problem (5.80) is Hamiltonian, with Hamiltonian

HN (qN ,pN ) =
1

2
p>NpN +

α2

2
q>NDNqN +

∫ 1

0
f(ωN (x)>qN )dx. (5.82)

We observe that (5.82) is equivalent to a truncated Fourier expansion of the Hamiltonian (5.6) (see
also (5.75)). Thus, by introducing the vector yN (t) =

(
qN (t)> pN (t)>

)> ∈ R4N+2 and the
notation HN (yN ) = HN (qN ,pN ), we can cast (5.80) in the more compact form

ẏN = JN∇HN (yN ), with JN =

(
I2N+1

−I2N+1

)
, (5.83)

with the initial condition (see (5.81))

yN (0) =
(
qN (0)> pN (0)>

)>
.

It is worth mentioning that using the initial conditions (5.81), in place of (5.74), results in an error
eN , in the initial data, given by

e2
N =

∫ 1

0

(
ψ0(x)− ωN (x)>qN (0)

)2
dx+

∫ 1

0

(
ψ1(x)− ωN (x)>pN (0)

)2
dx

=
∑
n>N

[(∫ 1

0
cn(x)ψ0(x)dx

)2

+

(∫ 1

0
sn(x)ψ0(x)dx

)2
]

+

∑
n>N

[(∫ 1

0
cn(x)ψ1(x)dx

)2

+

(∫ 1

0
sn(x)ψ1(x)dx

)2
]
. (5.84)

Unless the �nite-di�erence case, both eN and the approximation (5.82) to the continuous Hamilto-
nian, converge more than exponentially in N (eN to 0 and HN to H), provided that the involved
functions are analytical.

5.5.2 Full discretization

Since (5.83) is, for all N ≥ 0, a Hamiltonian problem of dimension 4N + 2 with autonomous
Hamiltonian (5.82), this latter is conserved along the solution. Consequently, it is then appropriate
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the use of an energy-conserving method for its numerical solution. In particular, Theorem 5.2.1
continues formally to hold for HBVM(k, s) methods. However, the integral appearing in (5.80)
needs to be, in turn, approximated by means of a suitable quadrature rule. For this purpose, it
could be convenient to use a composite trapezoidal rule, due to the fact that the argument is a
periodic function. Consequently, having set

gN (x, t) = ωN (x)f ′(ωN (x)>qN (t)), (5.85)

the uniform mesh on [0, 1],

xi = i∆x, i = 0, . . . ,m, ∆x =
1

m
, (5.86)

and considering that
gN (0, t) = gN (1, t),

one obtains: ∫ 1

0
gN (x, t)dx = ∆x

m∑
i=1

gN (xi−1, t) + gN (xi, t)

2
+ R(m)

=
1

m

m−1∑
i=0

gN (xi, t) + R(m). (5.87)

Let us study the error R(m). For this purpose, we need some preliminary result.

Lemma 5.5.1. Let us consider the trigonometric polynomial

p(x) =
K∑
k=0

[ak cos(2kπx) + bk sin(2kπx)] , (5.88)

and the uniform mesh (5.86). Then, for all m ≥ K + 1, one obtains:∫ 1

0
p(x)dx =

1

m

m−1∑
i=0

p(xi).

Proof. See, e.g., [39, Th. 5.1.4].

Lemma 5.5.2. Let us consider the trigonometric polynomial (5.88) and the uniform mesh (5.86).
Then, for all j = 0, . . . , N , and provided that m ≥ N +K + 1, one obtains:∫ 1

0
cos(2jπx)p(x)dx =

1

m

m−1∑
i=0

cos(2jπxi)p(xi), (5.89)

∫ 1

0
sin(2jπx)p(x)dx =

1

m

m−1∑
i=0

sin(2jπxi)p(xi). (5.90)

Proof. By virtue of the prosthaphaeresis formulae, for all j = 0, . . . , N and k = 0, . . . ,K, one has:

cos(2jπx) cos(2kπx) =
1

2
[cos(2(k + j)πx) + cos(2(k − j)πx)] ,

cos(2jπx) sin(2kπx) =
1

2
[sin(2(k + j)πx) + sin(2(k − j)πx)] ,

sin(2jπx) cos(2kπx) =
1

2
[sin(2(k + j)πx)− sin(2(k − j)πx)] ,

sin(2jπx) sin(2kπx) =
1

2
[cos(2(k − j)πx)− cos(2(k + j)πx)] .
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Consequently, the integrals at the left-hand side in (5.89)-(5.90) are trigonometric polynomials of
degree at most N + K. By virtue of Lemma 5.5.1, it then follows that they are exactly computed
by means of the composite trapezoidal rule at the corresponding right-hand sides, provided that
m ≥ N +K + 1.

