Hamiltonian BVMs (HBVMs): implementation details and applications

Felice Iavernaro, Tiziana Susca

Abstract

Hamiltonian Boundary Value Methods are one step schemes of high order where the internal stages are partly exploited to impose the order conditions (*fundamental stages*) and partly to confer the formula the property of conserving the Hamiltonian function when this is a polynomial with degree at most ν , where ν is a given positive integer. The term "*silent stages*" has been coined for these latter set of extra-stages to mean that their presence does not cause an increase of the dimension of the associated nonlinear system to be solved at each step. By considering a specific method in this class and a number of numerical tests, we give some details about how the solution of the nonlinear system may be conveniently carried out and how to compensate the effect of roundoff errors.

References

- [1] L. Brugnano, F. Iavernaro and D. Trigiante, Analisys of Hamiltonian Boundary Value Methods for the numerical solution of polynomial Hamiltonian dynamical systems, (in preparation).
- [2] L. Brugnano and D. Trigiante, *Energy drift in the numerical integration of Hamiltonian problems*, J. Numer. Anal. Ind. Appl. Math., (in press).
- [3] L. Brugnano and D. Trigiante, Solving ODEs by Linear Multistep Initial and Boundary Value Methods, Gordon & Breach: Amsterdam, 1998.
- [4] E. Faou, E. Hairer and T.-L. Pham, Energy conservation with non-symplectic methods: examples and counter-examples, BIT Numerical Mathematics, 44, pp. 699–709 (2004).
- [5] F. Iavernaro and B. Pace, s-stage trapezoidal methods for the conservation of Hamiltonian functions of polynomial type, AIP Conf. Proc. 936 (2007), 603–606.
- [6] F. Iavernaro and B. Pace, Conservative Block-Boundary Value Methods for the solution of Polynomial Hamiltonian Systems, AIP Conf. Proc. 1048 (2008), 888–891.
- [7] F. Iavernaro and D. Trigiante, Discrete conservative vector fields induced by the trapezoidal method, J. Numer. Anal. Ind. Appl. Math. 1 (no. 1) (2006), 113–130.