Solving Vlasov-Maxwell equations by using Hamiltonian splitting

Yingzhe Li¹, Yang He^{2,3}, Yajuan Sun¹, Jitse Niesen⁴, Hong Qin^{2,5}, and Jian Liu^{2,3}

¹LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

²School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China

³Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, People's Republic of China

⁴Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK ⁵Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA

Abstract

In this paper, we consider the structure of the Vlasov-Maxwell equations based on the Morrison-Marsden-Weinstein Poisson bracket. To get a numerical solution to preserve the Poisson bracket, we construct the numerical methods by splitting the Hamiltonian of the Vlasov-Maxwell equations into five parts, and we can solve each subsystem exactly. The theoretical results and numerical experiments are given by choosing the appropriate spatial discretization.