By virtue of Lemma 5.5.2, the following result follows at once.

Theorem 5.5.3. Let the function f appearing in (5.85) be a polynomial of degree ν and let us
consider the uniform mesh (5.86). Then, with reference to (5.87), for all m ≥ νN + 1 one obtains:

R(m) = 0 i.e.,

∫ 1

0
gN (x, t)dx =

1

m

m−1∑
i=0

gN (xi, t).

For a general function f , the following result holds true.

Theorem 5.5.4. Let the function gN (x, t) de�ned at (5.85), with t a �xed parameter, belong toW r,p
per,

the Banach space of periodic functions on R whose distribution derivatives up to order r belong to
Lpper(R). Then, with reference to (5.86)-(5.87), one has:

R(m) = O(m−r).

Proof. See [62, Th. 1.1].

We end this section by mentioning that for approximating the integral appearing in (5.80) also
di�erent approaches could be used: as an example, we refer to [40], for a comprehensive review on
this topic.

5.6 Implementation of the methods

In this section, we sketch the application of a HBVM(k, s) method for solving (5.18) (the application
to (5.46), (5.62) and (5.80) is similar). We consider the very �rst application of the method, so that
the index of the time step can be skipped. Since the Hamiltonian of the semi-discrete formulation
of the semilinear wave equation is separable5, similarly as done in Section 4.7, by splitting the stage
vector Y of the Runge-Kutta formulation, into Q and P , corresponding to the stages for q and p
respectively, the discrete problem generated by a HBVM(k, s) method can be recast in terms of the
s coe�cients of the polynomial (5.29) as (see (4.51)):

F (γ̂) ≡ γ̂ − P>s Ω⊗ IN G
(
e⊗ q0 + hc⊗ p0 − h2IsXs ⊗ IN γ̂

)
= 0, (5.91)

being,

G(Q) =
α2

∆x2
Ik ⊗ TNQ+ f ′(Q), (5.92)

and (see (4.50))6

γ̂ = P>s Ω⊗ IN G(Q) ≡

 γ̂0
...

γ̂s−1

 .

5This is not the case when considering di�erent Hamiltonian PDEs, such as, e.g., the nonlinear Schrödinger
equation.

6Here, as an abuse of notation, γ̂j is given by the entries of the vector γ̂j(u) in (5.29) corresponding to the q
components only. Consequently, it has halved dimension w.r.t. this latter vector.
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Once (5.91) is solved, the new approximations are then given by (see (2.8)):

p1 = p0 + hγ̂0, q1 = q0 + hp0 + h2

(
1

2
γ̂0 − ξ1γ̂1

)
.

For the solution of (5.91), one could use the following simpli�ed Newton iteration,(
I +

α2h2

∆x2
X2
s ⊗ TN

)
∆` = −F (γ̂`) ≡ η`, γ̂`+1 = γ̂` + ∆` ` = 0, 1, . . . , (5.93)

which only considers the (main) linear part of the function G (see (5.92)). In order to reduce the
computational cost of such iteration, having dimension sN , we use a blended iteration formally
de�ned as:

η`1 = ζ2X−2
s ⊗ INη`, (5.94)

∆` = Is ⊗M−1
N

[
η`1 + Is ⊗M−1

N

(
η` − η`1

)]
, ` = 0, 1, . . . , (5.95)

where

ζ = min
λ∈σ(Xs)

|λ|, MN = IN +

(
αhζ

∆x

)2

TN , (5.96)

with σ(Xs) denoting the spectrum of matrix Xs. Consequently, the computational cost of each
iteration is given by:

