Relations between novel types of *D*-stability with applications to ODE dynamics

Olga Y. Kushel*, Raffaella Pavani

Abstract

Novel types of *D*-stability (namely, relative *D*-stability with respect to a shifted half-plane \mathbb{C}_{α}^{-} , a conic sector \mathbb{C}_{θ}^{0} and a stability parabola $P(\epsilon)$), were studied in [1]. Their different applications led to a deep study of relations between the classical concept of *D*-stability and these new concepts.

It is well-known that a second-order ODE system admits a general matrix form of notation. Basing on the novel types of matrix *D*-stability, we provide new stability conditions for second-order dynamical systems and analyze the stability of a parameter-dependent second-order model. Next, we discuss the relations between transient response properties of a second-order ODE system and novel types of matrix *D*-stability. We provide the conditions when the system has a given minimal decay rate α and the minimal damping ratio $\zeta = \cos(\theta)$ and when these characteristics are preserved for some variations of positive parameters.

References

[1] O. Kushel, Unifying matrix stability concepts with a view to applications, SIAM Rev., **61(4)** (2019), 643-729.

* Shanghai University,
Department of Mathematics,
Shangda Road 99,
200444 Shanghai, China
kushel@mail.ru