Fixed point problem associated with state-dependent impulsive boundary value problems

Irena Rachunková * and Jan Tomeček[†]

*Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic e-mail: irena.rachunkova@upol.cz [†]jan.tomecek@upol.cz

Abstract. We investigate a fixed point problem in the Sobolev space $(\mathbb{W}^{1,\infty}([a,b];\mathbb{R}^n))^{p+1}$ which is connected to the boundary value problem

z'(t) = f(t, z(t)), a.e. $t \in [a, b] \subset \mathbb{R}, \quad \ell(z) = c_0,$

with the state-dependent impulses

 $z(t+) - z(t-) = J_i(t, z(t-)), \quad i = 1, \dots, p,$

where the impulse instants $t \in (a, b)$ are determined as solutions of the equations

$$t = \gamma_i(z(t-)), \quad i = 1, \dots, p.$$

We assume that $n, p \in \mathbb{N}$, $c_0 \in \mathbb{R}^n$, the vector function f satisfies the Carathéodory conditions on $[a,b] \times \mathbb{R}^n$, the impulse functions J_i , i = 1, ..., p, are continuous on $[a,b] \times \mathbb{R}^n$, and the barrier functions γ_i , i = 1, ..., p, are continuous on \mathbb{R}^n . The operator ℓ is an arbitrary linear and bounded operator on the space of left-continuous regulated (i.e. having finite one-sided limits at each point) on [a,b] vector valued functions and is represented by the Kurzweil-Stieltjes integral. Provided the data functions f and J_i are bounded, transversality conditions which guarantee that this fixed point problem is solvable are presented. As a result it is possible to realize a construction of a solution of the above impulsive problem.

Keywords: System of ODEs of the first order, state-dependent impulses, general linear boundary conditions, transversality conditions, fixed point problem

PACS: 02.30 Hq