• the evaluation of η` in (5.93). This requires k evaluations of the right-hand side of the second
equation in (5.18) (see (5.91)�(5.93)) plus (4ks+ 3k + s)N �ops;

• the evaluation of η`1 in (5.94). Concerning the matrix ζ−1Xs; one can either invert and square
it in advance, so that the costs for computing η`1 is 2s2N �ops, or solve 2 tridiagonal linear
systems, so that, once the factorization is computed7, the cost per iteration amounts to 10sN
�ops. Consequently, the corresponding computational cost is given by 2 min{s, 5}sN �ops;

• the evaluation of ∆` in (5.95). This requires the solution of 2s linear systems with the symmet-
ric matrix MN plus 2sN �ops. Concerning the matrix MN , an additional saving of computa-
tional e�ort is gained by retaining only its tridiagonal part (or by considering an approximate
inverse).8 In such a case, after its factorization,9 one has a cost of less than 10sN �ops. The
total cost is then less than 12sN �ops.

In conclusion, the total cost per iteration amounts to k function evaluation plus (13s + 3k +
2 min{s, 5}s+ 4ks)N �ops.

It is worth mentioning that the same complexity is obtained in the case of Dirichlet or Neu-
mann boundary conditions, by considering the corresponding tridiagonal matrices (5.40) and (5.55),
respectively. Di�erently, when the Fourier-Galerkin spatial semi-discretization is considered, one
obtains formally the same iteration (5.94)-(5.95) but with matrix MN given by:

MN = I2N+1 + (αhζ)2DN ∈ R(2N+1)×(2N+1), (5.97)

where the matrix DN is diagonal (see (5.78)). Consequently, also MN is a diagonal matrix and,
therefore, the complexity per iteration, besides the function evaluations of the second equation in

7This costs less than 3s �ops
8In general, the matrix becomes banded, when considering higher-order discretizations, see, e.g., (5.64).
9This costs less than 3N �ops.
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(5.80) (which are the same as before, i.e. k), decreases. As a matter of fact, the required �ops per
iteration are now (5s+ 3k + 2 min{s, 5}s+ 4ks)N .

As a result of the previous arguments, one then expects a complexity per step which is linear in
the dimension of the problem and, therefore, comparable with that of an explicit method. Moreover,
unlike the A-stable HBVM(k, s) methods, explicit methods may su�er from stepsize restrictions due
to stability reasons, as we shall see in the numerical tests.

5.7 Numerical tests

Even though the use of energy-conserving methods is quite well understood, proving to be very
useful, when speaking about Hamiltonian ordinary di�erential equations, their use in the framework
of Hamiltonian partial di�erential equation is fairly less obvious. Nevertheless, we report here a few
numerical tests which should highlight the usefulness of using energy-conserving methods for solving
Hamiltonian PDEs [12, 13, 14].

For this purpose, let us consider the well-known sine-Gordon equation, which is in the form (5.1)
with f(u(x, t)) = 1− cos(u(x, t)):

utt(x, t) = uxx(x, t)− sin(u(x, t)), x ∈ [−20, 20], t ≥ 0. (5.98)

When (5.98) is coupled with the initial conditions,

u(x, 0) ≡ 0, ut(x, 0) =
4

γ
sech

(
x

γ

)
, γ > 0, (5.99)

it admits soliton-like solutions, as described in [77]. In more details, depending on the value of the
positive parameter γ, the solution is known to be given by:

u(x, t) = 4 atan

[
ϑ(t; γ) sech

(
x

γ

)]
, (5.100)

with

ϑ(t; γ) =



1√
γ2−1

sin

(√
γ2−1
γ t

)
, if γ > 1,

t, if γ = 1,

1√
1−γ2

sinh

(√
1−γ2
γ t

)
, if 0 < γ < 1.

(5.101)

The three cases are shown in Figures 5.1�5.3, respectively: the �rst soliton, shown in Figure 5.1 and
obtained for γ > 1, is named breather, whereas the third one, shown in Figure 5.3 and obtained for
0 < γ < 1, is named kink-antikink. Clearly, the case γ = 1, named double-pole soliton and shown in
Figure 5.2, separates the two di�erent types of dynamics.

