Numerical solution of Fredholm integral equations of the second kind with discontinuous kernels

Arvet Pedas*, Mikk Vikerpuur

Abstract

We consider a linear Fredholm integral equation of the second kind

$$u(t) - \int_0^1 K(t, s)u(s)ds = f(t), \quad 0 \le t \le 1,$$
 (1)

where the kernel K(t,s) may have, in addition to a diagonal singularity (a singularity at s=t), additional boundary singularities (singularities at s=0 and/or s=1) and a singularity at s=d for some fixed point $d \in (0,1)$. More precisely, we assume that $K(t,s)=g(t,s)\kappa(t,s)$, where, for an integer $m \geq 1$,

A1 $\kappa \in C^m(([0,1] \times (0,1)) \setminus \text{diag})$, diag := $\{(t,s) \in \mathbb{R}^2 : t=s\}$ and there exist real numbers $\nu \in (0,1)$, $\lambda_0 \in [0,1-\nu)$, $\lambda_1 \in [0,1-\nu)$ such that the estimate

$$\left| \left(\frac{\partial}{\partial t} \right)^i \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial s} \right)^j \kappa(t, s) \right| \le c \, s^{-\lambda_0 - j} (1 - s)^{-\lambda_1 - j} \, |t - s|^{-\nu - i} \tag{2}$$

holds with a positive constant c for all $(t, s) \in ([0, 1] \times (0, 1)) \setminus \text{diag and}$ for all non-negative integers i and j such that $i + j \leq m$;

A2 the function g(t,s) is m times continuously differentiable with respect to t and s for $t \in [0,1]$, $s \in [0,1] \setminus \{d\}$, $d \in (0,1)$, and g itself and all its derivatives up to order m are bounded in the regions $[0,1] \times [0,d)$ and $[0,1] \times (d,1]$.

The solutions u(t) for these types of integral equations are typically non-smooth at the endpoints of the interval of integration [0,1] and at point t=d. When constructing a high-order numerical method for the solution of (1) one must therefore take this non-smooth behaviour into account. In this contribution we devise a numerical solution to (1) with the help of a suitable grading of the interval of integration [0,1] and by utilizing a piecewise polynomial collocation approach. We prove the validity of the method by deriving a global convergence estimate and a superconvergence result. Finally, to illustrate the reliability of the proposed method a numerical example is given.

^{*} University of Tartu. Narva 18, Tartu, Estonia; email: arvet.pedas@ut.ee