Moreover, having �xed the space interval,10 the Hamiltonian is a decreasing function of γ, as is
shown in Figure 5.4. This means that the value of the Hamiltonian (which is a constant of motion)
characterizes the dynamics. Consequently, in a neighbourhood of γ = 1, corresponding to a value
' 16 for the Hamiltonian, nearby values of the Hamiltonian will provide di�erent types of soliton
solutions. Consequently, energy conserving methods are expected to be useful, when numerically
solving problem (5.98)-(5.99) with γ = 1.

Let us then consider problem (5.98)-(5.99), at �rst with periodic boundary conditions, by using:

10I.e., [−20, 20], in our case (see (5.98)).
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• a �nite-di�erence approximation with N = 400 equispaced mesh points, so that |H[z](0) −
H(q(0),p(0))| ' 1.4 ·10−14, that is, the value of the Hamiltonian (5.15) is practically matched
by the discrete Hamiltonian (5.19);

• a trigonometric polynomial approximation of degree N = 100 and m = 200 equispaced mesh
points.11 In so doing, the error (5.84) in the initial conditions is eN ' 1.6 · 10−11, so that they
are quite well matched.

For the time integration, let us consider the following two di�erent second-order methods, used
with stepsize h = 0.5, for 200 integration steps:

• the symplectic implicit mid-point rule, i.e. HBVM(1,1), for which the Hamiltonian error is
' 4.5 · 10−1 (though without a drift) both for the �nite-di�erence and the trigonometric
polynomial spatial approximations;

• the (practically) energy conserving HBVM(7,1) method, for which the Hamiltonian error is
' 5.7 · 10−14 when the �nite-di�erence spatial discretization is used and ' 1.9 · 10−14 when
the Fourier approach in space is considered.

As we have sketched in the previous section, in order to e�ciently implement these two methods, we
here use the blended implementation (5.94)-(5.95), by using only the linear part of the equation, so
that the approximate Jacobian turns out to be constant and tridiagonal, when the �nite-di�erence
discretization is used, or diagonal, when the Fourier-Galerkin approach is used. In such a case,
one only needs to solve linear systems in the form IN + (hζ/∆x)2 TN or I2N+1 + h2ζ2DN , when a
�nite-di�erence or a Fourier spatial discretization, respectively, is used (see (5.96)-(5.97)), where h is
the time step and ζ is the parameter given in Table 4.1, depending on the HBVM(k, s) method and
independent of the value of k. Since in the former case the matrix is tridiagonal, and diagonal in the
latter case (and, moreover, they are constant for all integration steps), the method is computationally
inexpensive.

Concerning the �nite-di�erence approach, the error in the numerical Hamiltonian is plotted in
Figure 5.5 (top). In Figures 5.6 and 5.7 we plot the numerical approximations to the solution
computed by the HBVM(1,1) and HBVM(7,1) methods, respectively. As is clear, the former ap-
proximation is wrong, since the method has provided a breather-like solution, whereas the latter one
has the correct shape (compare with Figure 5.2), thus con�rming that energy conservation is an
important issue, for such a problem.

Concerning the trigonometric polynomial approximation, the error in the numerical Hamiltonian
is plotted in Figure 5.5 (bottom). In Figures 5.8 and 5.9 we plot the numerical approximations to
the solution computed by the HBVM(1,1) and HBVM(7,1) methods, respectively. As is clear, also
in this case, the dynamics returned by the implicit mid-point rule is wrong, since the method has
provided a breather-like solution, whereas the approximation obtained by using the (practically)
energy-conserving HBVM(7,1) method has the correct shape (compare with Figure 5.2), thus con-
�rming, once more, that energy conservation is an important issue, for such a problem, also when
the spatial discretization is done by means of a Fourier spectral method.

Completely similar results are obtained by using the same methods (and with the same spatial
grid and temporal stepsize h), when Dirichlet boundary conditions are used:

• in Figure 5.10 there are the plots of the di�erences H(qn,pn, tn)−H(q0,p0, 0) (see (5.39)) and
H̃(qn,pn, q̃n, p̃n)−H̃(q0,p0, 0, 0) (see (5.45) and (5.47)), when using the HBVM(1,1) method.
It is clear that both of them are large and, as a result, the computed numerical solution, shown
in Figure 5.11, is wrong;

11In fact, m = 200 is an appropriate choice for N = 100, in this case.



5.7 Numerical tests 89

• in Figure 5.12 are presented the plots of H(qn,pn, tn) − H(q0,p0, 0) (see (5.39)) and of
H̃(qn,pn, q̃n, p̃n)−H̃(q0,p0, 0, 0) (see (5.45) and (5.47)), when using the HBVM(7,1) method.
It is clear that now the augmented Hamiltonian (5.45) is (practically) conserved (maximum
error ' 4.4 · 10−14), whereas the original Hamiltonian (5.39) oscillates around its initial value.
The computed solution, shown in Figure 5.13, is now correct.

Analogous results are obtained when Neumann boundary conditions are prescribed for the prob-
lem. In fact, by considering the same methods with the same spatial grid and the same temporal
stepsize h:

• in Figure 5.14 there are the plots of the di�erences H(qn,pn, tn)−H(q0,p0, 0) (see (5.54)) and
H̃(qn,pn, q̃n, p̃n)−H̃(q0,p0, 0, 0) (see (5.61) and (5.47)), when using the HBVM(1,1) method.
It is clear that both of them are large and, as a result, the computed numerical solution, shown
in Figure 5.15, is wrong;

• in Figure 5.16 are presented the plots of H(qn,pn, tn) − H(q0,p0, 0) (see (5.54)) and of
H̃(qn,pn, q̃n, p̃n)−H̃(q0,p0, 0, 0) (see (5.61) and (5.47)), when using the HBVM(7,1) method.
It is clear that now the augmented Hamiltonian (5.61) is (practically) conserved (maximum
error ' 6.4 · 10−11), whereas the original Hamiltonian (5.54) oscillates around its initial value.
The computed solution, shown in Figure 5.17, is now correct.

We now highlight the potentialities of the Fourier-Galerkin spatial approximation, with respect
to the �nite-di�erence one, when periodic boundary conditions are speci�ed for the problem: in
fact, the Fourier approximation (5.82) to the Hamiltonian converges more than exponentially in
the number N of Fourier modes, whereas the �nite-di�erence approximation (5.19) converges only
quadratically in ∆x. Since also HBVM(7,1) is second order, we then compare the use of such method,
with stepsize h = 40/` in time and for a total of ` time-steps, for solving problem (5.98)-(5.99), with
γ = 1 and periodic boundary conditions, by using:

• the second-order �nite-di�erence spatial discretization with ` mesh points (with this choice,
one has ∆x = h);

• the Fourier-Galerkin approximation with N = 100, and m = 200 spatial grid-points, which
we maintain �xed independently of the choice of `. This because the obtained spatial ap-
proximation yields a far more accurate approximation than the one corresponding to the time
discretization.

The following table summarizes the obtained results, from which one obtains that both methods are
globally second-order accurate, even though the values of N and m are kept �xed in the second case,
thus con�rming the exponential convergence of the Fourier approximation. Moreover, by comparing
the maximum error on the solution in the �nite-di�erence case (FD-error) and in the Fourier-
Galerkin approach (FG-error), one sees that the latter is much more favourable than the former.
Consequently, one may conclude that the better the approximation to the continuous Hamiltonian,

` FD-error rate FG-error rate
400 1.4486e-01 � 1.7883e-03 �
800 3.6900e-02 1.97 4.4985e-04 1.99
1600 9.2702e-03 1.99 1.1262e-04 2.00
3200 2.3204e-03 2.00 2.8171e-05 2.00
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the better the approximation to the solution.
Before concluding this section, we perform a further numerical text, where we compare some

(practically) energy-conserving HBVMs, with well known explicit methods of the same order for
solving problem (5.98)-(5.99), with γ = 1 and periodic boundary conditions, on the time interval
[0, 100]. In more details, we compare the following methods:

order 2: the (practically) energy-conserving HBVM(5,1) method and the symplectic Störmer-Verlet
method (SV2);

order 4: the (practically) energy-conserving HBVM(6,2) method and the composition method
(SV4) based on the symplectic Störmer-Verlet method (each step requiring 3 steps of the
basic method), according to [49, page 44];

order 6: the (practically) energy-conserving HBVM(9,3) method and the composition method
(SV6) based on the symplectic Störmer-Verlet method (each step requiring 9 steps of the
basic method), according to [49, page 44].

To compare the methods, we construct a corresponding Work-Precision Diagram, by following the
standard used in the Test Set for IVP Solvers [78]. In more details, we plot the accuracy, measured
in terms of the maximum absolute error, w.r.t. the execution time. All tests have been done by
using Matlab v.2014b, running on a dual core i7 at 2.8GHz computer with 8GB of central memory.
The curve of each method is obtained by using k (logarithmically) equispaced steps between hmin
and hmax, as speci�ed in Table 5.1.12 When the stepsize used does not exactly divide the �nal time
T = 100, the nearest mesh-point is considered.

Table 5.1: Parameters used for constructing Figures 5.18 and 5.19.

Method hmax hmin k

HBVM(5,1) 0.5 0.003 10
HBVM(6,2) 0.5 0.1 4
HBVM(9,3) 1 0.25 4
SV2 0.1 0.0006 13
SV4 0.1 0.007 7
SV6 0.1 0.01 5

Figure 5.18 summarizes the obtained results, and one sees that the (practically) energy-conserving
HBVMs are competitive, even w.r.t. explicit solvers of the same order. For sake of completeness, in
Figure 5.19, we plot the corresponding Hamiltonian error versus the execution time, thus con�rming
that HBVMs are practically energy conserving also for non polynomial Hamiltonians: in fact, taking
aside the coarser time steps, all methods have a Hamiltonian error which is within roundo� errors.
On the contrary, for the other methods the decrease of the Hamiltonian error matches their order.

12Larger values of hmax for the explicit methods (see Table 5.1) are not allowed because of stability reasons.
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Figure 5.1: Breather: soliton-like solution (5.100)-(5.101) of problem (5.98)-(5.99) with γ = 1.01.

Figure 5.2: Double-pole: soliton-like solution (5.100)-(5.101) of problem (5.98)-(5.99) with γ = 1.
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Figure 5.3: Kink-antikink: soliton-like solution (5.100)-(5.101) of problem (5.98)-(5.99) with
γ = 0.99.
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Figure 5.4: Hamiltonian for problem (5.98)-(5.99), as function of γ.
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Figure 5.5: Hamiltonian error when solving problem (5.98)-(5.99) with γ = 1 and periodic boundary
conditions, by using a �nite-di�erence (N = 400) (top) or a Fourier-Galerkin (N = 100) (bottom)
spatial discretization and the HBVM(1,1) (dashed blue lines) or the HBVM(7,1) (solid red lines)
methods with stepsize h = 0.5.
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Figure 5.6: Numerical solution of problem (5.98)-(5.99) with γ = 1 and periodic boundary condi-
tions, computed by the HBVM(1,1) method with stepsize h = 0.5 and a �nite-di�erence spatial
discretization (N = 400).

Figure 5.7: Numerical solution of problem (5.98)-(5.99) with γ = 1 and periodic boundary condi-
tions, computed by the HBVM(7,1) method with stepsize h = 0.5 and a �nite-di�erence spatial
discretization (N = 400).
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Figure 5.8: Numerical solution of problem (5.98)-(5.99) with γ = 1 and periodic boundary condi-
tions, computed by the HBVM(1,1) method with stepsize h = 0.5 and a Fourier-Galerkin spatial
discretization (N = 100).

Figure 5.9: Numerical solution of problem (5.98)-(5.99) with γ = 1 and periodic boundary condi-
tions, computed by the HBVM(7,1) method with stepsize h = 0.5 and a Fourier-Galerkin spatial
discretization (N = 100).
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Figure 5.10: Di�erence with their initial value for the numerical Hamiltonian (solid blue line) and
for the numerical augmented Hamiltonian (red dots) when solving problem (5.98)-(5.99) with γ = 1
and Dirichlet boundary conditions, by using a �nite-di�erence spatial discretization (N = 400) and
the HBVM(1,1) with stepsize h = 0.5.

Figure 5.11: Numerical solution of problem (5.98)-(5.99) with γ = 1 and Dirichlet boundary con-
ditions, computed by the HBVM(1,1) method with stepsize h = 0.5 and a �nite-di�erence spatial
discretization (N = 400).
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Figure 5.12: Di�erence with their initial value for the numerical Hamiltonian (solid blue line) and
for the numerical augmented Hamiltonian (red dots) when solving problem (5.98)-(5.99) with γ = 1
and Dirichlet boundary conditions, by using a �nite-di�erence spatial discretization (N = 400) and
the HBVM(7,1) with stepsize h = 0.5.

Figure 5.13: Numerical solution of problem (5.98)-(5.99) with γ = 1 and Dirichlet boundary con-
ditions, computed by the HBVM(7,1) method with stepsize h = 0.5 and a �nite-di�erence spatial
discretization (N = 400).
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Figure 5.14: Di�erence with their initial value for the numerical Hamiltonian (solid blue line) and
for the numerical augmented Hamiltonian (red dots) when solving problem (5.98)-(5.99) with γ = 1
and Neumann boundary conditions, by using a �nite-di�erence spatial discretization (N = 400) and
the HBVM(1,1) with stepsize h = 0.5.

Figure 5.15: Numerical solution of problem (5.98)-(5.99) with γ = 1 and Neumann boundary con-
ditions, computed by the HBVM(1,1) method with stepsize h = 0.5 and a �nite-di�erence spatial
discretization (N = 400).
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Figure 5.16: Di�erence with their initial value for the numerical Hamiltonian (solid blue line) and
for the numerical augmented Hamiltonian (red dots) when solving problem (5.98)-(5.99) with γ = 1
and Neumann boundary conditions, by using a �nite-di�erence spatial discretization (N = 400) and
the HBVM(7,1) with stepsize h = 0.5.

Figure 5.17: Numerical solution of problem (5.98)-(5.99) with γ = 1 and Neumann boundary con-
ditions, computed by the HBVM(7,1) method with stepsize h = 0.5 and a �nite-di�erence spatial
discretization (N = 400).
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Figure 5.18: Work-Precision Diagram for problem (5.98)�(5.99).

Figure 5.19: Hamiltonian error versus execution time for problem (5.98)�(5.99)
.



Conclusions

In this thesis we have provided a detailed description of the low-rank Runge-Kutta family of Hamil-
tonian Boundary Value Methods (HBVMs) for the numerical solution of Hamiltonian problems. In
particular, we have studied in detail their main property: the conservation of polynomial Hamil-
tonians, which results into a practical conservation for generic suitably regular Hamiltonians. This
property turns out to play a fundamental role in some problems where the error on the Hamiltonian,
usually obtained even when using a symplectic method, would be not negligible to the point of
a�ecting the dynamics of the numerical solution.

The research developed in this thesis has addressed two main topics. The �rst one is a new
procedure, based on a particular splitting of the matrix de�ning the method, which turns out to be
more e�ective of the well-known blended-implementation, as well as of a classical �xed-point iteration
when the problem at hand is sti�. This procedure has been applied also to second order problems
with separable Hamiltonian function, resulting in a cheaper computational cost.

The second topic addressed is the application of HBVMs for the full discretization of a method
of lines approach to numerically solve Hamiltonian PDEs. In particular, we have considered the
semilinear wave equation coupled with either periodic, Dirichlet or Neumann boundary conditions,
and the application of a (practically) energy conserving HBVM method to the semi-discrete problem
obtained by means of a second order �nite-di�erence approximation in space. When the problem is
coupled with periodic boundary conditions we have also considered the case of higher-order �nite-
di�erence spatial discretizations and the case when a Fourier-Galerkin method is used for the spatial
semi-discretization. The proposed methods are able to provide a numerical solution such that the
energy (which can be conserved or not, depending on the assigned boundary conditions) practically
satis�es its prescribed variation in time. A few numerical tests for the sine-Gordon equation have
given evidence that, for some problems, there is an e�ective advantage in using an energy-conserving
method for the time integration, with respect to the use of a symplectic one. Moreover, even though
HBVMs are implicit method, their computational cost for the considered problem turns out to be
competitive even with respect to that of explicit solvers of the same order, which, furthermore, may
su�er from stepsize restrictions due to stability reasons, whereas HBVMs are A-stable.
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